
3 Interacting electrons: Many-body methods

Helpful reading:

[Mar] M. P. Marder, Condensed Matter Physics (Appendix C on second quantization).

[AM] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Chapter 17 on Hartree–
Fock)

[PS2] Handwritten lecture notes from the course “Statistical Physics II” (parts 2 and 3 on
second quantization, in French): http://www.phys.ethz.ch/~ivanov/ps2/1011/

[BR] J.-P. Blaizot et G. Ripka, “Quantum theory of finite systems” (diagonalization of
quadratic Hamiltonians and Wick theoreom)

3.1 Second quantization and Wick theorem

3.1.1 Bosons and fermions

Indistinguishable quantum particles can be of two types: bosons (the wave function is
fully symmetric with respect to the permutations of particles) and fermions (fully anti-
symmetric). [In terms of the irreducible representations of the permutation group, these
states belong to the trivial and “parity” representations, respectively.]

Fully symmetric and antisymmetric states may be described in terms of Hilbert spaces.
Given a single-particle Hilbert space H, we can construct the space of symmetrized and
antisymmetrized N -particle states as symmetrized and antisymmetrized products of N
copies of H: we denote such spaces S±H⊗N , respectively. If we add together all such
spaces with all possible particle numbers, we construct the bosonic/fermionic Fock space:

F±(H) =
∞⊕
N=0

S±H⊗N . (3.1.1)

Note that the sum starts with N = 0 (the vacuum state). In the case of fermions, if
H has a finite dimension m, then the spaces S+H⊗N vanish for m > N (so the sum is
actually limited to N ≤ m).

The symmetrization/antisymmetrization of states can be defined as

S±(ϕ1 ⊗ . . .⊗ ϕN) =
1

N !

N !∑
σ

ϕσ(1)⊗ . . .⊗ ϕσ(N) , (3.1.2)

where the sum is taken over all the permutations of N elements (N states). In our
discussion below, we will assume that the states ϕα are chosen from an orthonormal basis
(although many of the formulas may be simply generalized to a non-orthonormal case as
well).

Since the ordering of the states ϕα in the (anti)symmetrized product (3.1.2) is ir-
relevant, the multi-particle state may be specified by the occupation numbers nα: the
multiplicity of each basis state ϕα in the product (3.1.2). For fermions, the occupation
number nα can take values 0 and 1. For bosons, it can take all non-negative integer values.
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The states (3.1.2) for all possible sets of occupation numbers form a basis of the Fock
space F±(H).

The states (3.1.2) are not correctly normalized. Their normalization can be computed:

‖S±(ϕ1 ⊗ . . .⊗ ϕN)‖2 =

∏
α nα!

N !
. (3.1.3)

Therefore correctly normalized states can be defined as

|ϕ1, . . . , ϕN〉(n)± =

√
N !∏

α

√
nα!

S±(ϕ1 ⊗ . . .⊗ ϕN) . (3.1.4)

This construction is completely parallel for bosons and fermions.

3.1.2 Operators of creation and annihilation

For interacting particles, one needs to operate with states in the many-particle space
S±H⊗N . It turns out more practical to work with the full Fock space (3.1.1), even if
the particle number N is conserved. The operators in the Fock space may be most
conveninently expressed in terms of creation and annihilation operators. The creation
operators are defined as (both for bosons and for fermions):

a+α |ϕ1, . . . , ϕN〉(n)± =
√
nα + 1 |ϕα, ϕ1, . . . , ϕN〉(n)± (3.1.5)

in terms of the normalized states. Equivalently, the same operators may be written as

a+αS±(ϕ1 ⊗ . . .⊗ ϕN) =
√
N + 1S±(ϕα ⊗ ϕ1 ⊗ . . .⊗ ϕN) . (3.1.6)

The annihilation operators are defined as their Hermitian conjugates:

aα =
(
a+α
)†

(3.1.7)

Defined in this way, the operators a+α and aα obey the commutation (for bosons) or
anticommutation (for fermions) relations:

[aα, a
+
β ]± = δαβ , (3.1.8)

[aα, aβ]± = [a+α , a
+
β ]± = 0 . (3.1.9)

The use of the creation and annihilation operators allows to reduce many of the calcu-
lations in the Fock space to algebraic manipulations with the (anti)commutation relations.

Example: In our calculations with electrons, we will use the limit of an infinite system
size with the states ϕα being plane waves (parametrized by the wave vector k):

ϕk(x) = eikx (3.1.10)

Those states are normalized to∫
d3xϕ∗k(x)ϕk′(x) = (2π)3δ(k − k′) . (3.1.11)
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Correspondingly, the creation and annihilation operators associated with ϕk(x) obey the
(anti)commutation relations

[ak, a
+
k′ ]± = (2π)3δ(k − k′) . (3.1.12)

By defining the Fourier transforms

a+(x) =

∫
d3k

(2π)3
e−ikxa+k , (3.1.13)

a(x) =

∫
d3k

(2π)3
eikxak , (3.1.14)

(3.1.15)

the creation/annihilation operators in the coordinate space obey the relations

[a(x), a+(x′)]± = δ(x− x′) . (3.1.16)

3.1.3 One- and two-body operators in the Fock space

For any operator A acting in the single-particle space H, we may construct the corre-
sponding em one-particle operator A(∗) in the Fock space F±(H), whose action is given
by the sum of the operators A acting on each particle. One can show that this operator
may be written in terms of the creation and annihilation operators as

A(∗) =
∑
ij

a+αAαβaβ , (3.1.17)

where the sum is over the basis of the single-particle space H and Aαβ are the matrix
elements of A.

Example 1: Particle-number operator. A = 1 counts the particles. The total number
of particles is given by

N =
∑
α

a+αaα . (3.1.18)

Example 2: Free-particle Hamiltonian. The Hamiltonian of a free particle is diagonal
in the momentum space: E = εk. Its counterpart in the Fock space can therefore be
written as

H =

∫
d3k

(2π)3
a+k (εk − µ)ak , (3.1.19)

where εk is the energy dispersion [εk = ~2k2/(2m) for a particle in an empty space], and
µ is the chemical potential (which we usually include in the Hamiltonian in the Fock
space). In the case of a quadratic spectrum, we can also rewrite the same operator in the
coordinate space:

H =

∫
d3x a+(x)

(
− ~2

2m
∇2 − µ

)
a(x) . (3.1.20)

A similar construction is possible for operators involving two and more particles. Con-
sider, for example, the case of a two-particle operator V . It acts in the space of two particles
H⊗H. Let us denote its matrix elements by

Vαβ,γδ = 〈ϕα ⊗ ϕβ|V |ϕγ ⊗ ϕδ〉 . (3.1.21)
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Since the particles are indistinguishable, the matrix elements are invariant with respect
to the permutation of the two particles:

Vαβ,γδ = Vβα,δγ . (3.1.22)

Then we can define the operator in the Fock space F±(H), whose action is given by the
sum of the operator V acting on each pair of particles. One can show that this operator
may be written in the second-quantized form as

V(∗) =
1

2

∑
α,β,γ,δ

a+αa
+
β Vαβ,γδaδaγ . (3.1.23)

Note the factor 1/2 (to avoid the double counting of partice pairs) and the ordering of
the creation and annihilation operators (all the creation operators on the left of all the
annihilation operators to avoid the self-interaction of particles).

Example: Potential interaction V (x). The second-quantized form of the interaction
takes the form

U =
1

2

∫
d3x d3y a+(x) a+(y)V (x− y) a(y) a(x) . (3.1.24)

3.1.4 Diagonalization of quadratic Hamiltonians

Hamiltonians quadratic with respect to the creation and annihilation operators (both
bosonic and fermionic) have very remarkable properties:

1. They can be diagonalized and thus reduced to the case of noninteracting particles;

2. At any temperature, their equilibrium states obey the Wick theorem.

For the sake of generality (with a future application to superconductivity in mind),
we consider the general case of a quadratic Hamiltonian

H =
(
a+ a

)(H11 H12

H21 H22

)(
a
a+

)
, (3.1.25)

where Hij are N ×N blocks (N is the dimension of the single-particle Hilbert space).
Such a Hamiltonian can be diagonalized, i.e., brought to the form

H =
N∑
α=1

εαb
+
α bα + E0 (3.1.26)

where εα ≥ 0 (the energies of excitations), the operators bα are linear combinations of aα
and a+α ,

bα = uαβaβ + vαβa
+
β , (3.1.27)

b+α = u∗αβa
+
β + v∗αβaβ , (3.1.28)

(3.1.29)

obeying the same (anti)commutation relations:

[bα, b
+
β ]± = δαβ , (3.1.30)

[bα, bβ]± = [b+α , b
+
β ]± = 0 . (3.1.31)
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Mathematically, in the fermionic case, such a diagonalization is always possible. In the
bosonic case, one needs to require that the quadratic form (3.1.25) is positive-definite (if
one treats a+ and a as complex-conjugate numbers). Physically, any bosonic Hamiltonian
must be positive-definite, since otherwise its spectrum would be unbounded from below.

We do not prove here this theorem about diagonalization: you can find a detailed
proof and discussion in the book of Blaizot and Ripka [BR].

The practical algorithm for diagonalizing a quadratic Hamiltonian (3.1.25) consists in
writing a linear combination (3.1.29) and then solving the eigenvalue problem

[H, b+] = εb+ . (3.1.32)

Note that if the Hamiltonian conserves the number of particles (i.e., H12 = H21 =
0), then we can put v = 0, and the problem reduces to diagonalizing a single-particle
Hamiltonian.

3.1.5 Wick theorem

Consider a quadratic Hamiltonian (3.1.25) (bosonic or fermionic). Then, for any set of
operators A1, . . . , AM linear in a and a+, at any temperature, the thermal average of the
product

〈A1 . . . AM〉T =
tr
(
e−βHA1 . . . AM

)
tr (e−βH)

(3.1.33)

can be expressed in terms of pairwise averages:

〈A1 . . . AM〉T =
∑

(±1)σ〈Ai1Ai2〉T . . . 〈AiM−1
AiM 〉T , (3.1.34)

where the sum is taken over all partitions (often called contractions) of the operators
Ai into M/2 pairs. The ordering of the operators witin each pair must coincide with
the ordering of the operators in the left-hand side (i.e., in the above notation, i1 < i2,
i3 < i4, etc.). In the fermionic case, the sign (−1)σ is the parity of the permutation
(1, . . . ,M) 7→ (i1, . . . , iM). There are no sign factors in the bosonic case.

For a proof of the Wick theorem, see the book [BR] or M. Gaudin, Nucl. Phys. 15, 89
(1960) [in French].

Example: Wick theorem for a product of M = 4 operators.

〈A1A2A3A4〉T = 〈A1A2〉T 〈A3A4〉T ± 〈A1A3〉T 〈A2A4〉T + 〈A1A4〉T 〈A2A3〉T . (3.1.35)

Wick theorem can be applied for

1. Calculations of correlation functions in a free-particle system

2. Including interactions perturbatively, which leads to a diagrammatic expansion.
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Problem Set 4

Problem 4.1

(a) Verify the following identities for commutators [A,B] = AB − BA and anticom-
mutators {A,B} = AB +BA:

[A,BC] = [A,B]C +B [A,C] = {A,B}C −B {A,C}
{A,BC} = [A,B]C +B {A,C} = {A,B}C −B [A,C]

These relations [called the distributive law for commutators] are helpful for commuting
products of creation and annihilation operators.

Note: always use commutators for bosonic operators and anticommutators for fermionic
operators. Products of an even number of fermionic operators count as bosonic operators.

(b) Verify by an explicit calculation that the free-particle Hamiltonian

H =

∫
d3k

(2π)3
a+k (εk − µ)ak ,

commutes with the particle-number operator

N =

∫
d3k

(2π)3
a+k ak ,

Hint: the calculation can be simplified by using the relations derived in part (a).

Problem 4.2

Consider one fermionic level. The Fock space consists of two states: empty |0〉 (0
particles) and occupied |1〉 (1 particle). The fermionic creation and annihilation operators
act as

a |0〉 = 0 , a |1〉 = |0〉 ,
a+ |0〉 = |1〉 , a+ |1〉 = 0 .

(a) Verify the anticommutation relations

{a, a+} = 1 , {a, a} = {a+, a+} = 0 .

(b) Now suppose that the particle has a positive energy, and therefore at zero temper-
ature the system is in the ground state |0〉. Verify that, in this state, the Wick theorem
(3.1.35) holds for the product of four operators aa+aa+:

〈aa+aa+〉T=0 = . . .

(c) At a finite temperature, the system will be at a statistical mixture of two states:
the state |0〉 with a probability p and the state |1〉 with the probability 1− p. Verify that
the Wick theorem for the expectation value 〈aa+aa+〉 still holds.
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