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1 Introduction

1.1 Electrons in metals: methods and approximations

In solid state theory, one is interested in the physics of the interacting electrons and nuclei
(the latter are usually ordered in a crystal). While the miscroscopic nature of interactions
is known, finding the resulting effective behavior is a challenging task. Generally, the
Hamiltonian of the system has the form

H = Te + TN + Vee + VeN + VNN . (1.1.1)

where Te and TN are the kinetic energies of the electrons and nuclei, and Vee, VeN , VNN
are the interactions (of which the strongest are the electrostatic Coulomb interactions,
but spin-orbit interactions may also be relevant). Solving this complicated many-body
problem exactly is impossible (even numerically), and various levels of approximations
are used. We can mention several commonly used levels of approximations:

• Drude theory of conductivity. This approximation describes electrons classically
and neglects the role of nuclei (except for impurities). See your course of General
Physics and [AM] chapter 1.

• Free-fermion approximation (Sommerfeld theory). Treating electrons as free
quantum particles (fermions). The periodic potential of nuclei is still neglected. See
your course of Solid State Physics [AS] and [AM] chapter 2.

• Band theory. Quantum particles in a periodic potential of the nuclei. See your
course of Solid State Physics [AS] and [AM] chapter 8.

• Including electron-electron interactions. Electron-electron interaction can be
included at various levels of approximation: Hartree–Fock, random-phase-approximation
(RPA), Landau Fermi liquid.

• Numerical methods. Interactions may be included more precisely with numerical
methods: ab initio calculations, density functional theory.

• Including electron-phonon interactions. In some situations, these interactions
may be important. For example, they provide an important mechanism of resistivity
at high temperatures. They are also responsible for attraction between electrons
leading to superconductivity.

In the first lecture, we briefly review the advantages and limitations of these methods
and outline the program for the course.
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1.1.1 Classical Drude theory

Ref: [AM] Chapter 1.

This is the simplest model of a metal (proposed by Drude in 1900). The electrons are
treated as classical particles scattering randomly at impurities. Scattering on impurities
is parameterized by the “relaxation time” τ (the time after which the electron randomly
changes the direction of its motion). Then, from simple classical arguments (see your
physics course) one finds the DC electrical conductivity

σ =
ne2τ

m
. (1.1.2)

Here m is the electron mass and n is the density of electrons.
A similar calculation may be done for the thermal conductivity leading to

κ =
1

3
v2τcV , (1.1.3)

where v2 is the mean square electronic speed and cV is the electronic specific heat. For
the classical ideal gaz model,

v2 =
3kBT

m
, cV =

3

2
nkB , (1.1.4)

leading to

κ =
3nk2

BτT

2m
(1.1.5)

and further to the “Wiedemann–Franz law” (with a wrong coefficient)

κ

σ
=

3

2

(
kB
e

)2

T . (1.1.6)

Experimentally, indeed, the ratio κ/σ is roughly proportional to T , but the propor-
tionality coefficient is approximately two times larger (see Table 1.6 in [AM]). It turns
out, however, that this qualitative agreement with experiment is due to a cancellation of
two mistakes: both estimates in Eq. (1.1.4) are wrong, even though their product has a
correct order of magnitude (see our discussion of the quantum theory in the next section).

Furthermore, the discrepancy with experiment is much larger if one considers the
thermoelectric effect (the Seebeck effect: E = Q∇T ). In the Drude model, one finds for
the thermoelectric coefficient

Q = − cV
3ne

= −kB
2e

= −0.43 · 10−4volt/K , (1.1.7)

which is two orders of magnitude larger than the experimentally observed values.
One concludes that a quantum theory is needed for an accurate description of electrons

in metals.
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1.1.2 Sommerfeld theory of metals

Ref: [AM] Chapter 2.

In this theory, we treat electrons as a gaz of free fermions. The main results are:

1. Linear in T specific heat [note a huge difference from the classical result (1.1.4)].

2. The Drude expression (1.1.2) for the conductivity remains unchanged, as long as the
motion of electrons is quasiclassical (i.e. the mean free path is much longer than the
wave length), which is typically satisfied, and provided we can describe collisions by
a single (independent of energy and momentum) relaxation time τ (which is a more
subtle condition).

3. The expression (1.1.3) for the thermal conductivity remains valid, but the mean
square velocity and the specific heat are given now by

v2 = v2
F =

2εF
m

, cV =
π2nk2

BT

2εF
. (1.1.8)

This results in a more accurate coefficient in the Wiedemann–Franz law:

κ

σ
=
π2

3

(
kB
e

)2

T . (1.1.9)

4. Thermopower: If we use the specific heat from Eq. (1.1.8) for calculating the ther-
mopower, we get a reasonable estimate

Q = −π
2

6

kB
e

(
kBT

εF

)
, (1.1.10)

which is smaller than in the classical Drude theory by a factor of about (kBT/εF )
(two orders of magnitude at room temperature).

5. Spin succeptibility: The spin succeptibility is temperature independent at low tem-
peratures (see, e.g. condensed-matter-physics course [AS]).

Overall, this approximation gives a good description of the quantum behavior of con-
duction electrons, but becomes inaccurate for properties depending on the geometry of
the Fermi surface or on the interactions.

1.1.3 Band theory

As you have learned in previous physics courses, nuclei in solids form regular periodic
patterns: crystals. You have discussed the symmetry properites and classification of
crystal lattices in the course of condensed matter physics [AS].

The crystal lattice of nuclei produces a periodic potential for electrons. Single-particle
quantum states in such potential are not localized, but are periodic in space: Bloch waves.
Such states form bands.

This theory can explain:

1. Why some materials are metals and some insulators.

2. For metals, properties depending on the shape of the Fermi surface (de Haas–van
Alphen effect, sign of the Hall coefficient, etc.)

In our lectures, we will discuss the role of the crystal symmetry in the band structure.
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1.1.4 Including interactions: Hartree–Fock, Landau Fermi liquid, Density
functional theory, etc.

All the methods discussed above treat electrons as non-interacting. For some physical
effects, interactions are important.

In some situations, interactions may be taken into account analytically by renormaliz-
ing in some way the non-interacting model (Hartree–Fock, random-phase approximation,
Landau Fermi Liquid theory). For more accurate estimates of the role of interactions
on the electronic structure, one uses more sophisticated numerical methods (e.g., density
functional theory).

In other situations, interactions lead to qualitatively new physics. One example, which
we will discuss in our course: superconductivity (BCS theory). The BCS theory is a good
textbook example, because a simple analytic theory exists. There are many other physical
examples, where such a simple theory has not been yet developed (if it exists at all): high-
temperature superconductivity, fractional quantum Hall effect, etc.

1.1.5 Estimating the importance of interactions

Consider a free electron gas of density n. A typical distance between electrons may be
taken to be rs, defined as the radius of the sphere whose volume equals the volume per
one electron:

V

N
=

1

n
=

4πr3
s

3
, rs =

(
3

4πn

)1/3

(1.1.11)

It is also convenient to measure rs in the units of the Bohr radius

a0 =
~2

me2
= 0.529Å (1.1.12)

The typical kinetic energy is of the order of the Fermi energy (below I do not keep
track of numerical coefficients):

EF ∼
~2k2

m
∼ ~2

r2
sm

(1.1.13)

while the typical interaction energy is

EC ∼
e2

rs
(1.1.14)

The importance of interaction is determined by the ratio

EC
EF
∼ me2rs

~2
=
rs
a0

(1.1.15)

— i.e., the interaction is more important at low densities!
Moreover, it was predicted theoretically, that at very low densities the interactions be-

come so strong that fermions crystallize at zero temperature (E. Wigner, 1934). Numerical
studies suggest that such a crystallization occurs at rs/a0 ∼ 106 in 3D and rs/a0 ∼ 31 in
2D. For typical metals, rs/a0 is of the order 2–5.
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1.1.6 Plan of the course (approximate)

• Lecture 1. Specific heat and transport properties in the model of noninteracting
fermions.

• Lecutres 2-3. Electronic energy bands in crystals. Role of crystal symmetries.
(Introduction to the theory of group representations.)

• Lectures 4-5-6. Interactions between electrons. Perturbative approach, Hartree–
Fock, screening of interactions. (Second quantization and introduction to diagram-
matic methods.)

• Lecture 7. Landau Fermi liquid theory.

• Lecture 8. Numerical approaches. Density functional theory. Local density ap-
proximation.

• Lecture 9. Phonons, electron-phonon interaction.

• Lecture 10-11-12. Attraction by exchanging phonons. BCS theory of supercon-
ductivity.

1.2 Specific heat and transport properties in the model of non-
interacting fermions.

In this section, we derive the specific heat (1.1.8), the electrical conductivity (1.1.2),
and the thermal conductivity (1.1.3) in the model of noninteracting fermions. We will
present the calculations in a form suitable for both the Sommerfeld theory (spherical
Fermi surface) and the band theory (for an arbitrary shape of the Fermi surface).

1.2.1 Specific heat

Ref: [AM] Chapter 2.

Specific heat is an equilibrium characteristic of a statistical system:

cV =
∂E
∂T

, (1.2.1)

where E is the energy at thermal equilibrium at a given temperature T . At equilibrium,
every single-particle level (at a given energy Ei) can be treated independently: it is either
empty or occupied, with the probabilities given by the Fermi–Dirac distribution:

p0 =
1

1 + exp[−(Ei − EF )/T ]
, p1 = nF (Ei) =

exp[−(Ei − EF )/T ]

1 + exp[−(Ei − EF )/T ]
. (1.2.2)

Then the total energy can be calculated as

E(T ) =
∑
i

Ei nF (Ei) . (1.2.3)
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It only depends on the energy levels, but not on the properties of the eigenstates. Then
it is convenient to introduce the density of states ν(E): the number of energy levels per
unit of energy per unit of volume. Then the sum can be re-expressed as an integral

E(T ) =

∫
E nF (E) ν(E) dE (1.2.4)

(energy per unit volume), and the specific heat then equals

cV =

∫
E

∂

∂T
nF (E) ν(E) dE (1.2.5)

Under the condition that the temperature is sufficiently low so that we can neglect the
energy dependence of ν(E) in the corresponding energy window around the Fermi level,
we can approximate

cV = ν(EF )

∫
E

∂

∂T
nF (E) dE . (1.2.6)

After calculating the integral, one arrives at a general expression linear in T and in ν(EF )
(see Problem 1.1), which, in the case of the free fermion gas, further reduces to Eq. (1.1.8).

Note that this result for the specific heat (linear in T ) is only relevant at very low
temperatures, where cV is dominated by electrons. At higher temperatures, the phonon
contribution (proportional to T 3) comes in.

1.2.2 Electrical and thermal conductivities

Ref: [AM] Chapter 13.

Calculating electrical and thermal conductivities is a more complicated problem, even
in a non-interacting model, since it requires taking into account a non-equilibrium distri-
bution of electrons. We make two assumptions for our calculation:

• quasiclassical regime (mean free path of electrons is much larger than their wave
length)

• relaxation-time approximation: relaxation processes lead to relaxation to a thermal
equilibrium characterized by a single time scale τ (independent of the momentum
and energy of the electron).

Under the quasiclassical assumption, we can describe the state of the electrons by the
occupation number n(k, r) as a function of both momentum and coordinate. Under the
relaxation-time approximation, we can write the kinetic equation

∂

∂t
n = −n− nF

τ
− v

∂

∂r
n− eE ∂

∂k
n . (1.2.7)

Here the first term describes the equilibration towards the Fermi–Dirac distribution (at a
given temperature) nF , the second term describes the ballistic transfer of the distribution
function with the velocity v(k) = ∂E(k)/∂k and the last term includes the acceleration
of electrons by the electric field E.
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We can compute the response of the electric current j to the electric field E by assuming
a homogeneous non-equilibrium distribution n = nF + δn. To the leading order, we can
solve for δn:

δn = −τeEv
∂

∂E
nF , (1.2.8)

while the current is given by

j = e

∫
d3k

(2π)3
v δn . (1.2.9)

This immediately leads to the expression for the tensor of electrical conductivity (defined
as jα = σαβEβ):

σαβ = −e2τ

∫
d3k

(2π)3
vαvβ

∂

∂E
nF . (1.2.10)

Note that this expression, at low temperature, only weakly depends on temperature and
is determined only by the energy dispersion in the vicinity of the Fermi surface. For the
quadratic spectrum, it reduces to the Drude expression (1.1.2) (see Problem 1.2).

In a similar way, one can calculate the thermal conductivity. The delicate point here
is that the thermal conductivity is defined as the energy flow under the condition of the
zero electric current. This condition can be taken into account, to the leading order, if
we compute the energy current as

jE =

∫
d3k

(2π)3
(E − EF )vδn . (1.2.11)

The out-of-equilibrium part of the distribution function δn can be computed from Eq. (1.2.7)
with ∂n/∂t = 0, E = 0, and ∂n/∂r = (∇T )∂nF/∂T . As a result, we find for the tensor
of thermal conductivity (defined as (jE)α = −καβ(∇T )β):

καβ = τ

∫
d3k

(2π)3
vαvβ(E − EF )

∂

∂T
nF . (1.2.12)

This expression has a structure similar to Eq. (1.2.10). At low temperature, both expres-
sions are proportional to the integral over the Fermi surface:∫

dS
vαvβ
v

(1.2.13)

(see Problem 1.2), and their ratio obeys the Wiedemann–Franz law (1.1.9).
In reality, the Wiedemann–Franz law is not always obeyed. The main limitation comes

from the relaxation-time approximation. The validity of this approximation depends
on the mechanism of relaxation and on the temperature (which determines the typical
energy range of electrons). For elastic scattering on impurities, in isotropic systems,
the relaxation-time approximation can be rigorously derived (we will not do it in our
lectures, see [AM] Chapter 16). For electron-electron scattering, it is applicable only
qualitatively. For electron-phonon scattering, it is invalid at low temperatures, but works
at high temperatures. As a result, the Wiedemann–Franz law is often applicable at high
temperatures (room temperature and above) and at very low temperatures, but does not
apply in the intermediate temperature range. For illustration, see Table 1.6 in [AM]. For
more details on the applicability of the relaxation-time approximation, see, e.g., the book
by A. A. Abrikosov “Fundamentals of the Theory of Metals”.
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2 Electronic band structure and lattice symmetries

In this section, we discuss how crystal symmetries can help in describing the electronic
band structure (in particular, the level degeneracies at points of special symmetry in the
Brillouin zone). In fact, the band structure itself (Bloch waves) may be viewed as a
consequence of the translational symmetry of the crystal lattice.

2.1 Symmetries in quantum mechanics. Introductory remarks

Symetries play an important role in quantum mechanics. If a quantum problem has
symmetries, then

• symmetries simplify the problem by providing good “quantum numbers”

• symmetries may be responsible for levels degeneracies

Namely, quantum levels may be classified according to the irreducible representations of
the symmetry group. Then the Hamiltonian may be projected onto the states belonging to
a specific type of irreducible representations, which reduces the dimension of the Hilbert
space and thus simplifies the problem. If this irreducible representation is more than
one-dimensional, then the corresponding levels are accordingly degenerate.

An example of such a reduction is known from a course of quantum mechanics: for a
particle in a centrally symmetric potential, the states may be classified according to their
angular momentum. In our course we will consider another example: how the symmetries
of the crystal lattice may be used to classify electronic states.

The crystal symmetries involve two types of operations:

• Translations. These symmetries are responsible for the band structure: the states
are classified according to their wave vectors (“Bloch theorem”).

• Rotations and reflections. These symmetries are responsible for additional degen-
eracies occuring in the band structure.

Before discussing these symmetries in more detail, we briefly review the theory of
group representations.

2.2 Groups and their representations: A crash course

Ref: [DV].

Please check the properites mentioned below against an example of your favorite group!

2.2.1 Definition of a group

A group is a set of elements with a multiplication operation. The multiplication must
obey the following properties:

• (ab)c = a(bc) — associativity

• 1 · a = a · 1 = a — the existence of unity (can you prove its uniqueness?)

• aa−1 = a−1a = 1 — the existence of an inverse (one can further prove its uniqueness)
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Groups often appear as symmetries of a geometric or physical object (atom, molecule,
crystal). Think of examples of discrete and continuous groups.

2.2.2 Subgorups and direct product of groups

A subgroup is a group within a group (with the same multiplication operation). Think of
interesting examples.

A direct product of two groups G and H is a set of pairs (g, h) with g ∈ G, h ∈ H, and
a natural definition of multiplication: (g1, h1) · (g2, h2) = (g1g2, h1h2). Think of physical
examples of this construction.

2.2.3 Abelian and nonabelian groups. Classes of conjugate elements

A group is said to be abelian if all its elements commute, ab = ba, and nonabelian other-
wise. Example: rotations in 2D form an abelian group, rotations in 3D are nonabelian.

If we pick an element u in a group G, it defines a “similarity” (or conjugation) trans-
formation g 7→ ugu−1 (for all elements g ∈ G). This similarity preserves the group
multiplication: (ug1u

−1)(ug2u
−1) = u(g1g2)u−1. In other words, it is a symmetry of the

group.
Abelian groups do not have nontrivial conjugations.
All elements related by conjugations form a class of conjugate elements (they are

“similar” to each other). Example: in 3D, all rotation by a given angle (independently of
the axis of rotation) are conjugate to each other.

2.2.4 Representations of groups

A (linear) representation of a group G is a set of n × n matrices which have the same
multiplication table (with respect to the matrix product) as the group elements: to each
group element g, there corresponds an invertible matrix D(g) such that

D(g1)D(g2) = D(g1g2) . (2.2.1)

The dimension of the representaiton is the size n of those matrices.
Example 1. If the group corresponds to spatial rotations of some object, than these

spatial symmetries (written as coordinate transformations in space) realize its represen-
tation. The dimension of this representation equals the dimension of the physical space.

Example 2. For any group, there exists a one-dimensional trivial (identity) repre-
sentation: matrices 1× 1 (just numbers) with D(g) ≡ 1.

Example 3. For any group, there exists a so called regular representation. It is
constructed in the following way. Consider group elements g as a basis of (quantum)
states |g〉 and consider all possible superpositions

ψ =
∑
g∈G

cg |g〉 . (2.2.2)

Now if we define the action of a group element g1 on the basis states by permuting them
according to the group multiplication,

D(g1) |g2〉 = |g1g2〉 , (2.2.3)

12



then this action can be extended to a linear transformation on all the states ψ:

D(g)
∑
g′∈G

cg′ |g′〉 =
∑
g′∈G

cg′ |gg′〉 (2.2.4)

and written as a matrix of the size equal to the number of elements in the group G. In
the basis of the states |g〉, these matrices only contain zeros and ones. One can easily see
that they form a representation of G.

This regular representation is useful in the represnetation theory, since it contains all
the irreducible representations of the group (see below).

2.2.5 Reducible and irreducible representations

If some similarity transformation (change of basis)

D′(g) = UD(g)U−1 (2.2.5)

with some matrix U (the same for all the elements g) brings a representation into a
block-diagonal form

D′(g) =

(
D′1(g) 0

0 D′2(g)

)
(2.2.6)

(with some square matrices D′1(g) and D′2(g)), then this representation is said to be
reducible (and the representation D(g) is decomposed into the sum of D′1(g) and D′2(g)).
Otherwise, it is called irreducible.

Note: if a representation is reducible, then there is a smaller subspace invariant with
respect to all the elements of the group.

The reverse is true, if the representation is unitary (all D(g) are unitary matrices).

• In general, any representation of a finite or, more generally, compact group can be
brought to a unitary form by a suitable change of basis (2.2.5). For a counterexample
(a representation of a non-compact group which cannot be brought to a unitary
form), see the discussion of the translational symmetry of the lattice in the next
lecture.

• In application to quantum mechanics, we always assume that our representations
are unitary, since they correspond to physical symmetries of the Hilbert space of
quantum states and hence are represented by unitary matrices.

Example. Consider the group of permutations of the three coordinate axes in the 3D
space (6 permutations in total, this group is usually denoted S3). Those permutations of
the axes realize a three-dimensional representation of the group. The diagonal x = y = z
is invariant with respect to all those permutations. Therefore we immediately deduce that
this representation is reducible.

2.2.6 Characters and character tables. Orthogonality relations

Our goal in this lecture is to learn how to

• classify all irreducible representations of a given group;

13



• for a given representation (physical symmetry acting in a physical Hilber space of
quantum states), decompose it into a sum of irreducible representations.

This can be done with the help of characters.
A character of a representation D(g) is a numerical function on the group elements

defined as
χD(g) = trD(g) (2.2.7)

(trace of the matrix). It can be tought of as a fingerprint of a representation.
Some obvious properties of the character:

• χD(g) is basis independent;

• χD(g) is the same for all elements g in one class of conjugate elements. So the
character is in fact a function on classes of conjugate elements;

• for any representation D, χD(1) gives the dimension of the representation (since 1
is always represented by the unit matrix);

• The character of a sum of representations (2.2.6) equals the sum of their characters.

For a finite group, the number of irreducible representations is also finite, and it is
convenient to list the characters of all its irreducible representations in a table: the rows
of the table correspond to the representations, the columns — to the classes of conjugate
elements.

Example. The group S3 of all the permutations of three elements. It has 6 group
elements, which form three conjugate classes:

• identity element, 1, is always alone in its class

• three pairwise permutations, (12), (23) and (13). We denote this class 3(12)

• two cyclic permutations of the three elements, (123) and (132). We denote this class
2(123)

The representation table for S3 looks as follows:

1 3(12) 2(123)

Γ1 1 1 1
Γ2 1 −1 1
Γ3 2 0 −1

For any group, its table of irreducible representations obeys the orthogonality relations
(we don’t prove them here, please refer to [DV] for proofs):

• Orthogonality of rows: ∑
α

nαχk(α)χk′(α)∗ = |G|δkk′ , (2.2.8)

where the sum is taken over classes of conjugate elements, nα is the number of
elements in each class, and |G| is the total number of elements in the group. k and
k′ denote two (different or coinciding) irreducible representations. The star denotes
complex conjugation (characters are sometimes complex!).
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• Orthogonality of columns:∑
k

χk(α)χk(α
′)∗ =

|G|
nα

δαα′ , (2.2.9)

where the sum is now over irreducible representations.

Several useful properties follow from these general orthogonality relations (or can be
deduced independently):

• The number of irreducible representations of the group equals the number of con-
jugacy classes of that group;

• The sum of squares of the dimensions of the irreducible representations equals the
number of elements in the group:∑

k

dim(k)2 = |G| (2.2.10)

Note that these two properties are usually sufficient to determine the dimensions of
the irreducible representations for sufficiently small finite groups.

• Abelian (commutative) groups have only one-dimensional irreducible representa-
tions. Nonabelian (noncommutative) groups have at least one non-one-dimensional
irreducible representation.

For sufficiently small finite groups, the character tables may be constructed “by hand”:
usually, one knows a priori some of the representations (e.g., the identity representation
and other one-dimensional representations), and, together with the orthogonality rela-
tions, it is sufficient to complete the table. Formal algorithms also exist, but they are
more suitable for computer programs and we will not study them.

Furthermore, the orthogonality relations help in decomposing a given representation
into a sum of irreducible representations. This can be done by projecting onto each
irreducibe representation using (2.2.8):

Nk =
1

|G|
∑
α

nαχ(α)χk(α)∗ = |G| . (2.2.11)

In particular, if we apply this formula to the regular representation (whose character is
χ(1) = |G| and χ(α) = 0 for all other conjugacy classes), we find that the fundamental
representation contains all the irreducible representations with multiplicities equal to their
dimensions [cf. Eq. (2.2.10)].

2.2.7 Irreducible representations in quantum mechanics

Suppose now that G is the group of symmetries of a quantum Hamiltonian H. Then
it is represented by linear (unitary) operators in the Hilbert space of quantum states.
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Usually, this representation is reducible. The symmetry of the Hamiltonain implies
D(g)HD(g)−1 = H for all group elements g.1

Suppose, Ψ is an eigenstate of H at energy E. Then, for any group element g, its
action on Ψ produces again an eigenstate at the same energy E. Formally, we may write
this as

HD(g)Ψ = D(g)HΨ = D(g)EΨ = ED(g)Ψ . (2.2.12)

If we diagonalize the Hamiltonian, then the eigenvectors corresponding to the same energy
transform into each other by the group G and therefore form a representation of G.

Thus the diagonalization of the Hamiltonian simultaneously decomposes the repre-
sentation of G in the full Hilbert space into a sum of smaller representation. If those
smaller representations are reducible, we may decompose them further, until we reach a
decomposition into irreducible representations. Each of the irreducible representations is
an eigenspace of the Hamiltonian corresponding to some energy E.

In the most general situation, all those energies E are different, and we find that the
degeneracies of levels are given by the dimensions of the irreducible representations. Some-
times, some of those energies may coincide, and then the degeneracy is given by the sum
of the dimensions of several irreducible representations. Usually, this coincidence (called
accidental degeneracy) happens either as a result of a fine-tuning of some parameters or
as a consequence of a larger symmetry not taken into account.

We can also reverse this procedure and first decompose the full representation of G
into a sum of irreducible representations, and then it will be sufficient to diagonalize
the Hamiltonian separately within each class of irreducible representations. This classi-
fication into irreducible representations provides a good set of “quantum numbers” and
considerably simplifies the problem (by reducing the dimension of the Hamiltonian).

Example: For a quantum particle in a symmetric potential U(x) = U(−x), we may
require that the eigenstates are either even or odd in x: Ψ(x) = ±Ψ(−x). Those even
(odd) wave functions belong to the even (odd) representation of the reflection symmetry
group (transforming x 7→ −x).

2.2.8 Concluding remarks

For understanding general properties of groups and their representations, it is always
helpful to keep in mind some simple examples (cyclic groups, 3D rotations, etc.).

We have discussed mainly representations of finite groups: in this case, there is only
a finite number of irreducible representations, and the character table is finite. However,
many of the properties of representations of infinite groups (e.g., orthogonality relations)
are very similar to the finite case, with the only difference that the number of irreducible
representations becomes infinite, and the finite sums get replaced either by infinite sums
or by integrals.

1Rigorously speaking, since quantum states are defined up to a phase factor, the group G is also
represented up to arbitrary phase factors in Eq. (2.2.1). In this way, the notion of a linear representation
is generalized to a projective representation (in the context of electronic structure, also sometimes called a
representation of the double group). The examples of nontrivial projective representations are 3D rotations
of a half-integer spin and translations of a charged particle in a magnetic field. In our lecture, we will
discuss the band structure in the absence of magnetic field and neglecting the spin-orbit interaction.
Under these assumptions, the geometric symmetries of the crystal lattice form a linear representation
without phase factors. See however the discussion of non-symmorphic crystallographic groups in the next
section.
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2.2.9 Product of representaitons

Besides the sums of representations, one can also define their products. Consider two
groups G and H and their direct product G×H. If we have two representations D1 and
D2 of G and H respectively, we may define their product as

D(g · h) = D1(g)⊗D2(h) , (2.2.13)

where ⊗ is the tensor product of matrices: (A⊗B)ij,kl = AikBjl. The dimension of such
a representation equals the product of the dimensions of D1 and D2, and its character is
given by the product of the two characters.

Note that if both D1 and D2 are irreducible, then their product is also irreducible (as
a representation of G×H). In other words, if a group is a direct product of two groups,
then its table of irreducible representations can be obtained as the product of the tables
of irreducible representations of its factors.

One can also encounter a situation, where the two groups G and H are equal, and
their product is also viewed as a representation of the same group:

D(g) = D1(g)⊗D2(g) . (2.2.14)

In this case, the product of two irreducible representations is not generally irreducible. For
example, the product of two spin-1/2 representations of the rotation group is decomposed
into a singlet and a triplet (which can be symbolically written as 2⊗2 = 1⊕3, if we mean
by 1, 2, and 3 irreducible representations of SU(2) with the corresponding dimensions).

2.3 Band structure and lattice symmetries: example of diamond

Refs: [BP], [DDJ].
We now apply the general formalism developed in the last lecture to the example of

the crystal structure of diamond. The first part of the discussion (about the Bloch waves)
is general for any crystal structure, the rest is specific for the space group of diamond.
Note that there is an additional complication for the diamond space group, since it is
non-symmorphic (see definition below): we will remark this complication, but will not
discuss it in detail. We will also not discuss the possibility of spin-orbit interactions.
Please refer to literature for those details.

2.3.1 Crystal symmetries

The full symmetry of the crystal structure is usually called space group or crystallographic
group. It includes translations (in three noncollinear directions) as a subgroup. We may
further define the point group as a factor of the space group modulo translations. The
point group is a finite group of isometries preserving one fixed point. It may contain both
proper (preserving the orientaion) and improper (reversing the orientation) rotations.

Sometimes, the point group is a subgroup of the space group: in this case the space
group is called symmorphic. Otherwise (if it is not possible to realize the point group as
symmetries of the crytal with one common fixed point) it is called non-symmorphic.
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Figure 1: Diamond lattice.

2.3.2 Translational symmetries and Bloch waves

Consider first the classification of states with respect to translations. Pick the three gener-
ating translation vectors e1, e2, e3. These translations commute, so the full translational
part of the crystal symmetries is a direct product of the three one-dimensional translation
groups. So it is sufficient to consider each of them separately, and then take the product
of the three representations.

The group of one-dimensional lattice translations is abelian and is generated by an
elementary translation T . The decomposition into irreducible representations is obtained
by diagonalizing the matrix T . Each eigenstate of T (called a Bloch wave), is multiplied
by a phase factor under such an elementary translation:

TΨ = eiφΨ . (2.3.1)

Note that the we only consider the case of phase factors and disregard the possibility
of eigenstates TΨ = cΨ with |c| 6= 1: such eigenstates would diverge at one of the two
infinities and therefore do not belong to the space of physical states. In other words, only
unitary representations appear in physical states.

After we combine the translations along the three directions, we find for the full
translation group the set of irreducible one-dimensional representations:

Tn1e1+n2e2+n3e3 = ei(n1φ1+n2φ2+n3φ3)Ψ . (2.3.2)

The three phases φ1, φ2, and φ3 parametrize the representation and define a point in the
Brillouin zone. In other words, the Brillouin zone is the set of all irreducible representa-
tions of the translations of the crystal lattice.

If translations exhaust the symmetries of the lattice, this would be the end of the
story. If, on the other hand, the point group is nontrivial, it mixes some of the points in
the Brillouin zone and introduces degeneracies. Below we illustrate how it works in the
example of the crystal lattice of diamond.

2.3.3 Diamond crystal lattice

The diamond crystal lattice (see Fig. 1) may be described in terms of positions of the
carbon atoms. It contains two superimposed FCC (face-centered cubic) sublattices. The
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Figure 2: Dual lattice of k points and some points and lines of special symmetry.

positions of the points are:

a

2
(n1, n2, n3) and

a

2

(
n1 +

1

2
, n2 +

1

2
, n3 +

1

2

)
with (n1 + n2 + n3) even. (2.3.3)

The lattice constant a = 3.57 Å (at room temperature) is the length of the side of the
cube in the FCC pattern.

The elementary lattice translations are

e1 =
a

2
(0, 1, 1) , e2 =

a

2
(1, 0, 1) , e3 =

a

2
(1, 1, 0) . (2.3.4)

The unit cell contains two atoms.

2.3.4 Diamond Brillouin zone

The dual lattice of k points is defined as lattice of k vectors which give trivial (multiple of
2π) phases under all translations of the lattice. From (2.3.4), we find the general formula
for the lattice of k points:

k =
2π

a
(−m1 +m2 +m3,m1 −m2 +m3,m1 +m2 −m3) , (2.3.5)

where m1, m2, and m3 run over all integer numbers. This defines the BCC (body-centered
cubuc) lattice (Fig. 2).

One usually chooses the Brillouin zone (BZ) to be the set of k points that are closer
to k = 0 than to any other k point of the lattice. This construction gives in our case the
Brillouin zone in the shape of a truncated octahedron. We distinguish the points of special
symmetry Γ (at k = 0), X [the center of a square face of the BZ, e.g., k = (2, 0, 0)π/a],
and L [the center of a hexagonal face of the BZ, e.g., k = (1, 1, 1)π/a]. We also consider
two lines of special symmetry: ∆ (connecting Γ and X) and Λ (connecting Γ and L).

Our goal will be to find the level degeneracies at these points and on these lines.

2.3.5 Point group of the diamond lattice

If we look at the lattice of diamond (2.3.3), we find that the point group is the symmetry
group of a cube (including both proper and improper rotations), but the full space group
is non-symmorphic.
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The total number of group elements of this symmetry group (denote it by Oh) is 48.
The simplest improper rotation is the inversion (the simultaneous change of sign of

all the coordinates). Let us denote this transformation by I. It commutes with all the
rotations, and therefore the full point group Oh can be decomposed into a direct product
of the group of proper rotations (denoted by O, contains 24 elements) and the ”inversion”
group {0, I}. The latter has two irreducible represtnations (both are one-dimensional):
the trivial one and the “parity” one. Therefore for constructing the irreducible represen-
tations of Oh, it will be sufficient to construct the representations of O and then multiply
them by one of the two representaitons of {0, I}.

2.3.6 Representations of O and Oh

To construct the table of characters for O, start with counting the classes of conjugate
elements:

1 (1 element): unity;

690◦ (6 elements): rotations by 90 degrees;

3180◦ (3 elements): rotations by 180 degrees about a face of the cube;

6180◦ (6 elements): rotations by 180 degrees about an edge center;

8120◦ (8 elements): rotations by 120 degrees about a cube diagonal.

Total 5 classes. Therefore there will be 5 irreducible representations in the character table.
The trivial representation is always there. We can also guess another one-dimensional

representation (denote it by P ): if we color the vertices of the cube in black and white
in a checkerboard pattern, then the transformations can be classified into odd and even
by whether they change the color of vertices. Finally, we also know a three-dimensional
representation (by considering a cube in a 3D space), which is also obviously irreducible
(can you explain why?). This three-dimensional reprentation may, in turn, be multiplied
by P to produce yet another 3D representation. So we know already 4 out of 5 irreducible
representations. The last one (or rather, its character) can be found from the orthgonality
relations. As a result, we find the character table of O:

1 690◦ 3180◦ 6180◦ 8120◦

1 1 1 1 1 1
P 1 −1 1 −1 1
2 2 0 2 0 −1
3 3 1 −1 −1 0

3P 3 −1 −1 1 0

Multiplying it by the character table of {0, I},
1 I

1 1 1
PI 1 −1

we can write the character table of Oh (here we use the traditional crystallographic
notation for the representaitons):
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1 690◦ 3180◦ 6180◦ 8120◦ I I690◦ I3180◦ I6180◦ I8120◦

Γ1 1 1 1 1 1 1 1 1 1 1
Γ2 1 −1 1 −1 1 1 −1 1 −1 1
Γ12 2 0 2 0 −1 2 0 2 0 −1
Γ′15 3 1 −1 −1 0 3 1 −1 −1 0
Γ′25 3 −1 −1 1 0 3 −1 −1 1 0
Γ′1 1 1 1 1 1 −1 −1 −1 −1 −1
Γ′2 1 −1 1 −1 1 −1 1 −1 1 −1
Γ′12 2 0 2 0 −1 −2 0 −2 0 1
Γ15 3 1 −1 −1 0 −3 −1 1 1 0
Γ25 3 −1 −1 1 0 −3 1 1 −1 0

2.3.7 Projective representations and non-symmorphic space groups

So far, we were assuming that we indeed had a linear representation of the symmetry
group in the space of electron states. In fact, quantum states are defined up to a phase
factor, and the group may also be represented only up to phase factors:

D(g1)D(g2) = eiφ(g1,g2)D(g1g2) . (2.3.6)

In some situations, the phase factors φ(g1, g2) may be compensated by redefining D(g):

D(g) 7→ eiα(g)D(g) , (2.3.7)

and then the problem reduces to the conventional representaiton theory. In other situa-
tions, the phase factors φ(g1, g2) cannot be compensated, and we obtain a different type
of representation, not included in the conventional character table.

The more general definition (2.3.6) of a representation is called a projective representa-
tion. The theory of projective representations may be reduced to the conventional theory
of linear representations by extending the group (writing the phase factors as separate
group elements commuting with the rest of the group) and then studying the conventional
linear representations of the extended group (sometimes called the double group in the
crystallographic context).

Examples of nontrivial projective representations include 3D rotations of a half-integer
spin and translations of a charged particle in a magnetic field. In our example, we neglect
the spin-orbit interaction, so no phase factors appear due to spin. However, one still needs
to consider projective representations in order to classify the energy levels at some points
at the boundary of the Brillouin zone in the case of a non-symmorphic space group. In
our lecture, we will skip this part of the calculation.

2.3.8 Free-electron band structure

As a very crude approximation of the low-lying states, we may consider the band structure
for a free electron by folding the parabolic spectrum centered at the lattice of k vectors
(2.3.5) onto the BZ. This way we get the structure shown in Fig. 3. Note the very high
degeneracies of levels. These degeneracies are reduced in a lattice potential down to the
dimensions of the corresponding irreducible representations.
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Figure 3: Sketch of the free-electron band structure of the diamond. Level degeneracies
are marked.

Figure 4: Sketch of the actual band structure of diamond, as calculated numerically in
Bassani and Yoshimine, Phys. Rev. 130, 20 (1963).

2.3.9 Numerically calculated band structure

The band structure calculated with a numerical method (orthogonalized plane wave) is
schematically shown in Fig. 4. The degeneracies can be understood in terms of irreducible
representations as discussed below.

2.3.10 Classification of states at the point Γ

The symmetry operations of the space group may be written as

g : x 7→ Rx+ L , (2.3.8)

where R is an element of the point group (with respect to some center) and L is a
translation. At the point Γ, translations do not produce extra phase factors (since k = 0),
and therefore we have a conventional linear representation of the point group Oh. This
representation may be decomposed into a sum of irreducible representations from the
table above. Numerics shows that the three representations with the lowest energy are
Γ1, Γ′25 (in the valence band), and Γ15 (in the conduction band).
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2.3.11 Classification of states at the line Γ−X

At this line, the point group is reduced to those operations preserving the wave vector k
(the so called small point group), i.e., preserving the direction along one of the crystallo-
graphic axes (e.g., (1, 0, 0)).

One can check that, since the direction is preserved, the translation in (2.3.8) con-
tributes a phase factor, which may be compensated by putting α(g) = −k ∆x, where
∆x is the vector of the translation L. Therefore it is again sufficient to consider the
conventional representations without phase factors.

The small point group consists of only those group elements of Oh which preserve one
of the faces of the cube. There are 8 such elements which fall into five classes of conjugate
elements. The character table is

1 290◦ 1180◦ 2+ 2×
∆1 1 1 1 1 1
∆2 1 −1 1 −1 1
∆′1 1 1 1 −1 −1
∆′2 1 −1 1 1 −1
∆5 2 0 −2 0 0

2.3.12 Classification of states at the line Γ− L

The same argument is valid for the line Γ − L, except that now the small group only
contains elements preserving the diagonal (1, 1, 1). In terms of the symmetries of a cube,
this group correponds to fixing one corner of the cube.

The group has three elements and is equivalent to the group S3 considered in the
previous lecture. There are 6 elements, 3 conjugacy classes, and the representations have
dimensions 1, 1, and 2.

2.3.13 Classifications of states at the points X and L

At these points, the phase factors cannot be compensated, since now the direction of the
k vector may also be reversed. The classification of the states in this case requires the use
of projective representations (or, equivalently, doubling the group). We do not discuss it
in the lecture, but those interested may find details in the literature.

3 Interacting electrons: Many-body methods

Refs: [Mar] Appendix C, [AM] Chapter 17, [BR].

3.1 Second quantization and Wick theorem

3.1.1 Bosons and fermions

Indistinguishable quantum particles can be of two types: bosons (the wave function is
fully symmetric with respect to the permutations of particles) and fermions (fully anti-
symmetric). [In terms of the irreducible representations of the permutation group, these
states belong to the trivial and “parity” representations, respectively.]
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Fully symmetric and antisymmetric states may be described in terms of Hilbert spaces.
Given a single-particle Hilbert space H, we can construct the space of symmetrized and
antisymmetrized N -particle states as symmetrized and antisymmetrized products of N
copies of H: we denote such spaces S±H⊗N , respectively. If we add together all such
spaces with all possible particle numbers, we construct the bosonic/fermionic Fock space:

F±(H) =
∞⊕
N=0

S±H⊗N . (3.1.1)

Note that the sum starts with N = 0 (the vacuum state). In the case of fermions, if
H has a finite dimension m, then the spaces S+H⊗N vanish for m > N (so the sum is
actually limited to N ≤ m).

The symmetrization/antisymmetrization of states can be defined as

S±(ϕ1 ⊗ . . .⊗ ϕN) =
1

N !

N !∑
σ

ϕσ(1)⊗ . . .⊗ ϕσ(N) , (3.1.2)

where the sum is taken over all the permutations of N elements (N states). In our
discussion below, we will assume that the states ϕα are chosen from an orthonormal basis
(although many of the formulas may be simply generalized to a non-orthonormal case as
well).

Since the ordering of the states ϕα in the (anti)symmetrized product (3.1.2) is ir-
relevant, the multi-particle state may be specified by the occupation numbers nα: the
multiplicity of each basis state ϕα in the product (3.1.2). For fermions, the occupation
number nα can take values 0 and 1. For bosons, it can take all non-negative integer values.
The states (3.1.2) for all possible sets of occupation numbers form a basis of the Fock
space F±(H).

The states (3.1.2) are not correctly normalized. Their normalization can be computed:

‖S±(ϕ1 ⊗ . . .⊗ ϕN)‖2 =

∏
α nα!

N !
. (3.1.3)

Therefore correctly normalized states can be defined as

|ϕ1, . . . , ϕN〉(n)
± =

√
N !∏

α

√
nα!

S±(ϕ1 ⊗ . . .⊗ ϕN) . (3.1.4)

This construction is completely parallel for bosons and fermions.

3.1.2 Operators of creation and annihilation

For interacting particles, one needs to operate with states in the many-particle space
S±H⊗N . It turns out more practical to work with the full Fock space (3.1.1), even if
the particle number N is conserved. The operators in the Fock space may be most
conveninently expressed in terms of creation and annihilation operators. The creation
operators are defined as (both for bosons and for fermions):

a+
α |ϕ1, . . . , ϕN〉(n)

± =
√
nα + 1 |ϕα, ϕ1, . . . , ϕN〉(n)

± (3.1.5)
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in terms of the normalized states. Equivalently, the same operators may be written as

a+
αS±(ϕ1 ⊗ . . .⊗ ϕN) =

√
N + 1S±(ϕα ⊗ ϕ1 ⊗ . . .⊗ ϕN) . (3.1.6)

The annihilation operators are defined as their Hermitian conjugates:

aα =
(
a+
α

)†
(3.1.7)

Defined in this way, the operators a+
α and aα obey the commutation (for bosons) or

anticommutation (for fermions) relations:

[aα, a
+
β ]± = δαβ , (3.1.8)

[aα, aβ]± = [a+
α , a

+
β ]± = 0 . (3.1.9)

The use of the creation and annihilation operators allows to reduce many of the calcu-
lations in the Fock space to algebraic manipulations with the (anti)commutation relations.

Example: In our calculations with electrons, we will use the limit of an infinite system
size with the states ϕα being plane waves (parametrized by the wave vector k):

ϕk(x) = eikx (3.1.10)

Those states are normalized to∫
d3xϕ∗k(x)ϕk′(x) = (2π)3δ(k − k′) . (3.1.11)

Correspondingly, the creation and annihilation operators associated with ϕk(x) obey the
(anti)commutation relations

[ak, a
+
k′ ]± = (2π)3δ(k − k′) . (3.1.12)

By defining the Fourier transforms

a+(x) =

∫
d3k

(2π)3
e−ikxa+

k , (3.1.13)

a(x) =

∫
d3k

(2π)3
eikxak , (3.1.14)

(3.1.15)

the creation/annihilation operators in the coordinate space obey the relations

[a(x), a+(x′)]± = δ(x− x′) . (3.1.16)

3.1.3 One- and two-body operators in the Fock space

For any operator A acting in the single-particle space H, we may construct the corre-
sponding em one-particle operator A(∗) in the Fock space F±(H), whose action is given
by the sum of the operators A acting on each particle. One can show that this operator
may be written in terms of the creation and annihilation operators as

A(∗) =
∑
ij

a+
αAαβaβ , (3.1.17)
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where the sum is over the basis of the single-particle space H and Aαβ are the matrix
elements of A.

Example 1: Particle-number operator. A = 1 counts the particles. The total number
of particles is given by

N =
∑
α

a+
αaα . (3.1.18)

Example 2: Free-particle Hamiltonian. The Hamiltonian of a free particle is diagonal
in the momentum space: E = εk. Its counterpart in the Fock space can therefore be
written as

H =

∫
d3k

(2π)3
a+
k (εk − µ)ak , (3.1.19)

where εk is the energy dispersion [εk = ~2k2/(2m) for a particle in an empty space], and
µ is the chemical potential (which we usually include in the Hamiltonian in the Fock
space). In the case of a quadratic spectrum, we can also rewrite the same operator in the
coordinate space:

H =

∫
d3x a+(x)

(
− ~2

2m
∇2 − µ

)
a(x) . (3.1.20)

A similar construction is possible for operators involving two and more particles. Con-
sider, for example, the case of a two-particle operator V . It acts in the space of two particles
H⊗H. Let us denote its matrix elements by

Vαβ,γδ = 〈ϕα ⊗ ϕβ|V |ϕγ ⊗ ϕδ〉 . (3.1.21)

Since the particles are indistinguishable, the matrix elements are invariant with respect
to the permutation of the two particles:

Vαβ,γδ = Vβα,δγ . (3.1.22)

Then we can define the operator in the Fock space F±(H), whose action is given by the
sum of the operator V acting on each pair of particles. One can show that this operator
may be written in the second-quantized form as

V(∗) =
1

2

∑
α,β,γ,δ

a+
αa

+
β Vαβ,γδaδaγ . (3.1.23)

Note the factor 1/2 (to avoid the double counting of partice pairs) and the ordering of
the creation and annihilation operators (all the creation operators on the left of all the
annihilation operators to avoid the self-interaction of particles).

Example: Potential interaction V (x). The second-quantized form of the interaction
takes the form

U =
1

2

∫
d3x d3y a+(x) a+(y)V (x− y) a(y) a(x) . (3.1.24)
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3.1.4 Diagonalization of quadratic Hamiltonians

Hamiltonians quadratic with respect to the creation and annihilation operators (both
bosonic and fermionic) have very remarkable properties:

1. They can be diagonalized and thus reduced to the case of noninteracting particles;

2. At any temperature, their equilibrium states obey the Wick theorem.

For the sake of generality (with a future application to superconductivity in mind),
we consider the general case of a quadratic Hamiltonian

H =
(
a+ a

)(H11 H12

H21 H22

)(
a
a+

)
, (3.1.25)

where Hij are N ×N blocks (N is the dimension of the single-particle Hilbert space).
Such a Hamiltonian can be diagonalized, i.e., brought to the form

H =
N∑
α=1

εαb
+
α bα + E0 (3.1.26)

where εα ≥ 0 (the energies of excitations), the operators bα are linear combinations of aα
and a+

α ,

bα = uαβaβ + vαβa
+
β , (3.1.27)

b+
α = u∗αβa

+
β + v∗αβaβ , (3.1.28)

(3.1.29)

obeying the same (anti)commutation relations:

[bα, b
+
β ]± = δαβ , (3.1.30)

[bα, bβ]± = [b+
α , b

+
β ]± = 0 . (3.1.31)

Mathematically, in the fermionic case, such a diagonalization is always possible. In the
bosonic case, one needs to require that the quadratic form (3.1.25) is positive-definite (if
one treats a+ and a as complex-conjugate numbers). Physically, any bosonic Hamiltonian
must be positive-definite, since otherwise its spectrum would be unbounded from below.

We do not prove here this theorem about diagonalization: you can find a detailed
proof and discussion in the book of Blaizot and Ripka [BR].

The practical algorithm for diagonalizing a quadratic Hamiltonian (3.1.25) consists in
writing a linear combination (3.1.29) and then solving the eigenvalue problem

[H, b+] = εb+ . (3.1.32)

Note that if the Hamiltonian conserves the number of particles (i.e., H12 = H21 =
0), then we can put v = 0, and the problem reduces to diagonalizing a single-particle
Hamiltonian.
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3.1.5 Wick theorem

Consider a quadratic Hamiltonian (3.1.25) (bosonic or fermionic). Then, for any set of
operators A1, . . . , AM linear in a and a+, at any temperature, the thermal average of the
product

〈A1 . . . AM〉T =
tr
(
e−βHA1 . . . AM

)
tr (e−βH)

(3.1.33)

can be expressed in terms of pairwise averages:

〈A1 . . . AM〉T =
∑

(±1)σ〈Ai1Ai2〉T . . . 〈AiM−1
AiM 〉T , (3.1.34)

where the sum is taken over all partitions (often called contractions) of the operators
Ai into M/2 pairs. The ordering of the operators witin each pair must coincide with
the ordering of the operators in the left-hand side (i.e., in the above notation, i1 < i2,
i3 < i4, etc.). In the fermionic case, the sign (−1)σ is the parity of the permutation
(1, . . . ,M) 7→ (i1, . . . , iM). There are no sign factors in the bosonic case.

For a proof of the Wick theorem, see the book [BR] or M. Gaudin, Nucl. Phys. 15, 89
(1960) [in French].

Example: Wick theorem for a product of M = 4 operators.

〈A1A2A3A4〉T = 〈A1A2〉T 〈A3A4〉T ± 〈A1A3〉T 〈A2A4〉T + 〈A1A4〉T 〈A2A3〉T . (3.1.35)

Wick theorem can be applied for

1. Calculations of correlation functions in a free-particle system

2. Including interactions perturbatively, which leads to a diagrammatic expansion.

3.1.6 Application of the Wick theorem: density correlations of free fermions

First, let us illustrate the application of the Wick theorem with calculating the density-
density correlation function 〈n(x)n(y)〉 in a free-fermion gas (without spin). The density
operator may be expressed as

n(x) = a+(x)a(x) , (3.1.36)

which leads to the Wick-theorem result for the correlation function

〈n(x)n(y)〉 = 〈a+(x)a(x)a+(y)a(y)〉 = 〈a+(x)a(x)〉〈a+(y)a(y)〉+〈a+(x)a(y)〉〈a(x)a+(y)〉
= G(0)2 − |G(x− y)|2 +G(0)δ(x− y) , (3.1.37)

where we have defined
G(x− y) = 〈a+(x)a(y)〉 (3.1.38)

(in particular, G(0) = n is the average particle density).
The contractions can be conveniently represented diagrammatically (Fig. 5). [The

third delta-term in (3.1.37) is not shown: it corresponds to one particle contributing to
both n(x) and n(y)].

The “Green function” G(x) has the form shown in Fig. 6. In 3D at zero temperature,
it can be calculated exactly:

G(R) =

∫
d3k

(2π)3
eikRnF (εk) =

1

2π2R3
[sin(kFR)− (kFR) cos(kFR)] . (3.1.39)
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Note that the resulting correlation function 〈n(x)n(y)〉 (Fig. 6) vanishes at x→ y, in
agreement with the Pauli principle. It oscillates at the wave vector 2kF (Friedel oscilla-
tions).

3.1.7 Application of the Wick theorem: perturbative energy of interaction
(Hartree–Fock)

Consider now a spinless Fermi gaz with the interaction (3.1.24). Let us calculate the
interaction energy in a perturbative way, to the first order in V .

If we write the Hamiltonian as

H = H0 + V , (3.1.40)

then we can expand all the thermodynamic quantities with respect to V . The (grand-
canonical) partition function (with β = 1/T )

Z = tr e−β(H0+V ) = tr e−βH0 − β trV e−βH0 +O(V 2) = Z0(1− β〈V 〉0 +O(V 2)) . (3.1.41)

(note that, to the first order, the noncommutativity of H0 and V does not matter).
For the free energy (the “grand potential”), we thus find

Φ = −T lnZ = Φ0 + 〈V 〉0 +O(V 2) . (3.1.42)

In other words, to the first order, the correction to the free energy equals the average
interaction energy calculated in the unperturbed system. Using the Wick theorem, we
can express 〈V 〉0 as the sum of two diagrams (the same as in the previous example), see
Fig. 7.

The first diagram gives the classical contribution to the interaction energy:

δΦ1 =
1

2

∫∫
dx dy 〈n(x)〉V (x− y)〈n(y)〉 = V n

2

2

∫
dx V (x) = V n

2

2
Vk=0 , (3.1.43)

where V is the total volume of the system.
The second diagram is of the exchange type:

δΦ2 = −1

2

∫∫
dx dy G(x−y)V (x−y)G(y−x) = −V

2

∫∫
d3k

(2π)3

d3k′

(2π)3
nknk′Vk−k′ . (3.1.44)

The correction (3.1.44) may be interpreted as a renormalization of energy of each
particle by interaction. The correction to the energy of a particle at the momentum k is
then

δεk = −
∫

d3k′

(2π)3
nk′Vk−k′ . (3.1.45)

As we will see later, this correction to the energy corresponds to the Hartree–Fock ap-
proximation.

Figure 5: Two diagrams contributing to the correlation function 〈n(x)n(y)〉.
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Figure 6: Qualitative sketches of G(R) and 〈n(x)n(y)〉.

3.2 Introduction to Green’s functions

Green’s functions appear naturally in many perturbative calculations. We have seen
an example in Sections 3.1.6 and 3.1.7, where 〈a+(x)a(y)〉 may be interpreted as equal-
time Green’s functions. However, if we choose to extend the calculations of Section
3.1.7 to higher orders in interaction, we would need to introduce time-dependent (or
frequency-dependent) Green’s functions. Indeed, at higher orders, we cannot neglect
noncommutativity between H and V in Eq. (3.1.41). The expansion of the operator
exponent, to any order, is given by:

e−β(H0+V ) = e−βH0 +

∫ β

0

dτ1 e
−(β−τ1)H0(−V )e−τ1H0

+

∫∫
0<τ1<τ2<β

dτ1 dτ2 e
−(β−τ2)H0(−V )e−(τ2−τ1)H0(−V )e−τ1H0 + . . . (3.2.1)

The same type of formula is also valid for time evolution in quantum mechanics (by
replacing imaginary time τ by real time t):

e−it(H0+V ) = e−itH0 +

∫ t

0

dt1 e
−i(t−t1)H0(−iV )e−it1H0

+

∫∫
0<t1<t2<t

dt1 dt2 e
−i(t−t2)H0(−iV )e−i(t2−t1)H0(−iV )e−it1H0 + . . . (3.2.2)

This series can be conveniently represented graphically (Fig.4). It has the meaning of the
interaction intervening at the moments t1, t2, etc. during the evolution of the system.

Figure 7: Two diagrams contributing to the perturbative interaction energy: (a) Hartree
contribution; (b) exchange contribution.
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3.2.1 Green’s functions in quantum mechanics

Before introducing Green’s functions in the second-quantized formalism, we discuss briefly
their application in quantum mechanics. We define the Green’s function as the propagator
(evolution operator)

G(x′, x, t) = −i〈x′|e−itH |x〉 θ(t) , (3.2.3)

where θ(t) = 1 for t > 0 and θ(t) = 0 for t < 0 (the factor −i is introduced for convenience
to simplify further formulas). Such a definition is usually called the retarded Green’s
function. The Green’s function can be represented either in the coordinate or in the
momentum space (related by a Fourier transformation) and either in the time or in the
frequency space (again, related by a Fourier transformation). For example, passing to the
frequency representation gives

Gω(x′, x) =

∫
dt ei(ω+i0)tG(x′, x, t) = 〈x′| 1

ω −H + i0
|x〉 . (3.2.4)

If H is a free-particle Hamiltonian (H = εk in the momentum representation), then it is
convenient to represent the Green’s function also in the momentum representation, where
it becomes diagonal:

Gω(k′, k) =

∫∫
d3x′ d3xGω(x′, x)e−ik

′x′+ikx = (2π)3δ(k − k′)Gω(k) , (3.2.5)

where

Gω(k) =
1

ω − εk + i0
. (3.2.6)

The appearance of such Green’s functions can be understood already from the per-
turbation theory in quantum mechanics. If we consider a Schroedinger equation with a
perturbation:

(H0 + V )Ψ = EΨ , (3.2.7)

then we may formally solve it perturbatively by rewriting

Ψ = (E −H0)−1VΨ . (3.2.8)

The inverse (E − H0)−1 coincides with our above definition of the Green’s function: we
can also write it as an operator

G =
1

E −H0 + i0
(3.2.9)

The perturbative series for Ψ can be constructed iteratirvely

Ψ = Ψ0 + Ψ1 + . . . (3.2.10)

Figure 8: Perturbation series for the Green’s function.
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starting with Ψ0 (an eigenstate of H0 at energy E) and solving iteratively:

(E −H0)Ψn+1 = VΨn ⇒ Ψn+1 = (E −H0)−1VΨn . (3.2.11)

As a result, we get the perturbative series

Ψ = (1 +GV +GV GV + . . .) Ψ0 , (3.2.12)

where we again recognize the series of the type shown in Fig. 8.
Yet another way to obtain the same series is to expand the full Green’s function:

G̃ =
1

E − (H0 + V )

=
1

E −H0

+
1

E −H0

V
1

E −H0

+
1

E −H0

V
1

E −H0

V
1

E −H0

+ . . . , (3.2.13)

which is the operator counterpart of the usual power series:

1

a− ε
=

1

a
+

1

a2
ε+

1

a3
ε2 + . . . (3.2.14)

(Note: the order of operators in the right-hand side of (3.2.13) is important!) We can see
that it again reduces to the same series in Fig. 8.

3.2.2 Application: Density-of-states oscillations around an impurity

Consider the experiment described in the paper K. Kanisawa et al, Phys. Rev. Lett. 86,
3384 (2001): the local density of states at a given energy is measured around an impurity
in a two-dimensional electron gas (Fig. 9). We can express this local density of states in
terms of the retarded Green’s function as

ρω(x) = − 1

π
Im G̃ω(x, x) , (3.2.15)

where G̃ is the full Green’s function (3.2.13) To the first order in the impurity potential
V (x), the distortion of the local density of states is given by

δρω(x) = − 1

π
Im

∫
d2y Gω(x, y)V (y)Gω(y, x) . (3.2.16)

By approximating the potential to be a delta function V (y) = V0 δ(y), we find

δρω(R) = −V0

π
Im[Gω(R)]2 , (3.2.17)

where R = |x| is the distance from the impurity. The Green’s function of a free particle,
in turn, can be expressed as

Gω(x) =

∫
1

ω − (k2/2m) + i0
eikx

d2k

(2π)2
. (3.2.18)

The two last equations solve the problem in principle. The analytic treatment of
integrals is complicated in 2D, but we can simplify it in the limit kωR � 1, where
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Figure 9: Left: A sketch of the experimental observation in the paper of Kanisawa et al.
Friedel oscillations of the local density of states are observed around impurities. x is the
observation point, y is the position of the impurity. Right: the diagram representing the
first-order correction to the density of states due to the impurity potential.

kω = (2mω)1/2. Performing first the integrals over the angular degrees of freedom in
(3.2.18), we find

Gω(R) =

∫ ∞
0

kJ0(kR)

ω − (k2/2m) + i0

dk

2π
, (3.2.19)

where J0 is the Bessel function:

J0(x) =

∫ 2π

0

dϕ

2π
eix cosϕ . (3.2.20)

At kR� 1, the asymptotic behavior of J0(kR) is

J0(kR) ≈
√

2

πkR
cos
(
kR− π

4

)
(3.2.21)

The main contribution to the integral (3.2.19) comes from the pole at k = kω and can be
extracted by representing the cosine as a sum of two oscillating exponents. As a result,
we get

Gω(R) ≈ − im√
2πkωR

ei(kωR−π/4) (3.2.22)

and, finally,

δρω(R) = − m2V0

2π2kωR
cos(2kωR) . (3.2.23)

These Friedel oscillations have the same nature as those in the density correlations
〈n(x)n(y)〉 studied in Section 3.1.6, although the Green’s functions are different in these
two problems: equal-time (t = 0) vs. fixed-frequency).

3.2.3 Green’s functions in many-body problems (at zero temperature)

Now we extend the Green’s-function approach to many-body problems using the ex-
pansion (3.2.2) and the Wick theorem (see Section 3.1.5) In the expansion (3.2.2), we
encounter products of creation and annihilation operators with the evolution operators
exp(−itH0) inserted between them. It will be therefore convenient to define the time-
dependent operators

a(t) = eitHae−itH , a+(t) = eitHa+e−itH , (3.2.24)
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where H may be either the full Hamiltonian or the quadratic Hamiltonian H0, depending
on the situation.

Note that in the case of a quadratic Hamiltonian, a(t) and a+(t) always remain linear
combinations of the original creation and annihilation operators a and a+. Proof: they
obey the linear equations of motion

ȧ(t) = i[H0, a(t)] (3.2.25)

[and similarly for a+(t)], so if a(t) is linear in a and a+ at some moment t, it will remain
linear at the “next” moment, too. From the linearity property, it follows that a(t) and
a+(t) obey the Wick theorem.

Now we are ready to introduce the time-dependent Green’s functions 〈a+(t1)a(t2)〉.
More precisely, we introduce three different Green’s functions:

• the retarded Green’s function:

GR(t1 − t2;x1, x2) = −i〈{a(t1, x1), a+(t2, x2)}〉θ(t1 − t2) ; (3.2.26)

• the advanced Green’s function:

GA(t1 − t2;x1, x2) = i〈{a(t1, x1), a+(t2, x2)}〉θ(t2 − t1) ; (3.2.27)

• the causal (or time-ordered) Green’s function:

Gc(t1 − t2;x1, x2) = −iT 〈a(t1, x1)a+(t2, x2)〉 , (3.2.28)

where T denotes time ordering:

T A(t1)B(t2) =

{
A(t1)B(t2) if t1 > t2

−B(t2)A(t1) if t2 > t1
(3.2.29)

(we assumed that the operators a and a+ are fermionic; for bosonic operators, there is no
sign change when permuting them).

The above Green’s functions may be defined either for the quadratic part of the Hamil-
tonian H0 (with the time evolution by H0 and average taken over the ground state of H0)
or for the full Hamiltonian. As before, we will denote the Green’s functions defined for
the full Hamiltonian by tildes, while the Green’s function for the quadratic part written
without additional marks.

In the general case, we can establish the following relations between these Green’s
functions:

G̃R
ω (k) = [G̃A

ω (k)]∗ (3.2.30)

G̃c
ω(k) =

{
G̃R
ω (k) , ω > 0

G̃A
ω (k) , ω < 0 .

(3.2.31)

(here ω is measured from the chemical potential µ or, equivalently, µ is included in the
Hamiltonian).

In the case of a quadratic Hamiltonian, more properties hold:
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• In the definitions of GR and GA we may remove the averaging 〈. . .〉, since the
anticommutators are just numbers, not operators. In other words, GR and GA do
not depend on the many-particle state, but are single-particle properties.

• GR coincides with the quantum-mechanical Green’s function (as can be seen from
considering its definition in the vacuum state).

• For the free-particle Hamiltonian, we can find

GR(ω, k) =
1

ω − (εk − µ) + iδ
(3.2.32)

GA(ω, k) =
1

ω − (εk − µ)− iδ
(3.2.33)

Gc(ω, k) =
1

ω − (εk − µ) + iδ signω
(3.2.34)

In other words, in the ω-k representation, GR, GA, and Gc differ only by the regular-
ization of the poles: GR corresponds to all states empty, GA to all states occupied,
and Gc keeps track of the occupation number being 0 or 1.

The time-ordered Green’s function Gc turns out to be useful for the diagrammatic
techinque, since the expansion (3.2.2) naturally produces time-ordered correlation func-
tions. Note also that the Wick theorem can be reformulated for time-ordered products,
since time ordering guarantees the same order of operators in the left and right-hand
sides of (3.1.34). At the same time, the Green’s function G̃c can be used to express
single-particle average quantitites. The poles of the Green’s functions correspond to the
spectrum of excitations (the poles above and below the real axis of ω correspond to hole
and electron excitations, respectively).

3.2.4 Diagrammatic expansion of a single Green’s function

Let us illustrate the diagrammatic approach with a perturbative expansion of a single
Green’s function. In other words, we would like to express the full Green’s function G̃c in
terms of the bare Green’s function Gc and the interaction parameters. We assume that
the Hamiltonian has the usual form

H = H0 + V , (3.2.35)

where the quadratic Hamiltonian H0 is the free-fermion one (3.1.19) and the interaction
V is a pairwise potential interaction (3.1.24).

The Green’s function (3.2.28) involves interaction both in the time-evolution part
between the moments t1 and t2 and in the ground state over which we average. To treat
them on equal footing, we express the ground state as a result of an “adiabatic switching”
of the interaction:

|Ψ0〉 = e−iH(0−t−∞)|Ψ∞〉 , (3.2.36)

where the perturbative expression is assumed to switch on adiabatically (or the time is
assumed to have a small imaginary part), so that the ground state is selected after a
sufficiently slow evolution. The starting time t−∞ will be taken to −∞ at the end of the
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calculation. The starting state |Ψ∞〉 is the ground state of the unperturbed Hamiltonian
H0. Then we can represent the Green’s function (3.2.28) as (we put t1 > t2, to be specific):

G̃c(t1− t2;x1, x2) = −i 〈Ψ∞|e
−iH(t∞−t1)a(x1)e−iH(t1−t2)a+(x2)e−iH(t2−t−∞)|Ψ∞〉

〈Ψ∞|e−iH(t∞−t−∞)|Ψ∞〉
. (3.2.37)

The evolution operators in both the numerator and the denominator can now be expanded
in V by writing H = H0 + V and using the expansion (3.2.2). Then the result can be
expressed in terms of products of the unperturbed Green’s functions Gc by using the Wick
theorem. Each of these terms can be represented as a diagram.

An important observation (which can be proven by a combinatoric counting): discon-
nected loops of the diagrams in the numerator are exactly canceled by the diagrams from
the denominator! So the actual sum must include only connected diagrams.

3.2.5 Hartree–Fock as a renormalization of the Green’s function

To the first order in V , the procedure described above produces two diagrams shown in
Fig. 10. The integrals corresponding to these diagrams are:

δ1G̃
c(t1−t2;x1, x2) =

∫∫∫
dx dy dt V (x−y)n(y)Gc(t1−t;x1, x)Gc(t−t2;x, x2) , (3.2.38)

where n(y) = −iGc(∆t=−0; y, y) is the average particle density at point y (in the uniform
case, it is simply the average density n), and

δ2G̃
c(t1 − t2;x1, x2) = i

∫∫∫
dx dy dt V (x− y)

×Gc(t1 − t;x1, x)Gc(∆t=− 0;x, y)Gc(t− t2; y, x2) . (3.2.39)

We can also rewrite the same integrals in the frequency-momentum representation (in the
translationally invariant case):

δ1G̃
c
ω(k) = Vk=0 n [Gc

ω(k)]2 , (3.2.40)

δ2G̃
c
ω(k) = i

∫
d3k′

(2π)3

[∫
dω

2π
eiω0Gc

ω(k′)

]
Vk−k′ [G

c
ω(k)]2 . (3.2.41)

The factor eiω0 indicates that we have to close the integration contour in the upper half
plane:

Gc(∆t=− 0; k′) =

∫
dω

2π
eiω0Gc

ω(k′) = ink′ (3.2.42)

Figure 10: The two leading corrections to the Green’s function due to interaction.
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Figure 11: The geometric series (3.2.43). Σ denotes the “irreducible” part of the
expansion.

is simply the occupation number at the momentum k.
Now we remark that these are in fact corrections to the denominator of the Green’s

function. Indeed, if we know the irreducible self-energy part (i.e., the part which cannot
be disconnected by breaking any single Green’s-function line), then we can sum the series
[compare with (3.2.13)]:

Gc
ω(k) +Gc

ω(k)Σω(k)Gc
ω(k) +Gc

ω(k)Σω(k)Gc
ω(k)Σω(k)Gc

ω(k) + . . .

=
1

ω − (εk − µ+ Σω(k)) + iδ signω
(3.2.43)

(see Fig. 11). In our case, this means that we can interpret the corrections (3.2.40) and
(3.2.41) as corrections to the energy

δεk = Σω(k) = nVk=0 −
∫

d3k′

(2π)3
nk′ Vk−k′ , (3.2.44)

which reproduces our earlier result (3.1.45).
Moreover, if we assume that the chemical potential is controlled by the overall density

of particles and is not renormalized by the interaction (which is the case in the metal),
then our calculation amounts, in fact, to summing a large number of diagrams, which
can be written in a recursive way in Fig. 12. Some diagrams are, however, not included
(Fig. 13), in particular those responsible for screening.

3.2.6 Hartree–Fock as a variational method

Ref: [AM] Chapter 17.

The same Hartree–Fock approximation may also be understood as a variational pro-
cedure. Suppose that we look for a Slater-determinant state

Ψ = S−(ϕ1 ⊗ . . .⊗ ϕN) (3.2.45)

with the lowest variational energy. The variational parameters are the single-particle
states ϕ1, . . . , ϕN . These states are optimized to minimize the expectation value 〈Ψ|H|Ψ〉

Figure 12: The recursive equation for the Hartree–Fock sum.
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Figure 13: Left: the diagram included in the Hartree–Fock series recursively defined in
Fig. 12. Right: two second-order diagrams not included in this series.

of the Hamiltonian

H =
N∑
i=1

[
− 1

2m
∇2 + U(xi)

]
+

1

2

∑
i 6=j

U(xi − xj) (3.2.46)

under the normalization condition 〈Ψ|Ψ〉 = 1. Without loss of generality, we may assume
the single-particle states ϕi to be orthonormal, and then the normalization condition may
be reduced to fixing the normalization of each of the single-particle states 〈ϕi|ϕi〉 = 1.
This would lead to introducing N Lagrange multipliers for each of these conditions.

The expectation value of the Hamiltonian may be shown to be given by

〈Ψ|H|Ψ〉 =
N∑
i=1

〈ϕi| −
1

2m
∇2 + U |ϕi〉

+
1

2

∑
i,j

∫∫
dx dy |ϕi(x)|2 |ϕj(x)|2 U(x− y)

− 1

2

∑
i,j

∫∫
dx dy ϕ∗i (x)ϕj(x)ϕ∗j(y)ϕi(y)U(x− y) , (3.2.47)

which is nothing else but the Wick theorem for the Slater-determinant state (3.2.45). Its
variation leads to a set of nonlinear equations that need to be solved self-consistently:(

− 1

2m
∇2 + U + Σ

)
ϕi = εiϕi , (3.2.48)

where

[Σϕi](x) =

∫
dy n(y)U(x− y)ϕi(x)−

∑
j

∫
dy ϕj(x)ϕ∗j(y)ϕi(y)U(x− y) (3.2.49)
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and
n(y) =

∑
j

|ϕj(y)|2 . (3.2.50)

Note the resemblance of these formulas to the diagrammatic expression in Fig. 12 [eqs.
(3.2.38) and (3.2.39)] for the self-energy Σ. In fact, this correspondence is exact, if we
relate the Green’s function to the single-particle states

Gc
ω(x, y) =

∑
i

ϕi(x)ϕ∗i (y)

ω − (εi − µ) + iδ signω
, (3.2.51)

where the sum is taken over all (empty and occupied) states. The equal-time Green’s
function is then

Gc(∆t=− 0;x, y) =
N∑
i=1

ϕi(x)ϕ∗i (y) , (3.2.52)

with the sum taken over the N occupied states. The Lagrange multipliers εi in the
varitaional approach correspond to the single-particle energies in the Hartree-Fock ap-
proximation.

In other words, the variational procedure is exactly equivalent to the diagrammatic
approximation described in the previous section.

The Hartree–Fock approximation may be used for calculating the electronic structure
of solids and molecules. However, its mean-field nature (neglecting

correlations between electrons of opposite spins) makes the results not very accurate,
and other more efficient approximations (such as density-functional theory) are more
commonly used.

3.3 Screening of Coulomb interactions in a metal

Ref: [AM] Chapter 17.

As we saw in the previous sections, the Hartree–Fock approximation does not include
any screening of long-range Coulomb interactions. As a particular consequence of this
neglect, the spectrum of excitations near the Fermi surface gets, within the Hartree–Fock
approximation, an unphysical logarithmic singularity. This problem can be repaired by
including screening.

In this section, we discuss screening at the linear-response level in the static situation
(no time dependence). Namely, we assume a small probe charge Q at the position x = 0
and calculate the resulting electrostatic potential φ(r) around this charge.

In the absence of screening, the potential is

φext(R) =
Q

R
(3.3.1)

The screening results from a redistribution of the electronic density due to the potential,
which, in turn, itself changes the potential. In other words, the potential and the density
distribution need to be calculated self-consistently.

The response of the density to the potential can be written in the momentum repre-
sentation as

δn(q) = χ(q) eφ(q) . (3.3.2)
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On the other hand, the feedback of the density modulation on the potential is given by
the Gauss equation

− 1

4π
∇2φ(x) = Qδ(x) + e δn(x) , (3.3.3)

which, in the momentum representation takes the form

q2

4π
φ(q) = Q+ e δn(q) (3.3.4)

Putting the two equations together, we find

φ(q) =
Q

q2

4π
− e2 χ(q)

. (3.3.5)

The Fourier transform of this function gives the screened interaction potential φ(r).

3.3.1 Thomas–Fermi theory of screening

The simplest approximation we can make is to assume that all the coordinate dependences
are slow and calculate the response (3.3.2) in the static approximation (which amounts
to putting q = 0). Then we immediately find

χ(q=0) = −ν0 , (3.3.6)

the density of states at the Fermi level (including spin degeneracy),and

φ(q) =
4πQ

q2 + κ2
, (3.3.7)

where
κ = (4πe2ν0)1/2 . (3.3.8)

The Fourier transform of this potential gives

φ(R) =
Q

R
e−κR , (3.3.9)

i.e., κ−1 has the meaning of the screening length.

3.3.2 Lindhard theory of screening

A more accurate approximation is to calculate the response (3.3.2) within the free-fermion
gas model. This was, in fact, done in the problem 7.2, and the answer reads

χ(R) = −i
∫
dω

2π
[Gc

ω(R)]2 . (3.3.10)

To convert this result into the screened potential, we need to Fourier transform χ(r) 7→
χ(q), substitute into eq. (3.3.5) and Fourier transform back to the real space.

An exact calculation for the free 3D gas (without spin) gives

Gc
ω(R) = − m

2πR
ei(signω)kωr , (3.3.11)
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Figure 14: RPA series for screening.

where kω = [2m(µ+ ω)]1/2,

χ(R) = − m

16π3R4
[sin(2kFR)− (2kFR) cos(2kFR)] , (3.3.12)

and

χ(q) = −mkF
2π2

F

(
q

2kF

)
, (3.3.13)

where

F (α) =
1

2
+

1− α2

4α
ln

∣∣∣∣1 + α

1− α

∣∣∣∣ . (3.3.14)

For the spinful case, the results for χ(R) and χ(q) must be multiplied by 2 (for the two
spin components).

We see that at q = 0 it reproduces the Thomas–Fermi approximation. Thus the long-
range 1/r part is screened in exactly the same way as described above (at the scale κ−1).
At the same time, the logarithmic singularity in (3.3.13) may be shown to give rise to the
oscillating contribution

φ(R) ∝ 1

R3
cos(2kFR) . (3.3.15)

3.3.3 Diagrammatic interpretation of the Lindhard theory

We can also obtain the Lindhard theory by simply summing the diagrammatic series
in Fig. 14. Each loop corresponds to χ(R) as given by (3.3.10) while each wavy line
corresponds to the bare potential

V0(R) =
e2

R
⇒ V0(q) =

4πe2

q2
. (3.3.16)

Summing up the geometric series gives

V (q) = V0(q) + V0(q)χ(q)V0(q) + V0(q)χ(q)V0(q)χ(q)V0(q) + . . .

=
V0(q)

1− χ(q)V0(q)
, (3.3.17)

which exactly reproduces the result of the Lindhard theory.
This type of approximation (corresponding to the summation of the series shown

in Fig. 14) is also frequently called random phase approximation (RPA). It can also be
extended to include dynamic screening (and plasmon excitations) by considering this
series at a finite frequency (our calculation only considered the zero-frequency limit).
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3.4 Fermi liquid theory

Refs: [AM] Chapter 17, [PC] Chapter 7.

Landau Fermi liquid theory was introduced to describe low-energy degrees of freedom of
a Fermi gas with interactions in a non-perturbative way (to complement the perturbative
diagrammatic approach). It was originally introduced for 3He, but can also be applied to
electrons in metals.

The main idea of the Fermi liquid theory is that, in a Fermi gas, even in the presence
of interactions, the low-lying structure of excitations is the same as in the non-interacting
one. The only two differences are:

• The elementary excitations (named quasiparticles) interact with each other;

• Quasiparticles are no longer given by the creation and annihilation operators for
physical particles.

We first formulate the theory and discuss some of its consequences and then comment
in more detail on its justification and on its relation to the diagrammatic approach.

3.4.1 Interaction of quasiparticles

The main physical assumption of the Fermi liquid theory is that the low-lying states of
the interacting system are adiabatically connected to the noninteracting one (i.e., if we
continuously switch on the interaction, the spectrum is also modified continuously and
smoothly). Then the resulting excitation spectrum may be parametrized by the same
occupation numbers nk as the original one, provided the state is close to the ground
state. The theory is restricted to low excitation energies and to low temperatures. In
the ground state, the occupation numbers n

(GS)
k are one and zero below and above the

Fermi surface, respectively. We can express the energy of the eigenstates of the interacting
system in terms of the deviations of the occupation numbers from the ground-state values
δnk = nk − n(GS)

k . Furthermore, at low energies we can expand the total energy of the
system with respect to δnk. To the second order, the expansion reads

E/V =

∫
d3k

(2π)3
ε

(0)
k δnk +

1

2

∫∫
d3k

(2π)3

d3k′

(2π)3
fkk′ δnkδnk′ . (3.4.1)

The linear coefficients ε
(0)
k are the quasiparticle energies (with the Fermi energy sub-

tracted), and the quadratic coefficients fkk′ describe pairwise interactions between quasi-
particles.

The quasiparticle energies ε
(0)
k are renormalized with repsect to the bare spectrum of

electrons. We can introduce the Fermi velocity of quasiparticles

vF =
∂ε

(0)
k

∂k

∣∣∣∣∣
kF

. (3.4.2)

Furthermore, it is convenient to introduce the effective mass m∗ as

m∗ = kF/vF . (3.4.3)
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Note that this definition of the effective mass differs from the effective mass in semicon-
ductors: in the latter case the effective mass describes the spectrum curvature at the
bottom (or top) of the band, while in our case, it is related to the renormalization of the
Fermi velocity at the Fermi surface.

If we consider a spinful case (e.g., electrons), then the occupation numbers nk are,
in fact, 2×2 matrices with spin indices, nk;αβ = 〈a+

k;αak;β〉. The f -function, in turn, also
acquires spin structure,

Eint/V =
1

2

∫∫
d3k

(2π)3

d3k′

(2π)3
fkk′;αγ,βδ δnk;αβδnk′;γδ . (3.4.4)

Note that we had already encounter a similar structure in the Hatree–Fock approxima-
tion, where the exchange term also had a spin structure. If we further assume that the
interaction is inariant with respect to the overall spin rotation (which is the case for
exchange-type interaction), then this restricts the f function to

fkk′;αγ,βδ =
π2

kFm∗
[Fkk′ δαβδγδ +Gkk′ σαβσγδ] , (3.4.5)

where

ν =
m∗kF
π2

(3.4.6)

is the density of states of quasiparticles (including spin) at the Fermi surface. With this
normalization, the coefficients G and F are dimensionless.

If the Fermi liquid is isotropic (which we will assume further for simplicity), then the
Fermi surface is spherical and both Fkk′ and Gkk′ depend only on the angle ϑ between k
and k′. In this model, the effective mass m∗ is constant along the Fermi surface.

3.4.2 Relation between effective mass and interaction in the Galilean-invariant
case

In the Galilean-invariant case (invariance with respect to the choice of an inertialreference
frame), there is a relation between the mass renormalization m∗ and the interaction
parameter F (ϑ). This Galilean invariance is satisfied in liquid 3He, but not for electrons
in metals.

The relation betweenm∗ and F (ϑ) follows from the condition that the total momentum
coincides with the physical mass current. We will omit here the derivation [see, e.g., the
book of Lifshitz and Pitaevskii, Statistical Physics Part 2 (volume 9 of the Course of
Theoretical Physics)] and only mention the result:

m∗

m
= 1 +

∫
dΩ

4π
F (ϑ) cosϑ , (3.4.7)

where dΩ denotes integration over the solid angle.

3.4.3 Occupation numbers of quasiparticles

Adding or removing a quasiparticle at a wave vector k changes the total energy of the
system by the energy of the quasiparticle,

ε̃k = ε
(0)
k +

∫
d3k′

(2π)3
fkk′ δnk′ . (3.4.8)
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Figure 15: The shifts of the chemical potential for spin-up and spin-down quasiparticles
in an externsal magnetic field.

Therefore, at a finite temperature T , the occupation numbers of quasiparticles obeys the
usual Fermi distribution:

nk =
1

eε̃k/T + 1
. (3.4.9)

Note that this relation is, in fact, a complicated self-consistent condition on nk, since ε̃k
in the right-hand side is itself a functional of nk.

3.4.4 Renormalization of the specific heat

For the specific heat CV = (∂E/∂T ), the first term in (3.4.1) gives the leading contribution
at low temperatures. As a result, the specific heat is given by the same expression as for
a free Fermi gas, but with the renormalized mass:

CV = V
m∗kFT

3
= V

π2

3
νT . (3.4.10)

The interaction term can be shown to give a higher-order (in T ) contribution to CV .

3.4.5 Renormalization of the spin succeptibility

The magnetic spin succeptibility is also renormalized. Indeed, without interaction, in a
magnetic field, the spin-up and spin-down electrons acquire opposite shifts in energy, and
thus the total spin of the gas is proportional to the external field. In a Fermi liquid, one
also needs to take interaction into account.

In an external magnetic field H, the energy shift of an electron (and of a quasiparticle)
is

δε = −βσH , (3.4.11)

where β is the magnetic moment of an electron (the same as of a quasiparticle). Without
loss of generality, we assume that the field is applied along the z direction. Then the
chemical potential of spin-up qasipraticles is shifted by some value δµ and that of spin-
down quasiparticles is shifted by −δµ (see Fig. 15). This shift of the chemical potential
is determined from minimizing the total energy

Etot/V = ν
(δµ)2

2
+ 〈Gkk′〉 ν

(δµ)2

2
− ν δµ βH . (3.4.12)
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Here the first two terms come from the two terms in (3.4.1) and 〈Gkk′〉 is the G function
in (3.4.5) averaged over the Fermi surface:

〈Gkk′〉 =
4

ν2

∫
d3k

(2π)3

∫
d3k′

(2π)3
Gkk′ δ(εk) δ(εk′) . (3.4.13)

By minimizing (3.4.12) with respect to δµ gives

δµ =
βH

1 + 〈Gkk′〉
, (3.4.14)

so the magnetic succeptibility is

χ = βν
δµ

H
=

β2ν

1 + 〈Gkk′〉
. (3.4.15)

The interaction affects the renormalization of ν (the same renormalization as in the specific
heat (3.4.10)) and also produces the term 〈Gkk′〉 in the denominator of (3.4.15).

3.4.6 Renormalization of the electron spectral weight

The quasiparticles carry the same charge and the same spin as electrons, but are not
identical to electrons: they contain not only one-electron component, but also three-
and more electron components. Some of the properties of the electron gas (e.g. STM
tunneling) are expressed in terms of single-electron operators, and for them the overlap
between electrons and quasiparticles is important.

We can denote this overlap by

Zk =
∣∣〈k|a+

k |GS
〉∣∣2 (3.4.16)

for the quasiparticles |k〉 above the Fermi surface and

Zk = |〈k|ak|GS〉|2 (3.4.17)

for the quasiparticles below the Fermi surface. The spectral weights Zk are real numbers
between 0 and 1.

We can further relate these spectral weights to the residues of the Green’s function. By
inserting the full basis of quasiparticle states between the electron creation/annihilation
operators in (3.2.28), we find

Gc(ω, k) =
Zk

ω − ε(0)
k + iδ signω

+ regular part (3.4.18)

(note that ε
(0)
k already has the chemical potential subtracted, in our notation). In other

words, Zk expresses the renormalization of the residue of the Green’s function in its pole.
By comparing this expression with the self-energy correction (3.2.43), we can identify:

ε
(0)
k = εk − µ+ Re Σ

ε
(0)
k

(k) (3.4.19)
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(renormalization of the spectrum) and

Zk =

(
1− ∂Σω(k)

∂ω

∣∣∣
ω=ε

(0)
k

)−1

(3.4.20)

(renormalization of the spectral weight).
An important assumption in this identification is the absence of the imaginary part of

the self energy,
Im Σ

ε
(0)
k

(k) = 0 . (3.4.21)

In fact, Im Σ
ε
(0)
k

(k) defines the decay rate of the quasiparticle excitation. Neglecting the

decay of quasiparticles is one of the key assumptions of the Fermi liquid theory. More
precisely, one assumes that the decay rate of the quasiparticle is much smaller than their
energy,

| Im Σ
ε
(0)
k

(k)| � ε
(0)
k . (3.4.22)

One can see (either from the diagrammatic analysis of Σ
ε
(0)
k

(k) or from the Fermi golden

rule) that the decay of quasiparticles is given by available decay processes (which con-
serve both momentum and energy). Up to the energy-momentum dependence of the
corresponding matrix elements, this rate is proportional to the phase space volume of
available quasipaticles to decay into. One can show that, for a generic Fermi surface
(without nesting), such a phase-space volume scales as [ε

(0)
k ]2/εF . This justifies the Fermi

liquid theory at energies and temperatures much lower than εF .

4 Phonons. Electron-phonon interaction

Refs: [AM] Chapter 23, [PC] Section 9.7.

Phonons are vibrations of a crystal lattice. They can be viewed as bosonic parti-
cles which propagate through the crystal and interact with electrons. In this section, we
review some basic properties of phonons and show that interaction with phonons pro-
duces attraction between electrons (which is the mechanism of superconductivity in most
superconductors).

4.1 Harmonic oscillators as free bosons

Any harmonic oscillator may be viewed as a single bosonic mode, whcih may be occupied
by 0, 1, 2, etc. bosons. Consider the quantum Hamiltonian

H =
p2

2m
+K

q2

2
(4.1.1)

with the operators p and q satisfying the canonical commutation relations [p, q] = −i
(Planck constant is put to 1, as usual). Then the operators

b =
1√
2

[
q(Km)1/4 + i

p

(Km)1/4

]
,

b+ =
1√
2

[
q(Km)1/4 − i p

(Km)1/4

]
(4.1.2)
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obey the canonical bosonic commutation relations

[b, b+] = 1 , (4.1.3)

and the Hamiltonian takes the form

H = ω

(
b+b+

1

2

)
= ω

(
n+

1

2

)
, (4.1.4)

where ω = (K/m)1/2 is the oscillator frequency (= energy, once ~ = 1) and n is the
number of bosons.

4.2 Phonons

The definition of phonons is similar to the one-dimensional example above. In a crystal
with N ions, the vibrations of the lattice can be parametrized by 3N coordinates (dis-
placements of ions) and 3N momenta. Small vibrations can be described by a quadratic
Hamiltonian, which is a 3N -dimensional version of (4.1.1). This Hamiltonian can be di-
agonalized, and its eigenmodes decoupled. Because of the translational symmetry of the
lattice, the eigenmodes can be labeled by the wave vector (just like electron bands). If
the crystal lattice has M atoms per unit cell, the number of bands (the number of phonon
states for each k vector) equals 3M .

The phonon Hamiltonian takes the quadratic form

H =
∑
k,α

ωk,αb
+
k,αbk,α (4.2.1)

(we have dropped the constant ground-state energy). The index α labels the phonon
bands. At the level of the harmonic approximation, phonons do not interact. Anharmonic
terms would correspond to phonon-phonon interactions.

There are three phonon modes which are special: the acoustic phonons. They corre-
spond to slowly varying displacement of atoms and have a linear dispersion relation

ωk = c|k| as k → 0 . (4.2.2)

The energy of the acoustic phonons tends to zero as k → 0. In this limit, all displacements
are equal, which correponds to displacing crystal as a whole, whcih obviously does not
cost any energy. The sound velocities c for the longitudinal and transverse sounds are
generally different and may also depend on the direction.

The phonons have energy bands which are periodic functions of k. They extend
between 0 and some characteristic energy scale, the so called Debye energy ωD. By the
order of magnitude,

ωD ∼ c/a0 (4.2.3)

(where a0 is the lattice constant), which is much less than the Fermi energy εF ∼ vF/a0.
The typical Debye energy in a metal is between 100 K and 500 K (as opposed to the
Fermi energy of about 104 K).
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4.3 Specific heat of phonons

Except at very low temperatures, phonons give the main contribution to the specific heat.
To calculate the specific heat of phonons exactly, one needs to know the distribution of
phonon modes over energies [i.e., the density of states νph(ω)].

For low-temperature specific heat (when only low-energy phonons are excited), the
behavior of at ω → 0 matters, while for the high-temperature limit, it is important that
the phonons have an upper cut-off in energy at ω ∼ ωD. The simplest approximation
accurate in both limits is the Debye theory:

νph(ω) =

{
C ω2 , ω < ωD ,

0 , ω > ωD
(4.3.1)

(see Fig. 16a). The constant C is fixed by the total number of modes

C

∫ ωD

0

ω2dω = 3N ⇒ a =
9N

ω3
D

, (4.3.2)

where N is the total number of atoms in the crystal. The specific heat of one bosonic
mode with energy ω can be found as

cV (ω) =
∂E

∂T
= ω

∂

∂T

1

eω/T − 1
=
ω2

T 2

eω/T

(eω/T − 1)2
. (4.3.3)

So the total specific heat is

CV =

∫ ∞
0

cV (ω)νph(ω)dω = 3N f
(ωD
T

)
, (4.3.4)

where

f(x) =
3

x3

∫ x

0

y4ey

(ey − 1)2
dy (4.3.5)

is a universal function (Fig. 16b).
This approximation describes a large number of different materials remarkably well

(with one fitting parameter ωD). At low temperatures, CV ∝ T 3 (the black-body specific
heat), while at high temperatures CV → 3N (the classical specific heat of 3N harmonic
oscillators)

4.4 Electron-phonon interaction

For simplicity, we only discuss here interaction of electrons with acoustic phonons. Acous-
tic phonons correspond to a slowly (on the scale of a lattice constant) varying in space
displacement of atoms u(x), which produces the charge Z div u(x) per unit cell (Z is
the charge of a single ion). This charge, in turn, results in an electric potential for the
electrons. Taking into account screening (see Section 3.3), the electric potential is pro-
portional to this charge, which finally results in the electron-phonon interaction

He−ph =
const

νa3
0

∫
d3x a+(x)a(x) div u(x) , (4.4.1)
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Figure 16: (a): Ansatz for νph(ω) in the Debye theory; (b): The form of the function
f(x) in Eq. (4.3.4).

where ν is the density of states at the Fermi level, a0 is the lattice constant, and const is
some numerical coefficient of order 1. Note that electrons are coupled only to longitudinal
phonon modes (with the displacements along the k vector).

Next we rewrite the displacement u(x) in terms of the phonon creation and annihila-
tion operators bk and b+

k :

u(x, t) =

∫
d3q

(2π)3

a
3/2
0√

2Miωq

(
bqe

i(qr−ωqt) + b+
q e
−i(qr−ωqt)

)
. (4.4.2)

where Mi is the mass of an ion and ωq is the phonon frequency at the wave vector q (derive
this formula as a homework). The phonon creation and annihilation operators here are
normalized as

[bq, b
+
q′ ] = (2π)3δ(q − q′) . (4.4.3)

It turns out to be convenient to define the phonon operator as

ϕ(x) =

∫
d3q

(2π)3

√
ωq
2

(
bqe

iqr + b+
q e
−iqr) , (4.4.4)

which results in the electron-phonon interaction written in the simple form (we used the
linear relation ωq = c|q|):

He−ph = g

∫
d3x a+(x)a(x)ϕ(x) , (4.4.5)

where g is an interaction constant (with the above definitions, g ∼ ν−1/2 up to a numerical
coefficient)

This electron-phonon interaction can now be incorporated into the diagrammatic ap-
proach as a triple vertex (Fig. 17a). One can further derive the Green’s function for
phonons and construct the perturbative diagrammatic series in the usual way. For ex-
ample, the leading correction to the electron spectrum due to phonons is given by the
diagram in Fig. 17b.
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Figure 17: (a): the vertex corresponding to the electron-phonon interaction (4.4.5); (b):
The lowest-order diagram describing the renormalization of the electron spectrum due to
phonons; (c): The interaction between electrons mediated by phonons.

4.5 Green’s function for phonons

Similarly to electrons, we define the Green’s function for phonons as

D(x, t) = −iT 〈ϕ(x, t), ϕ(0, 0)〉 . (4.5.1)

(T denotes the time ordering). It can be easily computed at zero temperature. Using the
definition (4.4.4), and the fact that there are no phonons at zero temperature, we find

D(x, t) = −i
∫

d3q

(2π)3

ωq
2

{
ei(qx−ωqt) , t > 0 ,

e−i(qx−ωqt) , t < 0 .
(4.5.2)

Performing the Fourier transform in time and space, we find the Green’s function of
phonons in the frequency-momentum representation:

D(q, ω) =

∫
d3q

(2π)3

ωq
2

(
1

ω − ωq + i0
− 1

ω + ωq − i0

)
=

ω2
q

ω2 − ω2
q + i0

. (4.5.3)

4.6 Attraction between electrons mediated by phonons

We are now ready to show that interaction with phonons leads to atraction. This at-
traction appears in the second order of the perturbation theory as the phonon line in the
diagram, see Fig. 17c.

For a formal derivation, expand the evolution operator with respect to the electron-
phonon interaction:

U = e−i(H0+He−ph)t = U0 + U1 + U2 + . . . (4.6.1)

At the second order of the perturbation theory,

U2 =

∫∫
0<t1<t2<t

dt1 dt2 e
−iH0(t−t2) (−iHe−ph) e−iH0(t2−t1) (−iHe−ph) e−iH0t1 . (4.6.2)

If we now substitute the electron-phonon interaction term (4.4.5) and perform the Wick
contraction (= averaging) of the phonon operators, we arrive at

U2 = U0

∫∫
0<t1<t2<t

dt1 dt2

∫∫
d3x1 d

3x2 a
+(x2, t2)a(x2, t2) a+(x1, t1)a(x1, t1)×

× (−i)D(x2 − x1, t2 − t1) . (4.6.3)
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This equation has the same form as the first-order correction U1 with the usual density-
density interaction, except that this interaction is time dependent. The role of interaction
is played by the phonon Green’s function D(x2 − x1, t2 − t1).

For superconductivity, the interaction averaged over time (or, equivalently, at low
frequency) is important. This low-frequency effective interaction is

Veff = D(ω → 0) = −g2 . (4.6.4)

It has a negative sign, which means that it is attractive.
The physical meaning of this interaction is as follows. An electron distorts the crystal

lattice (creates a positive charge around itself) which, in turn, attracts other electrons.
This interaction is delayed: the characteristic time scale for phonons is ω−1

D while electrons
are much faster (their characteristic time scale is ε−1

F ). As a result, a moving electron
leaves behind itself a positively charged track, which attract other electrons even after
the original electron has moved away. This is also a reason why the attraction via phonons
is not killed by the Coulomb repulsion of electrons: while the overall magnitudes of these
interactions are of the same order, the Coulomb repulsion is instant, and the phonon
attraction has a longer time scale and wins at low frequencies. An accurate treatment
of this competition of the two interactions is technical and goes beyond the scope of this
lecture: see, e.g., the original paper P. Morel and P. W. Anderson, Phys. Rev. 125, 1263
(1962).

5 BCS theory of superconductivity

Refs: [Mar] Section 27.3, [LP] Sections 39,40.

As we have seen, phonons mediate an attraction between electrons. In this section,
we will see how superconductivity emerges in an electron gas with attraction (the theory
of Bardeen–Cooper–Schriffer).

5.1 Superconductivity as spontaneous symmetry breaking

Superconductivity is associated with developing nonzero anomalous averages

〈aαaβ〉 6= 0 , (5.1.1)

where aα and aβ are annihilation operators and α and β denote electron degrees of freedom
(momentum/coordinate and spin). Such an average breaks the U(1) (electromagnetic)
symmetry

a 7→ eiαa , a+ 7→ e−iαa+ . (5.1.2)

The anomalous average (5.1.1) may only be nonzero in a superposition of states with
different particle numbers. Physically, the number of electrons in an isolated piece of a
superconductor is fixed, in which case (5.1.1) should be understood as a long-range order

lim
|x−y|→∞

〈(aαaβ)x (a+
β a

+
α )y〉 6= 0 , (5.1.3)

and the phase of an individual average 〈aαaβ〉 remains undetermined.
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A good analogy to think of is the ferromagnetic transition: in a ferromagnet, the
average magnetization is non-zero and points in a spontaneously chosen direction, even
though in an isolated system, formally, the ground state is a superposition of states with
all equivalent orientations of magnetization.

The phase of the average 〈aαaβ〉 is the spontaneously broken symmetry. It is not
observable directly, but only in comparison with other such phases (the Josephson effect).
A spatial modulation of this phase corresponds to the supercurrent (an electric current
which propagates without dissipation).

Superconductors may be classified by the symmetry of indices in the anomalous av-
erage (5.1.1). The most common symmetry (usually favored in superconductors with
attraction due to phonons) is the s-wave superconductivity: the spin indices in (5.1.1)
form a singlet, and the pairing is isotropic in space.

5.2 Model Hamiltonian and mean-field approximation

We consider a model Hamiltonian of the form

H = H0 +Hint , (5.2.1)

where
H0 =

∑
k,α

(εk − µ)a+
k,αak,α (5.2.2)

is the free part, and

Hint = − 1

2V
∑

k̃1,k̃2,k̃3

a+

k̃1
a+

k̃2
ak̃3ak̃1+k̃2−k̃3Vk̃1,k̃2,k̃3,k̃1+k̃2−k̃3 , (5.2.3)

where V is the system volume and Vk̃1,k̃2,k̃3,k̃4 are the interaction matrix elements (the spin

indices are included in k̃i for simplicity). In this chapter, we use the “sum” notation (the
sum over k instead of integration over d3k/(2π)3), with the electronic states normalized
as {ak, a+

k′} = δkk′ (instead of the delta function of the continuous variable k − k′).
We will use the mean-field approximation: first, replace the products akak′ by their

nonzero averages and then solve the self-consistency equation for those averages.
The structure of the non-zero anomalous averages depends on the interaction Vk̃1,k̃2,k̃3,k̃4 .

We assume that the superconductor is s-wave, with 〈ak↑a−k↓〉 6= 0. Correspondingly, we
only consider the terms of this type in the interaction and neglect the k dependence of the
interaction matrix elements (since, as we will see below, only k values around the Fermi
surface are relevant). As a result, we simplify the interaction term to

Hint = −g0

V
∑
k,k′

a+
k↑a

+
−k↓a−k′↓ak′↑ = −g0

V

(∑
k

a+
k↑a

+
−k↓

)(∑
k′

a−k′↓ak′↑

)
, (5.2.4)

where g0 is some positive interaction constant.
We further define the complex numbers

dk = 〈a−k↓ak↑〉 d∗k = 〈a+
k↑a

+
−k↓〉 . (5.2.5)

These numbers will be later determined from the self-consistency conditions.
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Figure 18: Left: The two sections across the Fermi surface contributing to the spectrum in
the right panel. Each quasiparticle in the right panel corresponds to a linear combination
of an electron with momentum k and a hole with momentum −k and opposite spin. Right:
The BCS spectrum (5.3.4).

By replacing the products in the four-fermion operator by their averages, we get the
quadratic Hamiltonian

HBCS =
∑
k

[
(εk − µ)(a+

k↑ak↑ + a+
−k↓a−k↓) + ∆∗a−k↓ak↑ + ∆a+

k↑a
+
−k↓
]
, (5.2.6)

where
∆ = −g0

V
∑
k

dk . (5.2.7)

5.3 Bogoliubov quasiparticles and the BCS ground state

This quadratic Hamiltonian may be diagonalized by a rotation in the particle-hole space:

γ+
k↑ = uka

+
k↑ + vka−k↓ . (5.3.1)

The coefficients uk and vk can be found, e.g., from the commutation relation

[HBCS, γ
+
k↑] = ε̃kγ

+
k↑ . (5.3.2)

We find the equation on the coefficients:(
εk − µ ∆

∆∗ −(εk − µ)

)(
uk
vk

)
= ε̃k

(
uk
vk

)
. (5.3.3)

The eigenvalues give the spectrum:

ε̃k = ±
√

(εk − µ)2 + |∆|2 . (5.3.4)

Thus |∆| plays the role of the gap in the spectrum (see Fig. 18).
The fermionic Fock space may be now represented in terms of the occupation numbers

for (Bogoliubov) quasiparticles γ+
k↑. There are two ways to label quasiparticles:
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• We can consider only spin-up operators, as in (5.3.2). In this case, we get two
solutions for each k vector: one with positive, and one with negative energy.

• Alternatively, we can re-label the negative-energy solutions (5.3.4) as annihilation
operators γ−k↓. Then, for each k vector, we will have two quasiparticles γ+

k↑ and γ+
k↓,

both with positive energies.

In any of these notations, the total number of quasiparticle states (the dimension of the
Hilbert space) is the same as for original electrons: two single-particle states per k vector.
We will use the second notation (with positive-energy quasiparticles).

It will also be convenient to normalize the coefficients so that

|uk|2 + |vk|2 = 1 . (5.3.5)

This would produce the canonical anticommutation relations for the quasiparticles:

{γkα, γ+
k′β} = δkk′δαβ . (5.3.6)

The Hamiltonian (5.2.6) can now be written in terms of quasiparticles as

HBCS =
∑
k

ε̃k
(
γ+
k↑γk↑ + γ+

k↓γk↓
)

+ E0 , (5.3.7)

The ground state of the superconductor |GS〉 may be found from the condition that
it contains no quasiparticles:

γkα|GS〉 = 0 . (5.3.8)

Since sectors with different k vectors are decoupled in the Hamiltonian, this equation can
be solved independently for each k vector:

|GS〉k = (u∗k − v∗ka+
k↑a

+
−k↓)|?〉k , (5.3.9)

where |?〉 is the state without electrons and the subscript k denotes that only states with a
given k vector are considered. Combining all the k vectors together, we find the expression
for the ground state of the superconductor:

|GS〉 =
∏
k

(u∗k − v∗ka+
k↑a

+
−k↓)|?〉 . (5.3.10)

Note that this state is a superposition of states with different numbers of particles.
If we calculate uk and vk explicitly from diagonalizing the matrix (5.3.3), we find

uk = eiϕ

√
1

2

(
1 +

εk − µ
ε̃k

)
,

vk =

√
1

2

(
1− εk − µ

ε̃k

)
, (5.3.11)

where ϕ is the phase of ∆. The absolute values of uk and vk are plotted in Fig. 19.
We see that superconductivity changes the structure of the ground state only in the
window of energies of the order ∆ around the Fermi level (we usually have ∆ � µ in
superconductors).
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Figure 19: The coherence factors (5.3.11) as a function of energy.

5.4 Self-consistency equations for the superconducting gap

The anomalous correlation functions dk and the superconducting gap ∆ are determined
from the self-consistency conditions (5.2.5), where the averages are calculated in the
quadratic system (5.2.6) at a finite temperature T .

One of the possible ways to compute the anomalous average 〈a−k↓ak↑〉 is to re-express
the a operators in terms of the quasiparticles γ and γ+ and then use the equilibrium
Fermi occupation numbers for the quasiparticles:{

γ+
k↑ = uka

+
k↑ + vka−k↓

γ−k↓ = v∗ka
+
k↑ − u∗ka−k↓

⇒

{
a+
k↑ = u∗kγ

+
k↑ + vkγ−k↓

a−k↓ = v∗kγ
+
k↑ − ukγ−k↓

(5.4.1)

In terms of the quasiparticles γ+
k↑ and γ−k↓, the BCS Hamiltonian is diagonal, so we find

〈a−k↓ak↑〉T = v∗kuk〈γ+
k↑γk↑ − γ−k↓γ

+
−k↓〉T = v∗kuk [2nF (ε̃k)− 1] = −v∗kuk tanh

ε̃k
2T

, (5.4.2)

where ε̃k is the quasiparticle energy given by Eq. (5.3.4).
Substituting this into Eq. (5.2.7), we find the self-consistency equation for the gap

∆ =
g0

V
∑
k

v∗kuk tanh
ε̃k
2T

. (5.4.3)

Using Eq. (5.3.11) for uk and vk, we find

v∗kuk =
∆

2ε̃k
. (5.4.4)

Note that this quantity is significant only in the vicinity of the Fermi surface (since far
away form the Fermi surface either uk or vk tends to zero).

We remark that ∆ = 0 is always a formal solution to the equations (5.4.3)–(5.4.4). But
one can show that at low temperatures this solution does not correspond to a minimum
of a free energy, but to its maximum. In other words, at low temperatures the ∆ = 0
solution is unstable, and the physically relevant solution is a nontrivial one. To find this
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Figure 20: A sketch of the gap dependence on the temperature.

nontrivial solution, we divide the equation by ∆ and replace the sum over k by integration
over energies:

1

V
∑
k

→ ν0

∫
dε , (5.4.5)

where ν0 is the density of electronic states (for free electrons) per unit volume and per
spin projection and ε is the free-electron energy. Substituting equation (5.3.4) for ε̃k and
shifting the integration variable to ε = εk−µ, we finally find the self-consistency equation
in the closed form

1 = g0ν0

∫
dε

tanh

√
ε2+|∆|2

2T

2
√
ε2 + |∆|2

. (5.4.6)

This equation, in principle allows to determine ∆ as a function of temperature (see
Fig. 20).

5.5 Superconducting gap at zero temperature

A subtle point in this calculation is that the integral (5.4.6) actually diverges logarithmi-
cally at large ε. Physically, this divergence is removed by introducing a cut-off at energies
of the order of Debye energy ωD (since the attraction mediated by phonons only extends
to those energies).

At zero temperature, tanh(. . .)→ 1, and the equation (5.4.6) reduces to

1 = g0ν0

∫ ∼ωD

0

dε√
ε2 + ∆2

0

= g0ν0

[
ln
ωD
∆0

+ const

]
, (5.5.1)

where const is a constant of order one. This gives the superconducting gap at zero
temperature ∆0 in the form

∆0 = const ωD exp

(
− 1

g0ν0

)
. (5.5.2)

Note that the gap is exponentially small in g0.
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5.6 Superconducting transition temperature

In a similar way we can find the superconducting transition temperature Tc, with the only
difference that now we neglect ∆ in the self-consistency equation (5.4.6):

1 = g0ν0

∫ ∼ωD

0

dε
tanh ε

2Tc

ε
= g0ν0

[
ln
ωD
Tc

+ const

]
, (5.6.1)

with some const of order one (but different from that in the calculation of ∆0 above!). In
other words, Tc is of the same order of magnitude as ∆0.

Remarkably, one can determine the ratio Tc/∆0 without any ambiguity related to the
cutoff. Namely, the difference of the integrals (5.5.1) and (5.6.1) is convergent and does
not depend on the cut-off:

0 =

∫ ∞
0

dε

[
tanh ε

2Tc

ε
− 1√

ε2 + ∆2
0

]
=

∫ ∞
0

dx

[
tanh(x/2)

x
− 1√

x2 + (∆0/Tc)2

]
.

(5.6.2)
From this equation, one finds the universal value for the ratio Tc/∆0:

Tc ≈ 0.57∆0 . (5.6.3)

[This value is easy to obtain by numerical methods. A more sofisticated analytic calcula-
tion gives

Tc =

(
eC

π

)
∆0 , (5.6.4)

where C = 0.577 . . . is the Euler constant].
The relation (5.6.3) is in a remarkably good agreement with experimental values on

many conventional superconductors, despite the simplifications made in the BCS theory.

6 Problem Sets

6.1 Problem Set 1

Problem 1.1.

(a) Complete the derivation (1.2.6). Verify that for the Sommerfeld model (free
fermions), the result reduces to the expression (1.1.8).

(b) For copper, compare the experimentally measured electronic specific heat with
the free-fermion expression (1.1.8). Experimental data are available, e.g., in the papers

• D. W. Osborne, H. E. Flotow, and F. Schreiner, Rev. Sci. Instrum. 38, 159 (1967).

• M. Hurley and B. C. Gerstein, J. Chem. Thermodynamics 6, 787 (1974).

(remember that you need the low-temperature limit for comparison)

Problem 1.2

(a) Show that both expressions (1.2.10) and (1.2.12) are proportional to the integral
over the Fermi surface ∫

dS
vαvβ
v

. (6.1.1)
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(b) Calculate the coefficients and demonstrate the Wiedemann–Franz law (1.1.9).

(c) In the model of free fermions (Sommerfeld theory), show that the results for σ
and κ reduce to Eqs. (1.1.2) and (1.1.3), respectively.

(d) Find in the literature the electrical conductivity of copper at room temperature.
Within the free-fermion theory, estimate (by the order of magnitude) the relaxation time
τ and the mean free path l = τvF . How does it compare with the lattice constant? Is the
quasiclassical approximation justified?

6.2 Problem Set 2

Problem 2.1

(a) Construct the character table for the group D4 of all the symmetries of a square,
including rotations and reflections. How many irreducible representations are there? Can
you also construct those representations explicitly?

(b) Consider a sinlge quantum particle hopping between the four corners of a square.
The hopping amplitude along each side of the square is −t1 and along each of the two
diagonals −t2. The Hamiltonian of the particle can be written as the matrix

H =


0 −t1 −t2 −t1
−t1 0 −t1 −t2
−t2 −t1 0 −t1
−t1 −t2 −t1 0

 . (6.2.1)

Find the spectrum of this Hamiltonian and classify the levels according to the represen-
tations of D4.

(c) Suppose now that the square is stretched along the axis parallel to a pair of sides
(so that the hopping coefficients t′1 along this direction and t′′1 along the perpendicular
direction become different). How will the energy levels split?

(d) The same question if the square is stretched along one of the diagonals (so that
the two coefficients along the two diagonals t′2 and t′′2 become different).

6.3 Problem Set 3

Problem 3.1

In the numerical calculation, the valence band at point Γ is three-fold degenerate and
belongs to the representation Γ′25. How does this three-fold degeneracy split along the
lines Γ − X and Γ − L? Calculate the result by treating Γ′25 as a representation of the
small point group and by decomposing it into irreducible representations.

Problem 3.2

If one adds a potential to the free-electron band structure in Fig. 3, how would the
8-point degenerate level at the Γ point split? Hint: this degenerate level comes from the
eight nearest-neighbor k points of the dual lattice in Fig. 2. They transform into each
other under the Oh group as eight vertices of the cube.
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6.4 Problem Set 4

Problem 4.1

(a) Verify the following identities for commutators [A,B] = AB − BA and anticom-
mutators {A,B} = AB +BA:

[A,BC] = [A,B]C +B [A,C] = {A,B}C −B {A,C} (6.4.1)

{A,BC} = [A,B]C +B {A,C} = {A,B}C −B [A,C] (6.4.2)

These relations [called the distributive law for commutators] are helpful for commuting
products of creation and annihilation operators.

Note: always use commutators for bosonic operators and anticommutators for fermionic
operators. Products of an even number of fermionic operators count as bosonic operators.

(b) Verify by an explicit calculation that the free-particle Hamiltonian

H =

∫
d3k

(2π)3
a+
k (εk − µ)ak , (6.4.3)

commutes with the particle-number operator

N =

∫
d3k

(2π)3
a+
k ak , (6.4.4)

Hint: the calculation can be simplified by using the relations derived in part (a).

Problem 4.2

Consider one fermionic level. The Fock space consists of two states: empty |0〉 (0
particles) and occupied |1〉 (1 particle). The fermionic creation and annihilation operators
act as

a |0〉 = 0 , a |1〉 = |0〉 , (6.4.5)

a+ |0〉 = |1〉 , a+ |1〉 = 0 . (6.4.6)

(a) Verify the anticommutation relations

{a, a+} = 1 , {a, a} = {a+, a+} = 0 . (6.4.7)

(b) Now suppose that the particle has a positive energy, and therefore at zero temper-
ature the system is in the ground state |0〉. Verify that, in this state, the Wick theorem
(3.1.35) holds for the product of four operators aa+aa+:

〈aa+aa+〉T=0 = . . . (6.4.8)

(c) At a finite temperature, the system will be at a statistical mixture of two states:
the state |0〉 with a probability p and the state |1〉 with the probability 1− p. Verify that
the Wick theorem for the expectation value 〈aa+aa+〉 still holds.
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6.5 Problem Set 5

Problem 5.1

(a) In the subsection 3.1.7, we neglected the spin of the electrons. How would the
results change, if we include spin?

(b) Consider the model of free electrons with Coulomb interaction. Assume the free-
paricle kinetic energy εk = ~2k2/(2m) and calculate, at zero temperature, the average
interaction energy per particle, using the perturbative expression (3.1.44). Do not forget
about spin! Express your result as

δE = εF f

(
rs
a0

)
, (6.5.1)

where εF is the Fermi energy and rs/a0 is the dimensionless parameter introduced in
Secion 1.1.5:

rs =

(
3

4πn

)1/3

, a0 =
~2

me2
= 0.529Å (6.5.2)

(a typical distance between electrons in the units of the Bohr radius). Find the function
f . If you encounter difficulties in computing integrals, you may either compute them nu-
merically (using your favorite software) or leave them uncomputed as unknown numerical
coefficients.

Note that we only consider the correction (3.1.44), but not (3.1.43), since the latter is
exactly canceled by the background positive charge of the ions.

(c) From the result of part (b), show the stability of a metal: minimize the total
energy per electron

Etot = Ekin + δE (6.5.3)

as a function of rs. The average kinetic energy per particle Ekin is proportional to εF .
Remember that εF itself depends on rs:

εF =
~2k2

F

2m
=

(
9π

4

)2/3(
a0

rs

)2

Ry , Ry =
~2

2ma2
0

≈ 13.6 eV (6.5.4)

If you have calculated the numerical coefficient in part (b), use it to find the optimal
value of rs. Compare it to the actual values of rs in alkali metals (Li, Na, K: they are the
closest to the free-fermion model).

(d)∗ In the model of free electrons with Coulomb interaction [the same as in parts
(b) and (c)], calculate the correction to the energy of a particle at a wave vector k close
to the Fermi surface, as given by Eq. (3.1.45). You should find a logarithmic divergence
of the Fermi velocity. Show that this divergence comes from the long-range part of the
Coulomb potential (since our calculation does not include screening).

6.6 Problem Set 6

Problem 6.1

(a) For a free particle in 3D, calculate the Green’s functions Gω(R) [in the frequency-
coordinate representation, as defined in Eq. (3.2.4)]. In order to do this, calculate the
three-dimensional version of the integral (3.2.18).
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As in 2D, this Green’s functions oscillates at the wave vector kω =
√

2mω and decays
as a power of R. Compare this power with R−1/2 for the 2D Green’s function (3.2.22).

(b) If we study the effect discussed in Section 3.2.2 (density-of-states oscillations
around an impurity) in 3D, then, at large R we would find

δρω(R) ∝ R−α cos(2kωR + ϕ) . (6.6.1)

Find the power α.

6.7 Problem Set 7

Problem 7.1 Time-ordered Green’s function.

(a) Using the results of Problem 6.1 for the single-particle Green’s function, find the
time-ordered Green’s function Gc

ω(R) of a free Fermi gas in 3D. You may use the relations
(3.2.30) and (3.2.31).

(b) By an explicit integration of Gc
ω(R), check that

Gc(t=0, R) =

∫ +∞

−∞

dω

2π
Gc
ω(R) (6.7.1)

coincides with the Green’s function (3.1.39).

Problem 7.2 RKKY interaction.

(a) RKKY (Ruderman–Kittel–Kasuya–Yosida) interaction is a mechanism of coupling
of localized magnetic moments (nuclear magnetic moments or spins of localized electrons
in inner shells) through conduction electrons. The physics of mechanism is as follows: If
we have a localized magnetic moment S, it couples locally to electrons via

Hint = αS a+
α (x)σαβ aβ(x) . (6.7.2)

Without loss of generality, assume that S ‖ z. Then it is equivalent to the potential ±αS
at the position x for up/down spins respectively. This potential leads to the modulation
of density (the actual density, not the density of states!)

δn↑(y) = U(x− y)αS , δn↓(y) = −U(x− y)αS (6.7.3)

with some function U(x − y). If there is another local spin at the position y, this mod-
ulation of electronic density leads to the interaction between the two magnetic moments
given by

ERKKY = 2α2 S1S2 U(x− y) . (6.7.4)

Our goal is to calculate the function U(x− y). It is a linear response of the density δn
at the position y to the potential at the position x. Show that this response function is
given by the same diagram in Fig. 9, with the only difference that now we integrate over
the time difference at the positions x and y and use the time-ordered Green’s function.
In the frequency representation, it is given by

U(R) =

∫
dω

2π
[Gc

ω(R)]2 (6.7.5)
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(where, as usual, we denote R = |x− y|). Use what you know from Problems 6.1 and 7.1
to compute this function. You should get

U(R) =
1

16π3

m

R4
[2kFR cos(2kFR)− sin(2kFR)] . (6.7.6)

If you are interested, you can take a look at the original paper M. A. Rudermann and
C. Kittel, Phys. Rev. 96, 99 (1954).

(b) In the experimental paper S. S. P. Parkin and D. Mauri Phys. Rev. B 44, 7131
(1991), they observe RRKY-type oscillations in magnetic coupling of two Ni80Co20 lay-
ers through a thin layer of Ruthenium. They compare their results to the theoretical
prediction U(R) ∝ R−p sin(2kFR + φ) with p = 2. Explain this power dependence on R.

6.8 Problem Set 8

Problem 8.1

Estimate the screening length in a typical metal.

Problem 8.2

Starting from Eq. (3.3.12), derive the results (3.3.13)–(3.3.14) and (3.3.15).
Hint: in calculating the integrals leading to (3.3.14), first integrate over the angular

coordinates. When integrating over R, it may be helpful to integrate by parts to reduce
the power of R in the denominator and use the following formula:∫ ∞

ε

eikx

x
dx = C0 − ln(ε|k|) + o(ε) , (6.8.1)

where C0 is some constant (which will drop out from the result) and ε is a small cut-off
(which will be set to zero at the end of the calculation).

6.9 Problem Set 9

Problem 9.1

(a) Consider a Fermi liquid in an empty space with the Green’s function given by
(3.4.18). Consider the momentum distribution of physical electrons

nek = 〈a+
k ak〉 . (6.9.1)

Show that the jump of nek at the Fermi surface equals Zk (see Fig. below):

lim
δk→+0

(nekF−δk − n
e
kF +δk) = ZkF . (6.9.2)

(b) In the experimental paper S. Huotari et al, Phys. Rev. Lett. 105, 086403 (2010),
the jump of nek is measured in sodium (Na). Note that, in the presence of a crystal
potential, the relation between the jump of nek and Zk is more complicated:

lim
δk→+0

(nekF−δk − n
e
kF +δk) = |Ψ(0)

k |
2Zk , (6.9.3)
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Figure 21: The jump in the momentum distribution of electrons in a Fermi liquid.

where Ψ
(0)
k is the amplitude of the plane wave with the wave vector k in the Bloch state

Ψk:
Ψ

(0)
k = 〈e−ikxΨk〉 (6.9.4)

(with the average taken over a unit cell of the lattice). Explain this formula.

Problem 9.2∗

Show that there is no contribution to the specific heat from the interaction of quasi-
particles, to the leading order in T .

6.10 Problem Set 10

Problem 10.1
Compare the specific heat of phonons and electrons in a typical metal [as an example,

think of potassium (K) with ωD ∼ 100K and εF ∼ 2 · 104K]:

(a) Consider first the high-temperature limit, T ≥ ωD (but still T � εF ). In this
limit, the phonon contribution is cphonon ≈ 3N . Assuming that there is one conduction
electron per atom, estimate the relative contribution of electrons to the specific heat.

Hint: you should obtain the result celec/cphonon ∼ (T/εF )� 1.
(b) Consider now the limit of low temperatures, T � ωD, where the phonon specific

heat is proportional to T 3. Estimate the temperature T ∗, below which the electron specific
heat dominates over that of phonons.

Hint: you should find T ∗ ∼ ω
3/2
D ε

−1/2
F � ωD.

Problem 10.2

(a) Derive the coefficient in (4.4.1) up to a numerical coefficient of order one.

(b) Consider a one-dimensional model of a solid: a chain of points of mass Mi con-
nected with springs of stiffness K (see Fig. below). The Hamiltonian reads

H =
∑
i

p2
i

2Mi

+
∑
i

K
(xi − xi+1)2

2
. (6.10.1)

Treat this Hamiltonian as quantum-mechanical, find the spectrum and represent the vi-
brations as bosonic operators bq and b+

q . Normalize these operators as in (4.4.3) and derive
Eq. (4.4.2) for the displacment xi.

(c) With the phonon operator defined as in (4.4.4), derive the coefficient g in (4.4.5)
up to a numerical coefficient of order one and show that g ∼ ν−1/2.
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Figure 22: A one-dimensional model of a crystal lattice.

6.11 Problem Set 11

Problem 11.1

By diagonalizing the matrix in (5.3.3), derive the spectrum (5.3.4) and the eigenvectors
(5.3.11).

Problem 11.2

(a) In superconductors, there is a characteristic length scale ξ called the coherence
length. One of its possible definitions is the extent of the pair correlations. Consider the
anomalous correlations in real space

∆(x− y) = 〈a↓(x)a↑(y)〉 (6.11.1)

It decays at a certain length scale ξ. Calculate this length in the BCS ground state.
Hint 1: In the BCS ground state, different wave vectors k are decoupled, so it is

convenient to do a calculation at a given k vector, and then Fourier transform.
Hint 2: Only a vicinity of the Fermi surface contributes to this anomalous correlator,

so you may linearize the electron spectrum near the Fermi surface.
Hint 3: You will find ξ = vF/∆.

(b) For Aluminum, find in the literature the value of the gap ∆ and estimate the
superconducting coherence length ξ.
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