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Abstract

The standard cosmological model is based on Einstein’s theory of general relativity, dark

matter, dark energy and inflation. To date, the physical origin of several of these ingredients

remains a mystery. The aim of this thesis is to test this model by studying the nature of dark

matter through its effects on small cosmological scales.

As a first step, we construct a phenomenological description of the relationship between

dark matter halos and the normal visible matter in galaxies. This is done by incorporating a

prescription of baryonic physics into a dark matter merger tree.

We then probe the physical properties of dark matter on sub-galactic scales using strong

gravitational lensing. We develop a new method based on versatile basis sets to accurately

model complex lensing and source structures. For the strong lens system RXJ1131-1231 this

allows us to reconstruct a reliable high resolution image of the source.

We also develop a new treatment of the mass-sheet degeneracy inherent in gravitational

lensing. We use this to revisit the estimate of the Hubble constant from time-delay strong

lensing. We find that the Hubble parameter H0 estimate of the lens system RXJ1131-1231 is

strongly sensitive to the dynamical model and the source scale prior and that it is consistent

with current cosmic microwave background experiments.

Refining our model further, we develop a new approximation scheme that enables an effective

treatment of line-of-sight structures. This allows us to further constrain the connection

between dark and visible matter. In addition, it yields constraints on the external shear around

strong lensing system to sub-percent level precision.

To probe the small scale structure formation and the nature of dark matter, we analyze the

substructure content of strong lenses statistically through extensive forward modeling. We

find that the abundance of substructure in the strong lens RXJ1131-1231 is consistent with a
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cold dark matter particle scenario. A lower bound on the free streaming mass of a possible

dark matter particle can be set to about 2keV.

The precision gain by these new techniques and results shed new light on the distribution of

dark matter, its physical nature and its relation to visible matter. These results, combined with

the upcoming high resolution instruments, offer great prospects for the high-precision study

of dark matter and other sectors of the standard cosmological model with strong lensing.
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Zusammenfassung

Das Standardmodel der Kosmologie basiert auf Einsteins Allgemeiner Relativitätstheory, Dunk-

ler Materie, Dunkler Energie und der Inflation. Bis heute bleibt die physikalische Natur mehre-

rer dieser Bestandteile ein Rätsel. Das Ziel dieser Doktorarbeit ist es, dieses Modell mit Hilfe

des starken Gravitationslinseneffekts auf kleinen kosmologischen Skalen zu testen.

In einem ersten Schritt erstellen wir eine phänomenologische Beziehung zwischen Dunkler

Materie und der sichtbaren Materie in Galaxien. Dies wird durch das Zusammenfügen von

Rezepten zur Beschreibung von baryonischer Physik und der hierarchischen Strukturbildung

von Dunkler Materie realisiert.

Wir testen dann die physikalischen Eigenschaften von Dunkler Materie in Sub-galaktischen

Skalen mittels dem starken Gravitationslinseneffekt. Wir entwickeln eine neue Methode ba-

sierend auf vielseitigen Basisfunktionen zum akkuraten modellieren von komplexen Linsen

und Quellenstrukturen. Für die Linse RXJ1131-1231 erlaubt uns dies eine verlässliche, hoch-

auflösende Rekonstruktion der Quelle.

Wir entwickeln auch ein neues Verfahren für die Mass-sheet Degeneration. Wir benutzen

dieses zur Reanalyse der Messung der Hubble Konstante basierend auf Zeitverzögerungs-

messungen in Gravitationslinsen. Wir finden, dass die Schätzung des Hubble Parameters

H0 für die Linse RXJ1131-1231 stark vom dynamischen Modell der Linse und vom Prior der

Lengenskalen in der Quelle abhängt und dass die Messung mit den neuesten Experimente der

Kosmischen Hintergrundstrahlung überein stimmt.

Weiter entwickeln wir eine neues Approximationsverfahren das eine effektive Beschreibung

von zusätzlichen Effekten entlang des Lichtweges. Dies erlaubt uns weitere Einblicke in die

Beziehung zwischen sichtbarer und unsichtbarer Masse. Zusätzlich führt dies zu einer Bestim-

mung des Scherungseffekts mit sub-prozent Genauigkeit.
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Für die Erforschung der Strukturbildung auf kleinen Skalen und der Dunklen Materie ana-

lysieren wir die Substruktur in Gravitationslinsen in einem statistischen Verfahren basiert

auf extensiven Simulationen. Wir finden, dass die Häufigkeit von Substrukturen in der Linse

RXJ1131-1231 konsistent mit dem Scenario der kalten Dunklematerieteilchen ist. Wir kön-

nen eine untere Schranke auf die freie Ausbreitungslänge und der assoziierten Masse eines

Teilchens mit 2keV angeben.

Der Gewinn an Präzission mit den neuen Verfahren und denen daraus hervorgehenden

Resultate haben neue Erkenntnisse in die Verteilung von Dunkler Materie, deren Natur und der

Beziehung zu der sichtbaren Materie hervorgebracht. Diese Resultate, in Kombination mit den

kommenden hoch auflösbaren Instrumenten, ermöglichen gute Aussichten für sehr präzise

Studien der Dunklen Materie und anderen Gebiete des Standard Models der Kosmologie mit

dem starken Gravitationslinseneffekt.
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1 Introduction

The origin and nature of the universe has been pondered upon throughout human history.

Remarkable progress in science has led to the development of modern cosmology, which is

able to address these fundamental questions in a quantitative and rigorous manner.

Over the last century, the standard model of cosmology has become established and is based

on the following pillars: (1) The cosmological principle which states that the universe is

statistically homogeneous and isotropic on large scales. (2) General relativity, a theory of

gravity that describes the geometry and time-evolution of the universe. (3) Normal matter

coming from the standard model of particle physics. (4) Cold dark matter (CDM), an invisible

non-interacting form of matter. (5) Dark energy (Λ) that causes the recent acceleration of the

universe and (6) Inflation that provides the seeds of the structures in the universe.

In this standardΛCDM model, the physical nature of several components remains unknown.

In particular, the search for the understanding of dark matter and dark energy is one of the

most pressing endeavors in fundamental physics.

Evidence for the existence of dark matter and dark energy comes from multiple probes, such

as the cosmic microwave background (CMB) temperature anisotropies (1), galaxy clustering

(2), weak gravitational lensing (3; 4), supernovae of type Ia (e.g. 5; 6) and clusters (7). The

smallest scale phenomenological tests come from the Lyman-alpha forest (see e.g., 8; 9). All

these measurements are consistent with a cold and only gravitationally interacting particle.
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Chapter 1. Introduction

At sub-galactic scales, there are observational and theoretical challenges in bringing model and

data into agreement. Discrepancies have been reported predominantly in the number, phase

space densities and density profiles when comparing simulations of dark matter substructure

with observations of luminous satellite galaxies in our Milky Way (MW) (see e.g., 10; 11; 12;

13; 14) and a recent review of (15). There also remain open questions about the inner slope in

galaxy clusters (e.g. 16).

A potential non-gravitational nature of a dark matter particle may have an effect on structure

formation on small scales without having an impact on the well tested large scales. Probing the

small scale structure formation and mass distribution may thus provide information beyond

the CDM model.

Warm dark matter (WDM), a thermal relic with a free streaming length, has been proposed to

solve the discrepancies in the abundance of small scale structure (17; 18). Another approach is

a self-interacting dark matter particle (19). The latest constraints from the Lyman-α forest (20)

results in a lower bound on the thermal relic mass mT H = 3.3keV at the 2σ confidence level.

The limits obtained from dwarf galaxy counts disfavors particle masses below mT H = 2.3keV

at the 2σ confidence level(21; 22).

Advances have also been made in bringing the observations and theory predictions together

within theΛCDM paradigm. On the one hand, more detailed simulations incorporating the

effects of baryons result in a suppression of expected luminous structures with significantly

changed internal structure. On the other hand, a wealth of new satellite galaxies in our MW

have been detected by the Dark Energy Survey (23; 24).

The very dense and dark matter dominated MW satellites provide a laboratory to search for

dark matter annihilation signals. In particular, the latest Fermi Large Area Telescope analysis

(25; 26) report no detection of gamma-ray excess. If the estimated DM content of these dark

matter dominated satellite galaxy candidates is confirmed, they will constrain the annihilation

cross section to lie below the thermal relic cross section for DM particles with masses . 20

GeV annihilating via the bb̄ or ττ̄ channels.

Direct detection experiments have so far not reported a persistent signal detected by several

independent experiments (see e.g. 27, for a recent review and references therein). The absence

2



1.1. Homogeneous and Isotropic Universe

of direct and indirect detections stimulates further searches. A possible quantification of a

non-CDM behavior in the small scale structure formation may lead to a more targeted search

in the direct detection experiments.

Gravitational lensing, the effect of light propagation through perturbed space-time, is a direct

probe of the underlying energy distribution and its geometry. Gravitational lensing provides a

probe of the invisible universe that can test the predictions ofΛCDM.

The aim of this thesis is to probe structure at small cosmological scales to constrain potential

non-gravitational properties of dark matter with gravitational lensing. For this purpose, we

develop new methods to infer lensing properties through forward modeling.

The thesis is structured as follows: In this chapter 1, we introduce the basic theoretical concepts

ofΛCDM, structure formation and the theory of gravitational lensing. Chapter 2 presents an

empirical model that links dark matter structure formation with galaxy evolution. In Chapter

3, we review the current state of lens modeling and image reconstruction and introduce a

new framework involving basis sets. In Chapter 4, we present a method to infer the impact of

line-of-sight structure of strong gravitational lenses and combine the techniques of chapter 3

and 2 on data. Chapter 5 probes the effect of dark energy with time delay cosmography. In

particular, the effect of an important degeneracy in lensing on the cosmological inference is

explored. Chapter 6 presents a new statistical approach to quantify the substructure content

in strong gravitational lenses that is able to probe the effect of different dark matter models at

small cosmological scales. In Chapter 7, we summarize the thesis, draw conclusions and point

on implications and prospects for future work.

Most of the material in this thesis has been assembled from published work (28; 29; 30) and

submitted work (31), and we give the corresponding references at the beginning of each

chapter. The work presented in chapter 6 will appear in a similar form in a future publication.

1.1 Homogeneous and Isotropic Universe

The theoretical foundations of ΛCDM are well known and are covered in detail in many

standard cosmological textbooks such as (32; 33). In this section, we discuss the dynamics of

3



Chapter 1. Introduction

a homogeneous and isotropic universe governed by Einstein’s Theory of General Relativity

(GR) and introduce some notation. We mainly follow (32) and give further references where

needed.

GR relates the geometry of space-time to its energy content through the Einstein field equations

Gµν = 8πG

c4 Tµν, (1.1)

where Gµν is the Einstein tensor, which is a functional of the metric tensor gµν, Tµν is the

Stress-energy tensor, G is Newton’s gravitational constant and c is the speed of light.

The cosmological principle states that, on large scales, the universe is statistically homoge-

neous and isotropic. The most general metric that describes such an universe, and allows for a

time dependence, is the Friedmann-Lemaître-Robertson-Walker (FLRW) universe (34; 35; 36),

given by

d s2 = g FLRW
µν d xµd xν = c2dt 2 −a(t )2dΣ2 (1.2)

where Σ denotes coordinates over a 3-dimensional space of uniform curvature and a(t ) is a

time-dependent scale factor of the spacial part of the metric.

In hyperspherical or curvature-normalized coordinates, the spatial part of the metric can be

written as

dΣ2 = dχ2 +Sk (χ)2 dΩ2 (1.3)

where χ is the time-independent co-moving radial distance and dΩ2 is the angular part of the

metric

dΩ2 = dθ2 + sin2θdφ2 (1.4)
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1.1. Homogeneous and Isotropic Universe

and

Sk (χ) =



p
k
−1

sin(χ
p

k), k > 0

χ, k = 0√
|k|−1

sinh(χ
√
|k|), k < 0,

(1.5)

where k specifies the curvature of space (i.e. k > 0 is a closed, k = 0 flat and k < 0 an open

universe). The metric is invariant under transformations that rescale a and r such that a
r

remains constant. Conventionally, one uses this freedom to fix the scale factor at present time

to a0 = 1.

Substituting the FLRW metric into Einstein’s equations (1.1), one obtains the Friedmann

equations which describe the evolution of the scale factor a for a universe containing an ideal

fluid with energy density ρ, pressure p (in units of density, i.e./c2) and curvature k:

H 2 ≡
(

ȧ

a

)2

= 8πG

3
ρ− kc2

a2 , (1.6)

ä

a
=−4πG

3
(ρ+3p). (1.7)

The fluids are often described by their equation of state parameter w through

p = wρ. (1.8)

The conservation of the energy-momentum tensor directly implies that the energy density of

a homogeneous fluid with equation of state parameter w scales with the scale factor a as

ρ∝ a−3(1+w). (1.9)

Relativistic fluids such as photons have an equation of state parameter of w = 1
3 and hence

their energy density falls off as ρR ∝ a−4. Non-relativistic fluids such as dark matter obey

w = 0 and therefore dilute at a slower rate with ρM ∝ a−3.

Finally, a cosmological constant can be described as an ideal fluid with w =−1 and a constant

5



Chapter 1. Introduction

energy density ρΛ.

As aΛCDM universe contains all of the aforementioned species, the possible solutions for the

scale factor are parametrized by the energy density of each of the components at the present

time. For convenience, the energy densities are often given in units of the critical density ρc

which is simply given by solving equation (1.6) for ρ in a flat universe with k = 0:

ρc = 3H 2

8πG
. (1.10)

The density parameterΩ is then defined in terms to the energy density ρ variable as:

Ω≡ ρ

ρc
. (1.11)

For a species X with equation of state parameter wX , one can now parametrize its energy

density ρX by its present day value at a = 1 and write it as a function of scale factor as:

ρX (a) = ρX (a = 1)a−3(1+wX ). (1.12)

Denoting the Hubble parameter today as H0, one can rewrite the first Friedmann equation (1.6)

forΛCDM as:

H 2

H 2
0

=ΩM a−3 +ΩR a−4 +ΩΛ+Ωk a−2 (1.13)

where the curvature terms is written as a curvature “density"Ωk = 1−Ω.

An important consequence of a time dependent FLRW metric is that light propagation changes

the observed wavelength λobs relative to the emitted wavelength λemit. Light travels along

null-geodesics, i.e d s2 = 0. The FLRW metric implies that

λobs

λemit
= aobs

aemit
. (1.14)

6



1.1. Homogeneous and Isotropic Universe

With the convention of aobs = 1, one can rewrite Equation 1.14 as

λobs =
λemit

a
≡ (1+ z)λemit, (1.15)

where the definition of redshift z = 1
a −1 ranging from 0 today to infinity at a = 0 is introduced.

The effect of the cosmological redshift leads to an observable distance-redshift relation.

The co-moving radial distance χ which appears in the FLRW metric (1.3) of a source at scale

factor a that is observable today at t = t0 can be expressed as:

χ=
∫ t0

t (a)

d t ′

a(t ′)
=

∫ 1

a

d a′

a′2H(a′)
. (1.16)

The first Friedmann equation (1.6) was used to transform the integral over time into an integral

over the scale factor.

Cosmological distances are not directly observable but have direct consequences on the

angular size and the brightness of a distant source. The transverse co-moving distance T is

defined such that two object at equal redshift z separated by an angel δθ have a radial co-

moving separation d = δθT . In a flat universe, the radial and transverse co-moving distances

are identical. In a general FLRW metric, from the spacial part of the metric (Equation 1.5), T is

given by Sk (χ).

The angular diameter distance dA relates the angular separation δθ between two objects at the

same redshift to their physical separation. The angular diameter distance can be expressed in

terms of the transverse co-moving distance as

dA(z) = T (z)

1+ z
. (1.17)

Geometrical probes of cosmology that make use of a known physical size and determine the

angular diameter distance (or relations thereof) are known as Standard Rulers . The most

powerful probe within this class is the CMB (1). Further probes are the baryonic acoustic

oscillation (BAO) signal in the galaxy clustering (37) and time-delay cosmography (see e.g. 38,

for latest results).
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The Luminosity distance dL is the distance derived from flux measurements F relative to a

(known) intrinsic luminosity L of an object. The distance dL is defined such that 4πF dL
2 = L

is satisfied. The Luminosity distance can be related to the transverse comoving distance as

dL(z) = (1+ z)T (z). (1.18)

Geometrical probes of cosmology that make use of a known brightness of a physical object to

determine the luminosity distance are known as Standard Candles. One prominent example

are supernovae of type Ia (e.g. 5; 6). Cepheid variable stars recently became a competing

measurement of the late time expansion (see 39).

The maximum distance light can travel radially since t = 0 defines the co-moving horizon or

conformal time η:

η(t ) =
∫ t

0

d t ′

a(t ′)
. (1.19)

This distance defines the physical extent of our observable universe.

1.2 Cosmological structure formation

The previous section discussed the homogeneous universe. The universe today is however

inhomogeneous on small scales as observed on the scale of galaxy clusters, galaxies and down

to scales of stars and planets. These non-linear structure emerged from an originally smooth

linear density field. We will first revise the linear perturbation theory approach to structure

formation and then discuss formalisms to capture the non-linear formation of structure.

1.2.1 Linear growth of structure

Density fluctuations can be described as a relative density contrast

δ(~x) ≡ ρ(~x)− ρ̄
ρ̄

, (1.20)
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1.2. Cosmological structure formation

where ρ(~x) is the density at position~x and ρ̄ is the mean density of the universe. A convenient

description is the density contrast in Fourier space δ(~k)

δ(~k,η) = 1

π3/2

∫
δ(~x,η)e−~k·~x d~x, (1.21)

where~k is the wave vector and η is the conformal time. The Einstein-Boltzmann equations

describe the evolution of the Fourier modes in linear perturbation theory. They describe the

interaction of small density and pressure perturbations of different species and their evolution,

growth and decay. This is beyond the scope of this introduction and can be read in standard

textbooks, such as (32). The solution of the time dependent density fluctuations δ(k,η) at late

times, in the matter or dark energy dominated era, can approximately be separated into a k

and η dependent function

δ(k,η) ∝ k2Φp (k)T (k)D(a), (1.22)

whereΦp (k) is the gravitational potential at the initial condition set by inflation, T (k) is the

transfer function, and D(a) is the growth function quantifying the time dependence of the

evolving density field.

The initial conditionsΦp (k) are required to predict any form of structure in the universe. They

are thought to be produced during inflation. Inflation itself does not predict specific values of

Φp (ki ). A common prediction of inflationary models is a Gaussian random field with a 2pt

function

〈Φp (ki )Φp (k ′
i )〉 = (2π)3PΦ(k)δ3(ki −k ′

i ), (1.23)

where the primordial power spectrum PΦ can be parametrized as

k3

2π2 PΦ(k) = As

(
k

k0

)ns−1

. (1.24)

As is the amplitude of the primordial power spectrum at the reference scale k0 and ns is the
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power law slope. As and ns are free parameters that have to be inferred from observations.

The transfer function T (k) describes how scales evolve through horizon crossing. Models

outside the horizon (ηk ¿ 1) stay mostly frozen and are set by the initial conditions.

During matter domination, all sub-horizon modes grow with the same rate. The linear growth

function is given by (see e.g. (32) for derivation)

D(a) ∝ H(a)
∫ a

0

d a′

(a′H(a′))3 . (1.25)

The matter power spectrum predicted by linear perturbation theory is then given by

〈δ(ki ,η)δ(k ′
i ,η)〉 = (2π)3P (k, a)δ3(ki −k ′

i ), (1.26)

where P (k, a) is given by combining equations (1.22) and (1.26):

P (k, a) = 2π2

k0
As

(
k

k0

)ns

[T (k)D(a)]2 . (1.27)

The most prominent probes of the large scale structure in the universe at late times are galaxy

clustering (2) and weak gravitational lensing (3; 4).

As δ grows over time and the variance in the density field increases accordingly, at one point,

the structure becomes non-linear and collapsed over-dense objects form, which are called

halos. These objects are the seeds for galaxies and clusters and lead to a hierarchical scenario

for the formation of structure.

In the following, we revise the basic theory that enables a description of non-linear structures.

1.2.2 Spherical collapse model

General non-linear solutions of structure formation can not be described analytically and

require extensive numerical methods and calculations. There are however specific configura-

tions that have analytic solutions. One of them is the spherical collapse. The spherical collapse

model, although it relies on simplistic assumptions, has been proven to provide a reasonable

10



1.2. Cosmological structure formation

good qualitative prediction of structure formation. In fact, extensions of its simplest form can

give reliable quantitative predictions without relying on numerical N-body simulations. The

solution of the non-linear spherical collapse model in a matter dominated universe can be

computed as follow:

The Friedmann equation in a matter dominated and closed universe is given by

H 2

H 2
0

=ΩM a−3 + (1−ΩM )a−2. (1.28)

The solution of equation (1.28) for the time dependent radial extent r of a closed universe can

be stated in terms of the parameter θ = H0η (ΩM −1)1/2 as

r (θ) = A (1−cosθ) (1.29)

t (θ) = B (θ− sinθ) , (1.30)

where A = r0ΩM /2(ΩM −1) and B = H−1
0 ΩM /2(ΩM −1)3/2 are the initial conditions. The turn

around happens at θ = π with r = 2A and t = πB . Collapse (r → 0) occurs at θ = 2π with

t = 2πB .

The correspondence to a local perturbation in a background cosmological model withΩM = 1

can be achieved by

A = 1

2H0Ω
1/2
M

(
3

5

ai

δi

)3/2

(1.31)

B = 3

10

ri

δi
. (1.32)

The initial conditions are given as a homogeneous over-density δi with radius ri at scale factor

ai . At collapse (θ = 2π), the scale factor acol is

acol =
(

3

4

)2/3 (
3

5

ai

δi

)
(2π)2/3 ≈ 1.686

ai

δi
. (1.33)

This means that the perturbation collapsed when the linear theory predicts a density contrast

of δc = 1.686. The collapse does not proceed to a point (r → 0) but relaxes to virial equilibrium.
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The virial theorem describes the partition of potential energy Epot and kinetic energy Ekin as

Epot =−2Ekin. (1.34)

The total energy of the system Etot is given by the potential energy at the turn-around radius

rmax. Applying the virial theorem

Etot = Epot +Ekin = Epot(rmax) = 1

2
Epot(rvir) (1.35)

leads to rvir = 1
2 rmax since Epot ∝ r−1. The virial radius is reached by θ = 3

2π and the over-

density at collapse in such a situation relative to an ever expanding critical universe is

ρ(θ = 3π/2)

ρ̄(θ = 2π)
= 18π2 ≈ 178. (1.36)

The specific value of the density contrast of a collapsed halo is only valid for a matter domi-

nated universe. The density contrast∆v is often used to define a collapsed object. Equivalently,

the virial mass of an object Mv is defined as

Mv = 4π

3
r 3

vρM∆v . (1.37)

The model provides an approximation on how and when over-densities collapse. The under-

lying assumptions are however simplified. In reality, the collapse is not spherical and shell

crossing can occur when δi is not monotonically decreasing with radius. Furthermore, in a

universe with dark energy driving the expansion but not participating in the collapse, one

can not consider spherical collapse to be a separate universe. Nevertheless, the description

above allows a qualitative assessment of the non-linear structure formation and more detailed

models are built by extensions of the spherical collapse model.

1.2.3 Press-Schechter formalism

One way to quantify the structure in the universe is by counting the number of collapsed

objects as a function of their mass, the so called halo mass function (HMF). A theoretical
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framework to predict the HMF from the statistics of the linear density field was introduced by

Press and Schechter (40). This framework relies on smoothed density fields and the spherical

collapse model described in section 1.2.2.

Given a density field δ(~x), one can apply a filter W (~x;R) with scale R to get a smoothed density

field

δ(~x;R) =
∫
δ(~x ′)W (~x +~x ′;R)d~x ′. (1.38)

For each filter, one can define a corresponding mass M = γ f ρ̄R3, where γ f is a constant de-

pending on the shape of the filter. Smoothing can also be applied in Fourier space accordingly.

One can then define the mass variance of a smooth density field

σ2(R) = 〈δ2(~x;R)〉 = 1

(2π)3

∫
P (k)W̃ 2(kR)d 3k, (1.39)

where W̃ 2(kR) is the Fourier-transform of W . The same quantity can also be expressed in real

space. One can equally label the filter by its radius R or by its mass M , σ2(R) =σ2(M). The

latter is called the mass variance .

If δ(~x) is a Gaussian random field, so is δ(~x;R) and the probability distribution function

δM = δ(~x; M) is

P (δM )dδM = 1p
2πσM

exp

[
− δ2

M

2σ2
M

]
dδM (1.40)

where σM =σ(M). In hierarchical models, such as the CDM model, the variance is monotoni-

cally decreasing with increasing scale R. In top-down cosmologies however, the lack of small

scale structure introduces a characteristic scale with maximum variance.

Press and Schechter postulated: “The probability of δM > δc (t ) is the same as the mass fraction

that at time t is contained in halos with mass greater than M”. For a Gaussian random field
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this statement results in

F (> M , t ) ≡ P (δM > δc (t )) = 1p
2πσM

∫ ∞

δc

exp

[
− δ2

M

2σ2
M

]
dδM = 1

2

(
1−erf

[
δc

2σM

])
. (1.41)

δc (t ) is the time dependent critical density for collapse when computing δM at fixed time, i.e.

when computing δM on todays power spectrum and normalizing the growth factor such that

D(a = 1) = 1, then δc (t ) = δc /D(t ).

One can see from equation 1.41 that for t → ∞, i.e δc → 0 will never result in more than

half the mass being collapsed in halos. The Press-Schechter formalism does not account for

under-dense regions (δ< 0) being able to collapse as part of larger over-dense regions. This is

a shortcoming. (40) “re-solved” this problem by correcting equation (1.41) with an additional

factor of 2

F (> M , t ) = 2 ·P (δM > δc (t )) . (1.42)

The expression ∂F (>M)
∂M d M describes the mass fraction bound in objects of mass [M , M +d M ].

Multiplying by ρ̄ leads to the total mass bound in those object per unit volume.

With the formalism providing F (> M , t), one can define the halo mass function n(M , t)d M ,

which is the number of objects in the mass range [M , M +d M ] in a fixed (co-moving) volume,

hence n(M , t ) = dn
d MdV , as

n(M , t )d M = ρ̄

M

∂F (> M)

∂M
d M =

√
2

π

ρ̄

M 2

δc

σM
exp

(
− δ2

c

2σ2
m

)∣∣∣∣d lnσM

d ln M

∣∣∣∣d M . (1.43)

Equation (1.41) and (1.42) and ∂F /∂M = ∂F /∂σM |∂σM /∂M | were used in the last step. The

expression above can be simplified by introducing the variable ν= δc (t )/σ(M). In this form,

equation (1.43) writes

n(M , t )d M = ρ̄

M 2 fPS(ν)

∣∣∣∣ d lnν

d ln M

∣∣∣∣d M , (1.44)
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where

fPS(ν) =
√

2

π
νe−ν

2/2. (1.45)

The characteristic mass Mchar is defined by σ(Mchar) = δc (t), i.e ν(Mchar) = 1. The Press-

Schechter HMF obeys the following properties:

• When M ¿ Mchar, n(M , t ) ∝ M−(2+α), where α= d lnσM /d ln M . For a CDM cosmology,

it holds α∼ 0 and therefore n(M , t ) ∝ M−2 at low masses.

• For M À Mchar, the abundance of halos is exponentially suppressed.

• Since δc (t ) is a decreasing function with time, the characteristic halo mass ν increases

with time and more and more high mass structure is formed.

From the Press-Schechter formalism, a hierarchical structure formation picture emerge. Small

structures are formed first and larger and larger structure are formed with time.

1.2.4 Extended Press-Schechter formalism (EPS)

The extended Press-Schechter formalism (EPS), was introduced by (41) and is an extension of

the Press-Schechter approache which consistently treat under-dense regions δ< 0 and has

no need of a ‘fudge factor” of two (equation 1.42). Furthermore, EPS allows the description

of progenitor halos and can trace back the past of the halos, which is not possible in the

Press-Schechter formalism.

For a hierarchical model, S ≡σ2(M) is a monotonic declining function of halo mass M . There

is a one-to-one relation between S and M . Let’s consider a position ~x with present day

over-density is δ0(~x). For each value of the filter mass M (or S), the smoothed over-density

δS = δM (~x) can have a different value. On very large scales M →∞ (S → 0) the universe is

homogeneous and therefore δS → 0, independent of position~x. Each point in space~x can

thus be described by a trajectory (S,δS) with starting point (0,0). This means that the filter S

considers smaller and smaller scales and the density fluctuation δS within the filter changes

accordingly.
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If the filter S is a sharp in k-space, independent modes ∆δS are added to the trajectory (S,δS)

in a Gaussian random field. Statistically, a trajectory (S,δS) follows a Markovian random walk.

As all random walks will at one point (with very large s) cross δc (t), EPS predicts that all the

mass resides in halos. The EPS formalism uses explicitly the sharp k-space filter.

The EPS ansatz is: The fraction of trajectories (S,δS) with first up-crossing (FU) aboveδS > δc (t )

at S > S1 =σ2(M1) is equal to the mass fraction at time t residing in halos with M < M1.

Based on the EPS ansatz, one can write the EPS mass function

n(M , t )d M = ρ̄

M

∂F (> M)

∂M
d M =− ρ̄

M

∂F (< M)

∂M
d M =− ρ̄

M

∂FFU (> S)

∂S

dS

d M
d M

= ρ̄

M
fFU (S,δc )

∣∣∣∣ dS

d M

∣∣∣∣d M (1.46)

where fFU (S,δc ) is the fraction of trajectories that have their first up-crossing of barrier δc (t )

in the range [S,S +dS], given by (without proof, see (41))

fFU (ν) = 1p
2π

δc

S3/2
exp

[
−δ

2
c

2S

]
= 1

2S
fPS(ν). (1.47)

This yields to the same mass function as the Press-Schechter formalism (equation 1.43), but

without the need of a fudge-factor of 2.

The EPS formalism has specific assumptions and shortcomings. First, as for the Press-

Schechter formalism, it is anchored on the spherical collapse model. Second, individual

paths of halos are not predicted by EPS neither. For example, let us consider two positions~x1

and~x2 which reside in the same halo. In this case, EPS predicts two different halo masses as

the masks S1 and S2 are centered on the two different positions. EPS only predicts how much

mass resides in halos of different mass only in a statistical sense. Third, the sharp k-space filter

has a complicated form in real-space. The real-space filter is not spatially localized.

Nevertheless, EPS finds many applications in cosmology and was further developed. (42)

introduced the elliptical EPS formalism and the original HMF were tuned to match N-body

simulations (see e.g. 43).

16



1.3. Gravitational lensing

1.2.5 Halo merger trees

Of importance in cosmology and galaxy evolution is not only the statistics of the halo popula-

tion but also the individual paths of different halos, their growth and the progenitors which

assembled the current halo. An advantage of EPS over PS is that EPS enables to calculate the

properties of the progenitors of a given class of objects, the so called progenitor mass function.

In particular, the progenitor mass function n(M1, t1|M2, t2)d M1 gives the average number of

progenitors of mass [M1, M1 +d M ] at time t1 that at time t2 > t1 have merged into a halo of

mass M2. The progenitor mass functions allows to construct halo merger trees, an assembly

history of all the progenitors merging in the apparent halo.

The derivation of n(M1, t1|M2, t2)d M1 is as follow: Consider a spherical region of mass M2

with linear over-density δ2 = δc (t2) = δc /D(t2) such that it forms a collapsed object at t2. Of

interest is the fraction of M2 which at an earlier time t1 < t2 resides in a collapsed halo of mass

M1. Within EPS, this is the conditional probability that a trajectory that crossed the barrier δ2

at S2 has its first up-crossing of δ1 = δc (t1) at S1 > S2. This is the same quantity as equation

(1.47), except for a translation of the origin in the (S,δs)-plane:

fFU (S1,δ1|S2,δ2) = 1p
2π

δ1 −δ2

(S1 −S2)3/2
exp

[
− (δ1 −δ2)2

2(S1 −S2)

]
(1.48)

and converting from mass to number-weighted leads to

n(M1, t1|M2, t2)d M1 = M2

M1
fFU (S1,δ1|S2,δ2)

∣∣∣∣ dS1

d M1

∣∣∣∣d M1 (1.49)

Several numerical methods exist in the literature to sample the progenitors of a halo M0 at a

look-back time-step ∆t , that obey the progenitor mass function and mass conservation, e.g.

(44; 45; 46; 47).

1.3 Gravitational lensing

Gravitational lensing is the effect caused by density inhomogeneities along the path of a

photon. The effect is a prediction of GR and was proposed by Albert Einstein as a test of GR

in 1916 (48). In 1919 the effect was quantitatively measured and was in agreement with the
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prediction of GR (49). Gravitational lensing is caused by the total mass, by stars, gas and dark

matter and can be used as a probe of the total mass distribution in the universe.

In this section, we first discuss the physical effects caused by a spherical mass. In a second

paragraph, we discuss the geometrical component of gravitational lensing and time-delays in

a third paragraph.

1.3.1 Physics of gravitational lensing

The geometric solution outside a spherical mass M of Einstein’s Equation (1.1) is the Schwarzschlid

metric, which is given by

d s2 =
(
1− rs

r

)
c2d t 2 −

(
1− rs

r

)−1
dr 2 − r 2 (

dθ2 + sin2θdφ2) , (1.50)

where t is the time coordinate (measured by a stationary clock located infinitely far from the

massive body), r is the radial coordinate (measured as the circumference, divided by 2π, of a

sphere centered around the massive body), and rs is the Schwarzschild radius of the massive

body given by

rs = 2GM

c2 . (1.51)

The metric predicts a deflection and a time dilatation of light rays passing close to the object

at an impact radius b relative to a flat Minkowsky metric (b =∞). To analytically compute

these quantities, certain approximations have to be made. In this thesis, we consider impact

parameters b in the weak gravitational regime (b À rs) and that the effective deflection of the

light path is computed on the unperturbed straight path (the Born approximation). These

approximation are reasonable and only break down very near a black hole and other very

dense astrophysical sources, such as a neutron star. The resulting physical deflection angle α̂

is

α̂= 4GM

c2b
(1.52)
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and the gravitational time-delay t grav caused by the change in the speed of light c ′ (relative to

an observer at r =∞) can be written as

t (b)grav =
∫

dl

c
−

∫
dl

c ′
≈ 2GM

c3

∫
dl

r
(1.53)

to first order. This integral diverges for infinite path lengths, independent of the distance

of closest encounter b. Of interest is the relative change in time delay (modulo a constant

diverging shift). We define the relative time delay ∆t grav
∞ as the time difference relative to a

path with b =∞. In this form, the relative time delay for a Schwarzschild lens becomes

∆t grav
∞ = t (∞)grav − t (b)grav = 4GM

c3 log(b). (1.54)

Applying Huygens principle on a wave front traveling through a varying diffraction index with

path differences of ∆l = c∆t grav
∞ leads to a deflection in the form

α̂= ∂∆l

∂b
= 4GM

c2b
. (1.55)

One recovers the result of equation (1.52). Gravitational lensing follows the physics of classical

and quantum optics of light propagation. Huygens principle holds and Fermat’s principle,

that can be derived from Huygens principle, as well.

More realistic mass distribution can be described in the weak field regime as a sum of

Schwarzschild lenses and their effects of deflection and time-delay add up. Attention has to

be payed to the geometrical aspects of the mass distributions and the Born approximation

may no longer be valid.

1.3.2 Lens equation

Deflection of light paths act as a distortion of intrinsic luminous features and can be described

phenomenological as a mapping from the image plane to the source plane. Considering the

angular position on the sky from an observer, the difference between the un-lensed angular
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position ~β (source plane) and the observed position~θ(image plane) is the deflection angle ~α

given as

~β=~θ−~α(~θ). (1.56)

Corresponding to the vector field~α, there exists a scalar potentialψ, called the lensing potential

such that

~α(~θ) =~∇ψ(~θ). (1.57)

The lensing convergence κ(~θ) of the lensing potential is defined as

κ(~θ) ≡ 1

2
∇2ψ(~θ). (1.58)

The lensing potential itself can be expressed in terms of the convergence as

ψ(~θ) = 1

π

∫
d 2~θ′κ(~θ′) ln |~θ−~θ′|. (1.59)

To first order, the lens effect described in the form of equation (1.56) can be expressed as the

Jacobian Ai j

Ai j ≡ ∂βi

∂θ j
= δi j − ∂αi

∂θ j
= δi j − ∂2ψ

∂θi∂θ j
=

1−κ−γ1 −γ2

−γ2 1−κ+γ1

 , (1.60)

where γ1 and γ2 correspond to the shear terms. The magnification µ is the inverse of the

determinant of the Jacobian A

µ= 1

det(A)
. (1.61)

In the thin lens approximation, the deflection ~α(~θ) comes from one or several mass distri-

butions which are thin compared to the light paths from the source to the observer. When

only considering one thin lens, this approximation leads to a description between the visible
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1.3. Gravitational lensing

deflection angle on the sky ~α(~θ) relative to the effective physical bending angle ~̂α as

~β=~θ−~α(~θ) =~θ− Dds

Ds

~̂α(Dd
~θ) (1.62)

where Dd, Ds and Dds are the angular diameter distances from the observer to the lens, to the

source and from the lens to the source 1, respectively.

In the case where there are n thin lenses along the line-of-sight (LOS), the total mapping is the

sum of all the deflections, weighted by their distance relations and evaluated at the light path

as

~βs =~θ− 1

Ds

n∑
k=1

Dks~̂αk (Dk
~βk ) (1.63)

where ~βk is the angle under which the k’th lens deflects the light ray and ~β1 =~θ. The ordering

in Dk follows the backwards light path such that the light passes the lens at k before k −1 (see

also (50) for a different notation of the same expression).

1.3.3 Time-delays

So far, the geometry was folded in the mapping of the light paths from the image to the

source plane. Apart of the gravitational time-delay, the light travel time is also affected by the

geometric configuration.

Considering a light ray propagating at an angle ~θ between two deflectors (k, k +1) whose

origin emerged from the direction of angle ~β. The difference in the co-moving path length of

this light ray compared with a light ray traveling straight at the angle ~β, assuming (θ−β) ¿ 1

to second order, is given by

∆lk,k+1 = T k,k+1

(
θ−β)2

2
. (1.64)

Time delays are determined by measuring photons emitted at the same time but received at a

different time. This means that the path difference is made at recent cosmological time (z = 0).

1Dds is not the subtraction Dd−Ds. In a flat universe: Dds = 1
1+zs

(Td−Ts), where T is the transverse co-moving
distance.
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The excess distance of equation (1.64) result in a time delay of

∆t geo
k,k+1 =

∆lk,k+1

c
= T k,k+1

c

(
θ−β)2

2
. (1.65)

In the general case of multiple lens planes, the total time delay relative to a straight path is

given by

∆t geo =
N∑

k=1
∆t geo

k−1,k = 1

c

N∑
k=1

T k−1,k

(
α̂tot ,k−1 −β

)2

2
, (1.66)

where α̂tot ,k is the physical angle of the light ray after (backwards view) the k’th deflection.

The integrated gravitational time delay is the sum of the individual gravitational time delays

∆t grav
∞,k of equation (1.54) rescaled to the observer time at z = 0 given by

∆t grav =−
N−1∑
k=1

(1+ zk )∆t grav
∞,k . (1.67)

The combined time delay from the geometric path difference (equation 1.66) and the gravita-

tional time difference (equation 1.67) results in

∆t tot =∆t geo +∆t grav. (1.68)

Example: Single thin lens

As an example, we calculate the single thin lens time delay of an image visible at~θ lensed from

the source at angular position ~β. The relative geometric time delay is then given by

∆t geo = Td

c

(~θ−~β)2

2
+ Tds

c

(~θ− ~̂α−~β)2

2
(1.69)

which can be simplified by applying the lens equation (1.62) to

∆t geo = 1

c

(~θ−~β)2

2

TdTs

Tds
. (1.70)
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An equivalent expression can be stated in angular diameter distances

∆t geo = 1+ zd

c

(~θ−~β)2

2

DdDs

Dds
. (1.71)

The gravitational delay is given by

∆t grav =−(1+ zd )∆t grav
∞ (Dd

~θ). (1.72)

The convergence (equation 1.58) becomes the scaled projected surface mass density

κ(~θ) = Σ(Dd
~θ)

Σcrit
(1.73)

with

Σcrit = c2Ds

4πGDdDds
(1.74)

being the critical density . The

The excess time delay of an image at~θ with corresponding source position ~β can be written as

(combining equation 1.71 and 1.72)

t (~θ,~β) = D∆t

c
φ(~θ,~β), (1.75)

where

φ(~θ,~β) ≡
[

(~θ−~β)2

2
−ψ(~θ)

]
(1.76)

is the Fermat potential with

D∆t ≡ (1+ zd)
DdDs

Dds
(1.77)

is the Time-delay distance for a single lens. The relative time delay difference ∆ti j between
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two images positioned at~θi and~θ j , the actual observable, is then given by

∆ti j = ti (~θi ,~β)− t j (~θ j ,~β). (1.78)

LOS structure external to the lens also affect the observed time delay distance through addi-

tional focusing or de-focusing of the light rays. A simplified way to parameterize additional

deflections along the LOS on the time-delays is by a single constant mass sheet parameter κext,

the external convergence . The actual time delay distance D∆t relates to the one inferred by

ignoring the external LOS structure by

D∆t =
Dmodel
∆t

1−κext
. (1.79)

This description is used in chapter 5. A more detailed description of the LOS structure is given

in chapter 4.
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2 A Simple model linking Galaxy and

Dark Matter Evolution

This chapter appeared in a similar form in Birrer, Lilly, Amara, Paranjape & Refregier 2014 (28).

Galaxy evolution is a field where cosmological structure formation needs to be enriched with

astrophysical processes, i.e. astrophysics has to be embedded into a cosmological model. It is

the largest scale where astrophysical models have to succeed and the smallest scales where

the cosmological structure formation model has to prove its validity. Galaxies, and the galaxy

population, therefore offer tests for both astrophysics and cosmology.

Several approaches have been taken to understand the link between galaxies and dark matter

haloes. Usually, the dark matter component is assumed to be well understood on the basis

of both analytic and numerical models that are based on input parameters derived from

cosmological observations, e.g. the cosmic microwave background. Small collapsed objects,

i.e. ‘haloes", form earlier and subsequently merge together to form more massive objects.

Numerical N-body simulations provide an accurate description of the evolution of the popula-

tion of dark matter haloes in the cosmological context (e.g, 51; 52). Much of the difficulty in

galaxy formation and evolution arises then in understanding the actions of baryonic physics

within these haloes.

A major theoretical effort has been made using so-called “semi-analytic" techniques to follow

the evolution of baryons in the haloes. In semi-analytic models (or SAMs) simple parametric

descriptions of the most important baryonic physics are combined with a dark matter merger
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Chapter 2. A Simple model linking Galaxy and Dark Matter Evolution

tree that is usually obtained from a large volume N-body simulation. The treatment of the

relevant baryonic processes is necessarily simplified (e.g, 53; 54; 10; 55; 56; 57; 58; 59; 60).

Some or all of the parameters describing these processes can be adjusted to match particular

observational properties of galaxies or of the galaxy population, either at a single epoch or

at many. Although much progress has been made and the range of output quantities can be

large, the total number of parameters in such models is often quite large and as a result, the

uniqueness and predictive power of SAMs is limited. In addition, the apparent complexity of

the SAMs can often hide underlying links between different aspects of galaxy evolution.

Much progress has also been made using the alternative approach of ab initio simulations

in which the baryonic physics is directly incorporated into hydrodynamic codes. However,

due to the very large dynamical range that must be covered, such simulations are currently

not able to resolve star formation and associated feedback processes and so cannot describe

these processes from first principles. Simulation codes therefore include these as “sub-grid"

physics, which leads to the emergence of a number of alternative approaches (e.g, 60; 61).

Partly in response to these difficulties, other, more phenomenological, approaches have

been developed. One has been to study the statistical connection between galaxies and dark

matter haloes in terms of the conditional luminosity function (CLF; 62) or the halo occupation

distribution (HOD; e.g, 63; 64). These methods are anchored on our good understanding of

the statistical properties of dark matter haloes in the currentΛCDM model plus the hypothesis

that galaxy properties should be closely linked to the properties (and especially the masses) of

dark matter haloes. A variety of statistical tools can then be used to constrain the galaxy-dark

matter connection: galaxy clustering (e.g, 65), galaxy-galaxy lensing (e.g, 66; 67; 68), galaxy

group catalogs (e.g, 69; 70), abundance matching (recently e.g, 71; 72; 73; 74), and satellite

kinematics (e.g, 75).

In recent years, large scale surveys of the distant Universe have yielded sufficient data to

apply similar approaches at significant look-back times. The differential effects with redshift

then allow a phenomenological description of the evolving galaxy population using simple

parametric descriptions. The parameters of these are matched to the evolving statistical

descriptions of the stellar to halo mass relation (e.g, 76; 77; 78; 79). Such models can provide
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consistency checks within several data sets and observables. As an example, when compiling

different data sets, (78) finds a disagreement between galaxy abundances for high redshift

surveys and high systematic errors in the stellar mass and star formation rate estimates.

The increasingly good observational data on the evolving galaxy population has also opened

up other phenomenological approaches which instead focus on the baryonic processes. A

successful approach has been to broadly classify galaxies as either actively forming stars

or quiescent. Most star-forming galaxies exhibit a rather tight relation between their star

formation rates (SFR) and stellar masses producing the so called Main Sequence (80; 81; 82;

83; 84). The quiescent galaxies have sSFR that are 1-2 orders of magnitude lower, and these

galaxies are not forming stars at a cosmologically significant rate. We will henceforth refer to

these passive galaxies as “quenched”. A few underlying simplicities in the galaxy population

can then be identified (such as the observed constancy of the Schechter M∗ of star-forming

galaxies or the separability of the fraction of galaxies that are quenched - colloquially the

“red fraction”). The analytic consequences of these can then be explored using the most

basic continuity equations (83; 85, hereafter P10 and P12). This has proved very successful in

describing the evolution of the galaxy population and, in particular, in deriving the simple

empirical “laws" for the quenching of star-formation in galaxies as a function of stellar mass

(even if other parameters are involved or are even the main causal drivers). This approach

has also yielded new insights into the relationships between the mass functions of active and

passive galaxies, and the relative importance of mass and environment in the quenching of

star-formation in galaxies.

There have also been several papers developing simple toy analytic models for the star-

formation rate in galaxies (e.g, 86; 87; 88; 89; 90; 91, L13 from here on). These have been

motivated by the small dispersion in the specific star-formation rate (sSFR = star formation

rate/stellar mass) of actively star-forming galaxies, and by the strong evolution of this charac-

teristic sSFR with time. In terms of the CLF a phenomenological approach has been chosen by

(92). (93) developed a toy analytic model when comparing to hydrodynamical simulations.

All these models have tried to boil down the complexity arising in numerical simulations

and detailed semi-analytic models into simple analytic models that are motivated by either

simulation results or observational constraints. The aim has been to provide a simple picture
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of how galaxies evolve in the cosmological context and to highlight connections between

different aspects of galaxy evolution. In particular, L13 developed a toy analytic model in

which the star-formation rate is regulated via the variable mass of gas in the gas reservoir

feeding the star-formation. Such a model links the specific star-formation rate (sSFR) to the

specific accretion rate onto the regulator system. The self-regulation by the gas reservoir

naturally introduces the SFR as a second parameter in the mass-metallicity relation Z (m,SFR)

and also naturally explains why the Z (m,SFR) relation should be more or less independent of

time. This model also links in a straightforward way the different slopes of the mass functions

of galaxies and haloes.

By construction, the phenomenological analytic models in P10, P12 and L13 have only been

tangentially linked to the dark matter haloes and not at all to the overall evolving population

of haloes that is produced by hierarchical assembly in the cosmological context. The whole

approach, and in particular the derivation of the numerical values of the few parameters in

the models, was based on comparison with baryonic systems. This has been both a strength

and a weakness of these analyses.

The aim of this chapter is therefore to explore how far we can get by taking these simple

baryonic prescriptions and combine them with a dark matter structure formation formalism.

Specifically, we will take the self-regulation model of L13 plus the quenching “laws" of P10

and P12. We couple them with a Monte Carlo realisation of dark matter halo merger trees.

Our goal is to present a phenomenological model whose few parameters are taken from

the earlier papers, and are not adjusted in the combined model. The parameters are well

constrained and therefore considered as non-adjustable in this work. We can then explore

how well these predictions match the observed Universe, and identify where and how it needs

further improvement. In a second step, we propose two changes in the model and show their

impact on the predictions.

Our approach is thus rather different to the one in (79) or (78) as we do not explore a parameter

space but rather develop a physical picture without further tuning within the combined model.

We stress that the current model is not intended to replace more complex SAMs whose greater

sophistication will no doubt be required to account for a more multi-dimensional view of
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galaxies.

The current chapter is structured as follow: In Section 2.1 we review the key concepts that were

introduced in the earlier papers P10, P12 and L13 which we use to establish the characteristics

of the baryonic processes. We define our notation and parameterization of these independent

models and describe the dark matter structure formation formalism we apply. In Section 2.2

we describe how these are then combined into the dark matter merger tree, and what further

assumptions have to be added, and how the model is then run. In Section 2.3, we present

our results in terms of the most basic observables of the galaxy population such as the overall

star-formation rate density (SFRD), the sSFR-mass relation of star-forming galaxies, the mass

function of active and passive galaxies, and the form of the stellar mass vs. halo mass relation

for star-forming and passive galaxies, and compare them with other work. In Section 2.4 we

discuss the implications of the model and explore how one could modify it and where we are

more restricted by the linkages between different parts of the model. Finally, in Section 2.5 we

summarize this chapter.

Throughout this chapter, we assume a flat cosmology with h = 0.7 (i.e. H0 = 70kms−1Mpc−1),

Ωb = 0.045, Ωm = 0.3, Ωλ = 0.7 , σ8 = 0.8 and ns = 1.0 consistent with (94) WMAP7 results.

We use the BBKS (95) transfer function to calculate the matter power spectrum. We define

a halo as having a mean over-density ∆≡ 3Mh/4πΩmρcritR3
h = 170 to be consistent with the

merger tree we use in this chapter. We use "dex" to refer to the anti-logarithm, so that 0.3 dex

represents a factor of 2.

2.1 Model ingredients

In this section we review the concepts and descriptions used in our model. We start with

the differential equations that control the regulator system from L13 (Section 2.1.1). We then

quote the mass- and satellite- quenching expressions from P10 and P12 (Section 2.1.2). In

Section 2.1.3 we describe the dark matter structure formation formalism we apply to our model.

These ingredients are completely independent of each other and do not rely on mechanisms

described in other subsections.
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2.1.1 Galaxies as gas-regulated systems

We adopt the model proposed in L13. Several similar models have been proposed in the

literature (e.g, 86; 87; 88; 89; 90) although there are significant differences in both concept

and detail. We identify a galaxy as a gas-regulated system sitting in a dark matter halo. The

SFR in the galaxy is set simply by the gas mass Mg as within a reservoir in the galaxy via

a star-formation efficiency, ε. There is also mass-loss from the reservoir in the form of a

wind that is parameterized by a mass-loading factor, λ, such that the outflow is λ·SFR. Both

of the ε and λ parameters are allowed to vary with the stellar mass Ms of the galaxy (and

possibly the epoch, or redshift). In L13, the baryonic infall rate into the regulatorΦb , which

replenishes the reservoir, was assumed to be some fixed fraction fgal of the baryonic infall onto

the surrounding halo. Two obvious simplifications of the L13 model were that gas expelled

from the galaxy in the wind was assumed to be lost forever, i.e. it does not mix with any

surrounding gas in the halo, and that substructure within a halo was neglected, i.e. there was

only one regulator in each halo. These issues will be discussed later in this chapter.

As in L13, the stellar mass is defined as the long lived stellar population assuming that a fraction

R of newly formed stellar mass is promptly returned to the gas reservoir. The remaining stars

will have a lifetime that is longer than the Universe. As in L13, we will set the mass-return

factor R = 0.4, motivated by stellar population models (e.g, 96). The “stellar masses" used

throughout this chapter will be these “long-lived" stellar masses. These are of order 0.2 dex

smaller than the stellar masses that are obtained by integrating the SFR, which are sometimes

quoted in the literature.

The build up in stellar mass Ṁs is then given by

Ṁs = SF R · (1−R). (2.1)

Following L13, the differential equations of the regulator in differential form can then be

written as:

SF R = ε ·Mgas (2.2)
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Ṁgas,outflow =λ ·SF R (2.3)

Ṁgas =Φb − Ṁs − Ṁgas,outflow =Φb −ε (1−R +λ) Mgas (2.4)

We will not go in detail into the analytic solution of these differential equations as L13 explored

these in some detail.

The efficiency ε and the outflow load λ are intended to cover, albeit simplistically, all the

baryonic processes within the galaxy system. L13 considered a power law parametrization

for both these quantities as a function of the stellar mass Ms in order to match the observed

Z(Ms ,SFR) relation in (97). The parameterization as a function of stellar mass is a convenience

and is still valid even if other quantities (e.g. halo mass) are responsible for the physical effect.

The parameterization is:

ε(Ms , z) = ε10 ·
(

Ms

1010M¯

)b

·
(

H(z)

H0

)
(2.5)

λ(Ms) =λ10 ·
(

Ms

1010M¯

)a

, (2.6)

H(z) is the Hubble rate at redshift z and H0 the present-day Hubble constant. L13 assumed,

following (98), that the star-formation efficiency would scale as the inverse dynamical time

of the galaxies and haloes, which should scale as the Hubble rate, and we will do the same

until revisiting this issue towards the end of the chapter1. For example (99) looked at the

the role of the normalization and slope of the Kennicutt-Schmidt relation (our Equation 2.2)

by varying this parameter and keeping all other parameters fixed. They find that a linear

Kennicutt-Schmidt relation is a much better fit to observations than a strongly super-linear

1The actual redshift scaling of the efficiency in L13 is ε∝ (1+ z) which is a good approximation for the scaling
of the Hubble rate at low redshifts.
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relation, in agreement with L13.

The gas infall rate Φb is assumed to be closely related to the dark matter halo growth rate.

We will describe this term in greater detail when discussing our model in Section 2.2 but in

essence we set the fgal parameter of L13 to unity, i.e. all of the gas flowing in a halo will be

assigned (at least temporary) with a regulator system.

One of the most interesting features of this very simple regulator system is that the resulting

sSFR is closely linked to the specific infall rate of the baryons, which L13 termed the SM I RB .

Indeed, the model is motivated by the overall similarities between the observed sSFR(z) of

the population of star-forming galaxies and the specific growth rate of dark matter haloes (e.g,

100, or L13). The sSFR will be exactly the specific baryonic infall rate if a constant fraction

fstar of the incoming gas is converted into stars. If, however, this fraction increases as a given

regulator evolves, e.g. if star-formation becomes more efficient as the stellar mass of the

regulator increases, then the sSFR will be boosted relative to the specific baryon infall rate, as

in Equation 36 of L13. Because this boosting of the sSFR is likely to be larger at low masses,

this also has the effect of reversing the weak dependence of the sSFR on stellar mass relative to

the dependence of the dark matter specific accretion rate on halo mass (see L13).

Another attractive feature of this regulator system is that it introduces the SFR as a second

parameter in the mass-metallicity relation, producing a Z (Ms ,SFR) relation that will only

change with epoch to the extent that the ε and λ parameters (at fixed Ms) evolve. In other

words a so-called “fundamental metallicity relation" is a more-or-less natural outcome of

the regulator. By comparing the expected Z (Ms ,SFR) with data from SDSS given by (97), L13

derived nominal values for the parameters ε10, b, λ10 and a in Equation (2.5) and (2.6) above.

Given the extreme simplicity of the model, the resulting values for ε(Ms) and λ(Ms), which are

quoted in Table 1 in L13 and included in Table 2.1 of this chapter, are surprisingly reasonable,

giving gas depletion timescales (ε−1) at Ms ∼ 1010M¯ of about 2 Gyr and mass-loading factors

of order unity. The gas depletion timescale and the outflow mass loading both decrease with

increasing stellar mass resulting in more and more efficient conversion of inflowing baryons

into stars as the stellar mass of the system increases. The fraction of incoming baryons that

are converted to stars is denoted as fstar in L13. In the context of the simple analysis of L13,
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this ”saturation” of fstar can be traced to the pronounced flattening of the Z (Ms) relation at

high masses. We will return to this later in the chapter.

The processes associated with star-formation in galaxies are thus represented in our model

by the four parameters (Equation 2.5 and 2.6) describing ε(Ms) and λ(Ms), and taken straight

from L13. As noted above, we will initially assume ε increases as H(z)/H0, although we will

revisit this assumption later.

Work by (e.g, 101; 102; 103; 104; 105; 106; 107) have emphasized the importance of supernova

feedback. In L13, outflows of material represent an “inefficiency" in the production of stars,

but do not “regulate" the level of star-formation, which is instead defined by the gas mass.

2.1.2 Quenching of star-formation in galaxies

In this chapter, we apply the phenomenological quenching prescriptions derived by P10 and

P12. This is distinct from introducing a turnover in the efficiency parameter as done by (78)

and (79) or cutting off the supply of gas, as done by e.g. (86), although the outcomes may be

similar. There are many physical mechanisms that have been proposed for quenching. One

popular approach is AGN feedback (see e.g, 108; 61; 109; 110). The AGN feedback also presents

a viable solution to the cooling flow problem (see e.g, 111; 112; 113), hence its popularity. The

P10 approach comes from the continuity in the two distinct galaxy populations and is not

based on a particular physical mechanism but rather seeks to define the characteristics that

any viable mechanism must satisfy.

We will assume that star formation within a galaxy stops instantaneously when it is quenched

and that no significant star formation occurs afterwards. As a shorthand (and on plots) we will

denote the actively star-forming galaxies as blue and those that are quenched as red although

we will not consider the colors of galaxies per se. The “red fraction” will then be the fraction of

galaxies of a given mass etc. that have been quenched.

P10 showed that the red fraction of galaxies as a function of mass and local projected over-

density is separable in the two variables, suggesting that there are two dominant processes:

one which depends on mass but not density (so-called “mass-quenching”) and a second
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environment-related process which should be independent of stellar mass. The mass-quenching

process is then the only one that depends on mass, and therefore is the one that determines

the shape of the mass-function of the surviving star-forming galaxies and, via the continuity

equation, the shape of the mass function of the resulting (mass-quenched) population of

passive galaxies. The observed constancy of the shape of the mass function of star-forming

galaxies over a wide redshift range up to z ∼ 2 (or even higher) imposes a strong requirement

on the form of mass-quenching (see P10 and below).

Subsequently, P12 showed that the environment-quenching in the overall population can be

fully accounted by a satellite quenching process that applies only to satellite galaxies. The

probability that a previously star-forming central galaxy is quenched when it becomes the

satellite of another galaxy is about 50%, independent of it’s stellar mass. There are many

possible suggestions for an environment-dependent quenching mechanism (see e.g, 114; 115;

116).

The P10 prescription for mass-quenching can be written either as a quenching rate, i.e. the

probability that a given star-forming galaxy will be quenched per unit time, or as a survival

probability to reach a certain mass without being quenched. The probability pquench for a

galaxy becoming quenched when increasing its stellar content by dMs is given by

dpquench =µdMs , (2.7)

for an infinitesimal dMs . For a finite increase ∆Ms , one gets

pquench = 1−exp
[−µ∆Ms

]
, (2.8)

The constant µ is required (see P10) to be M∗−1, where M∗ = 1010.68M¯ is the value of the

characteristic stellar mass of the (single) Schechter stellar mass function of the blue star-

forming population. Following P10, we takeµ to be constant with time because M∗ is observed

to be more-or-less constant.

We will assume that the mass-quenching process acts on all galaxies, i.e. both centrals and

satellites. This is motivated by the observational fact that M∗ is the same for central and
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satellite star-forming galaxies (P12). Because of the close coupling of stellar mass (and even

BH mass) and halo mass for central galaxies, the action of a mass-quenching that is driven by

stellar mass (as in the equation above) is hard to distinguish from one driven by halo mass for

centrals, but again our point is that the outcome must be well represented by the empirical

P10 quenching “laws".

For satellites, we apply an additional stochastic quenching process. When a central galaxy

becomes the satellite of another galaxy because it’s own halo merges with another more

massive halo, the chance of it being (instantaneously) quenched is set to psat = 0.5 . This

additional quenching probability is only applied once to any particular galaxy when it first

becomes a satellite. Because we do not, in the current work, consider the radial distribution of

galaxies within haloes (e.g, 117), or try to compute the local over-density as in P12 or (118), we

do not consider the density-dependence of psat, instead adopting a mean value. This mean

value of psat = 0.5 is assumed to be constant with epoch, as shown in the zCOSMOS group

catalogue to z ∼ 0.7 (119; 118).

To summarize, the quenching of galaxies in this model is accounted by just two constants,

µ= 10−10.6M−1¯ for mass-quenching and psat = 0.5 for satellite quenching.

2.1.3 Dark matter structure formation

To describe the hierarchical structure formation process we take a simple model, far below

the complexity of N-body simulation but aiming to account for most of the features of those

simulations. The descriptions we apply have been incorporated in one or another way by

many authors (recently e.g. by 79). We use the dark matter merger tree generator from

(46), which is based on the excursion set theory (e.g, 40; 120; 41; 121) tuned to match the

Millennium simulation (60). (46) showed that the tuned merger tree generator matches the

overall halo mass function and the progenitor mass function for different halo masses very

well back to redshift z = 4. The merger tree generates its trees with a Monte Carlo method.

Given a halo mass Mh at redshift z it generates the progenitors at z +∆z for small time steps

∆z (backward process). In addition to a smoothed component growth there is a probability of

35



Chapter 2. A Simple model linking Galaxy and Dark Matter Evolution

having a binary split in the merger tree with a host and a satellite halo:

Mh
∆z−−→ Mhost +Msat +∆Msmoothed, (2.9)

where Mhost is the most massive progenitor of Mh . The tree naturally divides the progenitors

into a smooth component (all progenitors below a mass threshold Mthresh) and a merger

component (growth due to accretion of mergers above Mthresh). We express the growth of a

halo as

Ṁh = Ṁh,smoothed + Ṁh,merger. (2.10)

For the subhalo evolution we apply the formalism from (122). They used high resolution dark

matter simulations with one host and one satellite halo to invert the dynamical friction time

scale tdf and provide a fitting formula for tdf (Equations 5,6 in their paper with the further

assumption that the last factor in their Equation 5 is equal to unity):

tdf

τdyn
= 0.216

(Mhost/Msat)1.3

ln(1+Mhost/Msat)
e1.9η. (2.11)

This formula depends on the host-to-satellite mass ratio Mhost/Msat and orbital circularity η.

(122) noted in their analysis that including the effect of baryonic bulges one gets an approxi-

mately 10% shorter tdf. This fitting formula has been tested for 0.025 ≤ Msat/Mhost ≤ 0.3 and is

applicable for η≥ 0.2. Note that the dynamical time τdyn ≈ 0.1H−1 with H being the Hubble

parameter. The inverted dynamical friction time scale can be several times larger than the

dynamical timescale τdyn. From numerical simulations, (123) have shown that the probability

distribution of the orbital circularity η of dark matter subhaloes can be approximated by

P (η) ∝ η1.2 (
1−η)1.2 . (2.12)

For every merger event in our merger tree, we therefore draw η from this distribution and

thereby introduce some scatter in the dark matter structure formation process.

So far, we have an expression for the survival time tdf of a subhalo. For the subhalo mass
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evolution Msubhalo(t ) we implement a step function following (77)

Msubhalo(t ) =


Msat (t = ta) t − ta < td f

0 t − ta > td f ,
(2.13)

where ta is the time of accretion.

In this chapter, Mh refers to the total halo mass. The halo mass associated with the central

galaxy is then given by

Mcentral = Mh −∑
i

Msubhalo,i, (2.14)

where the sum is over all surviving subhaloes above a certain mass threshold Mthresh. We

thereby identify all substructure above Mthresh and trace its evolution.

Our dark matter formalism clearly consists of some simplifications. The merger tree is tuned to

a dark matter only simulation whereas our model contains baryonic matter too. One implicit

simplification is that the baryonic matter component will not deviate from the behavior of

dark matter. In other words, the gravitational forces from the dark matter are the dominant

driver of baryonic structure formation and pressure terms are ignored. Likewise, there is no

reverse effect from the baryons on the dark matter (see for example (124) for a more detailed

description).

Also, it should be noted that the merger tree is tuned to a slightly different cosmology. However,

the tuned parameters are dimensionless and as the excursion set approach is formulated for

arbitrary power spectra, (46) argued that their merger tree can also be applied to different

cosmologies. See also (125) for discussion on the accuracy. For the substructure evolution, we

have applied a very simple description, especially for the time evolution of the substructure.

Despite these simplifications, our chosen description provides us with a good picture of what

is going on in the dark matter structure formation process. It does not however contain the

detailed and accurate descriptions that would be needed for doing precision cosmology.

To summarize, we introduced one arbitrary parameter Mthresh in our structure formation

model and take tdf from (122). The remaining parameters for the dark matter are taken from
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the standard cosmology.

2.2 The model

In this section we describe how we combine all the ingredients given in Section 2.1. In

particular we describe in Section 2.2.1 how we link the baryonic infall rate onto the regulator

system to the dark matter structure formation process. In Section 2.2.2 we describe and

discuss what happens in a galaxy-galaxy merging event in our model framework. In Section

2.2.3 we describe how the regulator at very low stellar masses can be described. The procedure

to predict the cosmic abundances of galaxies and their properties is described in Section

2.2.4. Finally we emphasize in Section 2.2.5 how our model differs from others parametric

approaches.

2.2.1 Link between baryonic and dark matter infall rate

To consistently integrate our regulator and quenching models into the dark matter framework,

some further assumptions have to be made. First, only dark matter haloes and subhaloes

above Mthresh in Section 2.1.3 will contain a regulator system. In other words, we ignore star-

formation in haloes that are so small that we considered their infall as part of the smooth dark

matter inflow. This is because they will be mostly gaseous. We set Mthresh = 1.4 ·109M¯. This

is somewhat arbitrary, but is consistent with photo-ionisation heating suppressing cooling

and star formation below a certain halo mass Mγ. Mγ ∼ 108M¯ during reionisation to Mγ ∼
few ·109M¯ (126; 127). For a more realistic model aiming to make predictions of low mass

galaxies back to the epoch of reionisation, one would need to account for a change in the mass

threshold. We explore the effect of changing Mthresh in the Appendix and show that it is small

for the galaxy mass scales of interest.

In order to trace the gaseous baryons through the build-up of haloes, the following simple

scheme was used. We will later refer to this model as Model A.

• First, all gaseous baryons in a given halo are associated at all times with one of the

regulator systems (i.e. “galaxies”) within that halo except for those baryons which have
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been processed through a regulator and ejected from the galaxy through the wind

described by λ in Section 2.1.1. These ejected baryons are assumed to be “lost” (we will

revisit this assumption later in the chapter) and are no longer tracked. But, apart from

this, all gaseous baryons are found within the reservoirs of the regulator systems.

• Second, when two haloes merge, the baryons that are at that time within each of the

regulator systems in the haloes stay within those regulators, unless the (sub)halo subse-

quently decays and is disrupted (see below).

• Finally, smooth accretion of gas onto haloes, i.e. the baryonic inflow associated with the

merging of haloes below Mthresh, is split between the sub-haloes as follows:

Φb,i = fb Ṁh,smoothed ·
Msubhalo,i

Mh
. (2.15)

This scheme ensures that every baryon which has not flown into some regulator in the past,

will be assigned to a regulator when coming into a halo above Mthresh. It also ensures that when

a regulator becomes a satellite, its infall rate and thus its SFR will not dramatically change, as

observed (see P12). We note that when a galaxy is quenched, the gas inflow associated with

this quenched galaxy will not be redirected to other active regulators. In our discussion later

in the chapter, we will introduce a different assignment of the in-flowing gas and see how

this will change our predictions, in what we will call Model B. Realizing that the gas inflow

description is crucial to many observables we will then introduce a further Model C, which

provides far more freedom in assigning gas to regulator systems.

As noted above, L13 considered only a single regulator in a given halo and introduced fgal

as the fraction of inflowing baryons that penetrate down and enter the regulator system at

the center of the halo. L13 concluded that fgal ∼ 0.5 was required to reproduce the stellar to

dark mass ratio of typical galaxies. By associating all gaseous baryons to regulator systems,

we are effectively setting fgal to unity (i.e. eliminating this parameter) in Model A and B in

the present work. However, because we now include multiple regulators (associated with the

subhaloes) in a given halo and a two component growth (mergers and smoothed accretion),

the net effect for the central regulator will be similar because only a fraction (Ṁh,smooth/Ṁh) of

the halo growth is associated with gas accretion and it will only receive a fraction (Mcentral/Mh)
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of the incoming gas. In other words, we would now understand that the adoption of the lower

fgal ∼ 0.5 in L13 was simply accounted for the two component growth of a halo, which was

neglected in their treatment of regulator systems.

2.2.2 Subhalo disruption / galaxy-galaxy merging

We now turn to what happens when a subhalo decays according to Equation (2.13) and specifi-

cally what happens to the gas and stars within the regulator associated with that sub-halo. The

two extreme cases would be adding all the stars and gas to the central galaxy or distributing

them into the inter-cluster medium, which for the gas would involve re-distributing the gas

amongst the surviving regulators according to Equation 2.15. Reality is likely in between these

extremes. For concreteness and convenience, we set the fraction of stars and gas which are

given to the central galaxy fmerge = 0.5 but show in Appendix 2.A.1 that the output of the

model is insensitive to this parameter. When the gas and stellar component from two different

regulator systems is merged in this way, the new state of the regulator will likely not be in

equilibrium with the gas infall rate. Galaxy-galaxy merging can thus lead to some scatter in

the regulator properties. As discussed in L13 and illustrated in their Figure 3, the regulators

adopt quickly to the new conditions and rapidly settle to the new equilibrium state.

2.2.3 Break down of the regulator description at low Ms

In L13, the parameters of the regulator (Equation 2.5 and 2.6 in this chapter) were tuned to

match the metallicities of galaxies with stellar masses above 108M¯ and this parameterization

must break down at lower stellar masses: not least, the mass-loading cannot increase without

limit, simply on energetic grounds. We however need to include such low mass galaxies in

our model so as to have larger galaxies later on. We therefore introduce a maximal outflow

load. We set λmax = 50. This value is far off the regime where L13 tuned their parameters and

therefore will not affect the validity of the tuning in L13. It also does not significantly affect

the output of the model for galaxies above Ms = 108M¯, the mass range of primary interest.

Further discussion of this parameter can be found in Appendix 2.A.1.
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2.2.4 Implementation

It will have been clear that the input galaxy data going into the model was derived indepen-

dently of the number of galaxies, i.e. specifically it was the mean mass-SFR-metallicity relation

(L13), the shape of the star-forming mass function parameterized by M∗ (P10), and the red

fractions of satellites (P12). A primary output of the model will be the expected number density

of galaxies.

We therefore need to create a representative sample of the Universe. Merger trees derived

from N-body simulations are sampled according to the halo mass function and therefore

produce far more low mass halo trees than for high mass haloes. As we want to achieve the

same statistical power over a wide range in halo mass, we want to equally sample the halo

masses and weight their abundances in a second step. The merger tree generator provides

such a possibility. The procedure is as follows: We sample 10’000 haloes at redshift z = 0,

chosen randomly from a flat distribution in logarithmic halo mass, from 7.1 ·109M¯ up to

1.4 ·1015M¯. We then weight their abundance according to the halo mass function of (43) at

z = 0. By construction, the weighted abundance of our haloes is then in perfect agreement

with the input halo mass function at z = 0. We then let these haloes run backwards in cosmic

time by applying the merger tree description. We stop when our resolution limit Mthresh is

reached or at z = 15. At that point we identify our regulator systems, put in some initial stellar

and gas mass and solve the differential equations for every single tree component. In parallel

we apply the subhalo evolution model in the forward process. We thereby keep track of every

satellite halo with its own regulator system. The model is not sensitive to the initial state of the

regulators, as described in Appendix 2.A.1).

Clearly, this description has no spatial resolution, either within galaxies, within haloes or

to follow the large scale distribution of haloes. The last of these would be relatively easy to

implement and this will be the subject of future work. The other two would take us deeper

into details, which we wish to avoid.
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2.2.5 A model without re-adjusting the parameters

In Table 2.1 all of the parameters of our model are listed with a short description and reference

to the input data on which they are based. These are mainly taken from the three papers

P10, P12 and L13, and from cosmology and computational simplifications in the dark matter

sector. The effects of the three additional parameters that we have introduced in this chapter,

i.e. Mthresh, fmerge and λmax, are investigated in the Appendices 2.A.1, 2.A.1 and 2.A.1. We

conclude there that any reasonable variation within these parameters do not invalidate our

conclusions. In essence, these parameters are introduced for practical reasons to make the

model operable and the output does not depend very much on their precise values.

Within our chosen gas inflow description we therefore have virtually no freedom in changing

our predictions: The model either matches observations or produces a discrepancy from

which we may hope to learn. The goal is therefore not at first to produce a model that fits all

available data, nor to observationally determine parameters. Rather, and in the spirit of the

previous papers (P10,P12 and L13) we aim instead to provide insights into how well the ideas

presented in those papers perform in the global context of a dark matter hierarchy, and to see

where we encounter limitations.

2.3 Results

In Section 2.1, we reviewed the different and independent inputs that were then combined

in Section 2.2 to produce a single model of star-formation and quenching in galaxies within

a dark matter hierarchical framework. In this section, we compare the output of the default

model A with both observations directly and with the outputs of other phenomenological

approaches to galaxy evolution, most notably that of (78).

As discussed above, we will not vary any pre-adjusted parameter in our model beyond the three

parameters introduced to allow the model to be computed (the values of which do not much

affect the outcome) and so we can examine these comparisons one at a time. Throughout this

section, we refer always to the same output sample generated with the parameters given in

Table 2.1 with the inflow description of Equation 2.15, referred as our fiducial Model A.
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Symbol Description Fixed to: Units Value
Regulator Parameters (externally derived)

ε10 Efficiency normalization to Metallicity data a G y−1 0.33
1010M¯ stellar mass

b Power law of efficiency Metallicity data a - 0.3
as a function of stellar mass

λ10 Outflow load normalization to Metallicity data a - 0.3
1010M¯ stellar mass

a Power law of outflow load Metallicity data a - -0.8
as a function of stellar mass

Quenching parameters (externally derived)
M∗ Mass-quenching parameter µ−1 Exponential cutoff M¯ 1010.68

of main sequence b

psat satellite quenching probability Elevated ref fraction of satellites c - 0.5
fmerge merging fraction of gas and stars Parameter with no significant - 0.5

of disrupted subhaloes effect on our conclusions e

λmax Maximum outflow load Upper bound provided by - 50
of regulator regulator action in tuning range f

Mthresh Threshold in halo mass Photo-ionisation model g M¯ 1.4 ·109

for having a regulator
Cosmological Parameters (externally derived)

h dimensionless Hubble parameter CMB d - 0.7
Ωb Baryonic density CMB d - 0.45
Ωm Matter density CMB d - 0.3
Ωλ Dark Energy density CMB d - 0.7
σ8 Power spectrum normalization CMB d - 0.8
ns spectral index CMB d - 1.0

Additional simplification descriptions of the Dark Matter sector
tdf dynamical friction time scale Dark Matter N-body simulation h - Eq 2.11
η orbital circularity Dark Matter N-body simulation i - Eq 2.12
a Data from (97) fitted by L13 b Data and model fit by (83) c From (85), (118) and (119)
d From WMAP seven-year data (94) e Further discussion in Appendix 2.A.1 f Further discussion in Appendix 2.A.1
g Model by (126) and (127), further discussion in Appendix 2.A.1 h Relation from (122) i Relation from (123)

Table 2.1: This table lists all our model parameters (for Model A and B), its values and to what
set of data they are tuned to.
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It should be noted that the observational data used to determine these parameters were

(a) gas metallicity data (as in L13) from (97) SDSS, specifically the Z(Ms ,SFR)-relation, (b)

the red fraction of satellites (as in P12 from (128) SDSS DR7) and (c) the value of M* of star-

forming galaxies (as in P10 also from SDSS). Any predictions of these particular quantities

must therefore match observations, by construction, but predictions of all other quantities are

bona fide and can be meaningfully compared with other data.

Comparison of these predictions with other data will enable us to draw several interesting

conclusions. Some of the successes of these “predictions" will mirror conclusions that were

already drawn in the original papers on which our new model is based, e.g. the discussions

of mass functions and red fractions in P10 and P12, and the link between sSFR and specific

accretion rate in L13. For these, it is reassuring to see them holding up in the context of a

more realistic treatment of the haloes, including substructure and merging etc. None of the

predictions based on the population of dark matter haloes could be made before, since they

were not treated in the earlier works. These include the normalization of the mass functions

and the computation of the star-formation rate density. We can also predict the scatter in

various relations coming from different halo assembly histories.

Finally, we will make explicit comparisons with the output from the orthogonal phenomeno-

logical approach of (78). The (78) approach is anchored in the dark matter hierarchy and

derives a very general description of the effect of baryonic processes within these haloes. In

that work, a general Ms/Mh relation is assumed. The epoch dependent form of this is then

derived by simultaneously applying statistical tools such as abundance matching of the mass

functions at different redshifts, coupled with comparison of the consequent information on

star-formation with a variety of observational data, including the sSFR(Ms , t ) and the global

star-formation rate density SFRD. Our own approach is in a sense orthogonal to this as it

is based on a prior determination of the purely baryonic phenomenology which is then im-

ported into the dark matter structure. Despite the quite different approaches, and the obvious

limitations of each of them, we will find that a very similar picture emerges.
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2.3.1 Stellar Mass dependence of the Main Sequence sSFR at the present-day

We first plot in Figure 2.1 the specific star formation rate (sSFR) of all blue (i.e. star-forming)

central galaxies of the output sample at z = 0 as a function of their stellar masses. The model

successfully recovers the tight correlation between sSFR and mass which is known as the Main

Sequence (e.g, 80; 81) and an almost constant sSFR with a scatter about this relation of about

0.2 dex.

For comparison with data we over-plot an sSFR(Ms , z) relation of the form

sSFR ∝ Mβ
s . (2.16)

Observational estimates ofβ range between −0.4 <β< 0.0 at stellar masses above 109M¯, with

most estimates β∼−0.1 (e.g, 80; 81; 129; 82; 130; 131; 83). In Figure 2.1 the red line illustrates

the data compilation in the form

sSFR(Ms , z) = 0.12

(
Ms

1010.5M¯

)β
(1+ z)3 (at z < 2) (2.17)

with β = −0.1 evaluated at z = 0 (see L13 and references therein). The observed scatter

amongst real galaxies is about 0.3 dex once outliers with much higher sSFR are excluded (see

e.g, 84; 132). These latter are associated with star-bursts, probably induced by mergers.

The mean sSFR(Ms) at z = 0 is clearly well reproduced by the model. As noted in L13 and

discussed earlier in this chapter, a key feature of the kind of gas regulation considered in

this chapter is that it sets the sSFR close to the specific mass accretion rate of the system,

independent of the values of the parameters ε and λ controlling the regulator. There is

a modest “boost" to the sSFR if an individual regulator system is increasingly efficient at

producing stars as time passes (as would be expected if the efficiency increases with mass).

This boost at z = 0 is expected to be of order 0.3 dex for typical galaxies. It increases to lower

masses, potentially reversing the slope of the sSFR(Ms) relation relative to that of the specific

accretion rate, defined as sMIR= Ṁh/Mh . L13 took the approximation for the sMIR provided

by (133). Despite our model using a more complex description for the baryonic infall rate

Φb , we would expect to have the same underlying link between the sMIR and sSFR. The good
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Figure 2.1: Prediction of the sSFR-mass relation at redshift z = 0 for blue central galaxies in
Model A (blue). Dots correspond to individual galaxies in the model. The red line corresponds
to the relation given in Equation 2.17 from a data compilation in slope and normalization (for
citations see text). The green dots correspond to the specific gas infall rate of the same galaxies.
Black dots denote the specific mass growth rate of the entire halo (sMIR) on timescales shorter
than the last major merger event. The mean in the specific gas infall rate is the same as the
sMIR. The sSFR is elevated by more than a factor of two. The scatter in the sSFR follows the
scatter in the gas infall rate.

agreement with the mean z = 0 sSFR(Ms) relation in the current model which contains a wide

variety of individual haloes is therefore reassuring but not unexpected given the discussion in

L13 (see their Fig 9).

The scatter in sSFR(Ms) in our model is caused by the different halo formation histories, i.e.

by the variation in the gas inflow rate caused by variations in the merger tree (green dots in

Figure 2.1), and by the effects of galaxy-galaxy merging (see Section 2.2.2). Our model does not

include any further stochastic time-variation in the gas infallΦb such as might be caused by

other baryonic processes, and also neglects any stochastic scatter in the baryonic processes

controlling star-formation within the galaxy regulator systems. Both of these could further

increase the scatter (in our model there is almost no scatter occurring in the SFR-Φb relation).

Our predicted scatter can therefore be interpreted as a lower bound in the expected sSFR(Ms)

scatter. The fact that it is already 2/3 of the observed scatter suggests that these two further

contributors to the scatter (stochastic infall variability and variation in the regulator) can

contribute only of order 0.2 dex in normal Main Sequence galaxies.
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2.3.2 Epoch dependence of the Main Sequence sSFR and the star-formation rate

density

In Figure 2.2, we show the evolution in the sSFR for galaxies in the mass range 1010M¯-

1010.5M¯ back to z = 5, compared with data from (131) and a highly parameterized model of

(78) adopted to our definition of sSFR=SFR/Ms . We also show for comparison the mean sMIR

and the specific gas infall rate. As expected the sSFR tracks the increase in sMIR with redshift.

While this broadly matches the data, the rise with redshift is not steep enough. As a result, the

observed sSFR at z ∼ 2 is about a factor of two higher than predicted from the model.

This is a common problem encountered in galaxy evolution models (e.g, 134; 135, and others)

and is also present in the simple analysis of L13 that used an average halo growth rate from

(133). Adjustment of the prediction would require a substantial modification of the accretion

rate of baryons onto the regulator systems, i.e. breaking the link between the baryonic ac-

cretion rate onto the galaxy and the specific growth rate of the dark matter halo) or a rather

dramatic adjustment of the efficiency with which inflowing gas is converted to stars (i.e. the

fst ar parameter of L13) so as to increase the boost factor associated with temporal changes in

this quantity (see L13). We will return to this discrepancy in models B+C but note here that it

is not inconceivable that some of the offset of 0.3 dex could reflect observational difficulties in

determining stellar mass and star formation rates at high redshifts.

Our model naturally produces a deviation of the baryonic increase rate to the dark matter

growth rate at very high redshifts as the dynamical friction time scale cannot catch up the halo

growth rate resulting in far more substructure surrounding the central at high redshifts. More

substructure means within our model that less baryonic infall will be assigned to the central

as described in Equation (2.15).

In Figure 2.3, the overall star formation rate density (SFRD) is plotted over the whole range of

cosmic time compared with data from the compilation by (136) and the phenomenological

model by (78). The gray region is the 1-σ inter-publication scatter noted by (78).

The broad features of the evolving SFRD of the Universe are reproduced and our predicted

value at z = 0 matches well the observational data of the nearby Universe. We again see a
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Figure 2.2: Prediction of the mean sSFR for blue galaxies within a stellar mass range of 1010M¯-
1010.5M¯ of Model A as a function of redshift (red curve). These are compared with data
points (in black without errorbars) from (131) and a model based on a data compilation of (78)
adjusted to our definition of SFR. The gray region reflects the 1-σ scatter between different
measurements in the literature given by (78). The specific gas infall rate of the same galaxy
sample of our model is over-plotted in green. The sSFR follows this quantity with an offset
(boost) as discussed in L13. Furthermore the specific mass increase rate of the halo (sMIR) is
over-plotted.

tension in the model that the SFRD is too low at z = 2. The size of the discrepancy is roughly

the same as for the sSFR(z) evolution. We return to this below.

2.3.3 The evolution of the gas fraction in galaxies

In Figure 2.4, we plot the gas-to-star ratioµ= Mgas/Ms as a function of stellar mass for different

redshifts. We get about a factor of six higher gas-to-star ratio at z ∼ 4 compared to z = 0. From

the definition of the regulator quantities in L13, the gas ratio is simply given by the ratio of the

sSFR and the star-formation efficiency ε

Mgas

Ms
= sSF R

ε
. (2.18)

So the increase in the gas ratio is a direct result of the fact that the halo growth rate and thus the

sSFR increases faster with redshift than the dynamical time of the galaxy which was assumed

to set the redshift evolution of ε. Lowering the gas fraction in high redshift galaxies can be
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Figure 2.3: The Star Formation Rate Density (SFRD) from our model sample as a function of
redshift (red line). The SFRD is the integrated SFR over all galaxies at a certain cosmic time,
normalized to unit volume. The blue dashed line is the best fit model of (78) and the gray
region is the 1-σ inter-publication scatter noted by them. The green dashed line is the best fit
of the data compilation of (136). Our model predicts the right normalization at z = 0 and the
drop in the SFRD at late times. Our model does not reproduce the boost in SFRD at z = 2 in its
full strength.

done in two different ways: One either lets the efficiency ε increase faster with redshift or as a

higher power of the gas mass within the regulator. These have similar effect because of the

higher gas fractions at high redshift.

In our model A, the gas infall rateΦb drops faster with cosmic time than the star formation effi-

ciency ε and therefore galaxies become less gas-rich at later cosmic times (a similar argument

was drawn in (87)). This behavior is in qualitative agreement with observations (e.g, 137; 138).

2.3.4 Stellar Mass Function (SMF)

The galaxy stellar mass function (SMF) is a well measured quantity at low redshifts (e.g, 139;

140; 83; 141). Our model provides predictions for the overall SMF and also for the population

split into blue and red galaxies (i.e. star-forming and quiescent) and into centrals and satellites.

As noted above, the model is constructed to reproduce the characteristic Schechter cutoff of

the blue population at M∗ ∼ 1010.68M¯ and for this to be constant with time, but we have not

introduced any other parameter that is based on e.g. the faint end slope of the blue and red

population, or the red fraction at M∗). The mass quenching law of P10 can directly predict the
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Figure 2.4: The gas-to-star ratio is plotted as a function of stellar mass at different redshifts
for Model A. With our default regulator parameters, this ratio is increased at z = 4 by about a
factor of six relative to locally.

relative faint end slopes of the blue and red population, but the absolute slope αs,bl ue of the

blue population had to be assumed. The red fraction at M* also follows from the input αs,bl ue .

In Figure 2.5 the model prediction for the blue, red and total population at z = 0 is plotted,

while in Figure 2.6, we present our results for the evolution of the SMF’s for different galaxy

types (split into red and blue and into central and satellite) over cosmic time. The red satellite

population can be better described by a double Schechter function. As shown in P12, this is

due to superposition of mass- and satellite-quenching.

The model successfully reproduces the correct faint end slope of the mass function. This is

a reflection of the link between the slope of the mass-metallicity relation and the faint-end

slope α of the mass-function (see L13 for discussion). The relations between the Schechter

parameters (M∗ and α) of the different populations in Figure 2.6 are also as observed. The

universality of M∗ (all populations have very similar M∗) and the change in faint end slope

∆α∼ 1.0 between blue and red centrals, are also successfully reproduced. These follow from

the forms of the quenching laws derived in P10 and P12.

Less trivial is the overall normalization of the SMF of the different populations. The φ∗

describes the normalization at M∗ in the Schechter function fits. The SMF is the convolution

of the stellar-to-halo mass relation (SHMR), including its scatter, with the underlining halo

mass function. We note that the underlying halo mass function is Press-Schechter like and
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Figure 2.5: The Stellar Mass Function at z = 0 is plotted for Model A. The green line is the
overall SMF from our Model A. The blue curves are for the blue population, the red curves
for the red population (including centrals and satellites). The output is compared to the data
of (141). Dashed lines corresponds to Schechter fits to the blue and red population in their
paper.

not Schechter like. If we do not apply the mass quenching description, the SMF prediction

would look Press-Schechter like and would have a rapidly evolving characteristic mass. At very

high redshift, where the galaxy population could not build up a significant fraction of galaxies

with stellar masses above M∗, we predict a Press-Schechter like SMF. In our model we see that

the transition from a Press-Schechter to a “vertically evolving” Schechter-like SMF happens

between z = 6 and z = 4 (from Figure 2.6). It is the moment when the stellar mass functin

breaks away the halo mass function. (142) referred to this as the Phase 1 to Phase 2 transition.

We can also clearly see that the satellite population grows more rapidly with cosmic time than

the one of the centrals in Fig 2.6. This means that the special role of the quenching of satellite

galaxies becomes more and more important with cosmic time. The satellite-quenching leads

to the double-Schechter component in the SMF of the red population. The differential rate of

quenching of the two populations and the fact that the quenched satellites dominate at lower

masses leads to the appearance of “down-sizing” , i.e. a more gradual buildup of the stellar

mass-function at lower masses.

The biggest problem with the mass functions is a surprising one. Although the shape of the

mass function of passive galaxies is right, their overall number density is too low. This also

produces a weaker bump in the “double" Schechter function that is caused by the superpo-
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redshifts 6 ≤ z ≤ 0 for Model A. Our model predicts a nearly constant fraction of blue and red
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sition of the red and blue SMF (which have different faint end slopes α). This is surprising

because one of the great successes of the P10/P12 quenching formalism was to explain, via

the continuity equation, the ratio of these two components, which is given simply as (1+α)−1

where α is the faint end slope of the star-forming mass function. For α ∼ −1.4 this would

predict a ratio of about 2.5, close to what is observed, whereas our model predicts more like

1.5 . But we clearly note that with α∼−1.5 (our Schechter fit) the ratio goes already down to

about 2.0 . We will return to discuss this interesting question further in Section 2.4.

2.3.5 Star formation rate history in different mass haloes and the evolution of the

star-formation rate density

We now turn to comparisons with the phenomenological model of (78). In Figure 2.7, we show

our prediction for the SFR in haloes (including centrals and satellites) as a function of cosmic

time and halo mass. This may be compared with the similar Figure 4 from (143) which was

derived from their completely different but similarly phenomenological approach.

(78) concluded that most stars were formed around z = 2 in haloes of about 1012M¯. This is

a natural output of our model as the regulator is highly inefficient in producing stars at low

stellar masses and (mass-)quenching is most effective above Ms = M∗, which corresponds to

about 1012M¯ in halo mass.

The fact that these two orthogonal approaches produce broadly the same phenomenological

picture is very reassuring. It furthermore emphasizes the operational difficulty of distinguish-

ing, for central galaxies, whether the dark matter mass or the (baryonic) stellar mass is driving

the variable efficiency with which haloes convert baryons into stars, simply because these two

quantities are tightly linked.

2.3.6 Stellar-to-halo mass relation (SHMR)

One of the central properties of galaxies is the stellar-to-halo mass relation (SHMR), both

for centrals and for satellite galaxies. The SHMR represents the overall efficiency with which

haloes convert baryons into stars. This quantity has been extensively studied using abundance

matching and other statistical techniques such as halo occupation distributions, which are
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Figure 2.7: The Star Formation Rate history as a function of cosmic time and halo mass for
Model A. The plot includes SFR from centrals and satellites. Black lines indicate an aver-
age growth history of different haloes. Units of the color scale are chosen to be ND*SFR
dlog10(Mh) = M¯yr−1M pc−3dlog10(Mh).

based on the conviction that the SHMR should be well-behaved. Observations using weak-

lensing can be used to directly test these, generally with success (e.g, 144).

The SHMR for our output sample at the present epoch is plotted in Figure 2.8 and compared

with the zero-redshift relation from (78). As would be expected, the increase in the Ms/Mh

ratio at low masses simply reflects the increasing efficiency of converting baryons to stars (i.e.

fstar in L13) in more massive regulators, while the turn-over and subsequent decline is due

to the mass-quenching of galaxies which becomes progressively more important at masses

around and above M∗, corresponding to about 1012M¯ in halo mass.

The 1-σ scatter in the SHMR of the blue population in the model is about 0.21 dex. This

comes mostly from the different halo assembly histories (e.g, the time when the last major

merger happened). The scatter in the red population is larger and is about 0.36 dex. This

ultimately reflects the quite broad range in stellar (or halo) mass over which central galaxies

have been mass-quenched and the continued growth of haloes after the star-formation has

been quenched.

Red galaxies have systematically lower Ms/Mh than blue ones at a given Mh because their

stellar masses are frozen at quenching (apart from mass growth due to merging) while their

dark matter haloes continue to grow. They may scatter down the Ms ∼ M∗ locus. This scatter
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explain the observation (e.g, 145) that at a given stellar mass, red galaxies are found in higher

mass haloes (e.g. with more satellites). As the overall population of central galaxies changes

from predominantly blue at low halo masses to predominantly red at higher halo masses

the mean SHMR shifts from that of the blue galaxies to that of the red. The overall scatter is

expected to be 0.32 dex at the peak but deviates from being a log-normal distribution in stellar

mass.

Overall, the agreement between the output of our model and the reconstruction from (78) is

very good. Our curves for the overall population are slightly lower around the peak, by up to

about 0.2 dex at halo masses above 1011.5M¯ and this can be traced to the saturation of fstar in

L13, which itself was driven by the saturation in the adopted Z (Ms) mass metallicity relation.

We will return to this point below and show that it is closely linked to the issue of the deficit of

quenched galaxies noted in Section 2.3.4.

Our model has a slight redshift evolution in the SHMR (see Figure 2.9). Within our model, this

is due to the fact, that regulators (i.e. galaxies) at higher redshifts contain proportionally more

gas and thus less stellar mass as discussed in Section 2.3.3. But the general behavior remains

at all redshifts the same. At very low halo masses, the stellar content remains dominated by

the maximum outflow load λmax and the saturation feature occurs at every redshift at roughly

the same halo mass. The nominal drop in the SHMR at z = 4 is about a factor of two.

2.4 Discussion

In Section 2.3 we recovered a number of encouraging agreements of various predictions

compared to the literature, both in terms of observational data and in terms of the independent

and orthogonal phenomenological model of (78). In particular there is no reason for the total

number density of galaxies to come out right. The models and the parameters taken from the

previous papers (P10, P12, L13) did not have any information about the abundance of dark

matter haloes nor were designed to match the number density of galaxies in the universe. This

is a remarkable success of our model. The model is simple but still reproduces a wide range of

non-trivial results. In this section, we will have a closer look at those areas where our model

produces discrepancies that may give clues as to where additional features could be added, or
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Figure 2.8: The SHMR at z = 0 of Model A is plotted as a function of the total halo mass Mh for
the set of central galaxies, separated into red and blue. The blue (red) continuous line is the
mean value of the blue (red) population in our model and the black line is the mean SHMR
of the overall sample for centrals (i.e. a suitably weighted average of the red and blue lines).
The thick dotted black line is the contribution of satellites to the SHMR while the green thin
dotted line indicates the cosmic baryonic fraction. The global turn-over of the star formation
efficiency can fully be accounted by quenching galaxies around M∗, corresponding to about
1012M¯ in halo mass. The agreement with the abundance matching reconstruction of (78) is
quite impressive, although there is a systematic reduction in Ms/Mh above Mh ∼ 1011.5M¯
which may be traced to the saturation of the efficiency with which the regulator in L13 converts
baryons to stars that is in turn linked to the flattening of the Z (Ms) mass-metallicity relation.
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which may highlight more fundamental tensions.

First we will have a look at the specific star formation rate evolution and note how we can, in

principle, achieve a better agreement with the data compilation of (131) and (78) in Section

2.4.1. But then, relating the sSFR evolution to the SFRD evolution, we argue that we can

not easily bring these two observations in agreement with each other, independent of our

model assumptions (Section 2.4.2). We then turn our attention to the missing red galaxies. We

discuss how this is linked to the form of the SHMR in Section 2.4.3 and we discuss its relation

to the saturation feature of the L13 regulator model. In Section 2.4.4 we propose two other

ways of assigning the gas in-flow to the galaxies within the halo and see that we get a further

improvement in matching the SMF, sSFR and SFRD history, our Model B and C. In Section

2.4.5 we discuss a very specific feature of our models and finally in Section 2.4.6 we relate our

results to abundance matching methods.

2.4.1 Modification to match the sSFR at z=2

In Section 2.3.2 and in Figure 2.2 we noted a deviation of the sSFR evolution at z = 2 between

our predictions and the data compilation of (131) and (78) . It might be thought that one

possible way of modifying our model to try to get a better match is to change the star-formation

efficiency, ε, at high redshift. Detailed discussion about the link between star formation and

gas reservoir has been made by several authors (recently e.g, 99). However, because the link

between sSFR and the sMIR (specific mass accretion rate of the system) is independent of ε

and λ (see L13, and thus also of fstar), modification of ε(z) changes the sSFR only through the

“boost” effect on sMIR that is associated with a change in fstar with time and so the effect of

this change should be quite weak. It turns out that a higher ε at high redshift leads to a drop in

the offset of sSFR compared with the sMIR. To explore this, we modify the parameterization of

ε to:

ε(z) ∝ (1+ z)c (2.19)
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Figure 2.10: The sSFR history for three different variants of the redshift evolution of the star-
formation efficiency ε with c = 0,1,2.35 (as defined in Equation 2.19) are plotted. Stronger
evolution (higher c-values) lead to a lower sSFR at all times.

with c being the additional model parameter. In our default Model A (also Models B and C

below), the efficiency scales as the Hubble rate. In Figure 2.10 we plot three different models

with c = 0,1,2.35, i.e. assuming no redshift evolution, one coming close to the fiducial model

and one in which the efficiency scales as the sMIR according to (133). We note that at fixed

redshift, the efficiency is parameterized as a function of Ms . This parameterization is fitted at

z = 0 and might not provide a direct link to the physical process that actually sets the efficiency.

We clearly see that lowering the star-formation efficiency at higher redshifts actually boosts the

sSFR. This is because it lowers fstar at high redshifts and therefore increases the boost term in

Equation 36 of L13. On the other hand if the efficiency increases with redshift as fast as the

specific infall rate, we reduce the sSFR. In both cases, the effect of the change in the sSFR is

spread out over a wide range of redshifts (because of the smooth evolution in ε) and we cannot

get a peak at one particular redshift, or drastically change the overall slope.

An alternative approach is to decouple the specific accretion rate onto the regulator systems

from the specific growth rate of the surrounding dark matter haloes. A redshift dependent cold

gas accretion efficiency (e.g, 86) could do this, or some other scheme to limit the baryonic ac-

cretion onto the regulators. In Section 2.4.4 we will explore some modifications by introducing

Models B and C.
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Figure 2.11: The SFRD history for the three different variants of ε(z) with c = 0,1,2.35 (defined
in Equation 2.19). Stronger evolution (higher c-values) leads to an enhancement of the SFRD
at early times and a stronger decrease at later times.

2.4.2 The link between sSFR and SFRD

Staying with the same expansion in our model as in Section 2.4.1 we turn our attention to

the star formation rate density (SFRD). We plot in Figure 2.11 the SFRD history for the same

three models as for Figure 2.10. The figure shows that lowering the efficiency at high redshift

shifts star formation to later times. The redshift dependence of the efficiency ε does not have

a significant influence on the outcome at z = 0. It has a slight effect of where the stellar mass is

formed. As the model has a smoothed evolution in ε, significant deviations in the sSFR history

from our default model can not be made.

2.4.3 Matching the red fraction at M∗

As mentioned in 2.3.4, our model under-predicts the abundance of red galaxies around M∗.

In other words, the relative fraction of red to blue galaxies is too low.

The number density of red galaxies around M∗ is directly related to the number of dark matter

haloes between Mh(M∗) and infinity. As the halo mass function is a very steeply decreasing

function of halo mass, the number of red galaxies around M∗ is very sensitive to the halo mass

Mh(M∗) that corresponds to the quenching mass M∗.

However, simply changing the parameter M∗ (i.e. µ−1) will have a severe impact on the blue
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population that we match very well. Boosting the SHMR (e.g, by just letting more gas flow in

the regulator) is also not satisfactory. By doing so, we will boost the number density of blue

and red satellites by the same amount. We would be able to get the needed number density

in the red population around M∗ (as we lowering the halo mass corresponding to M∗) but at

the same time we would end up with to many blue galaxies at the same stellar mass range.

The question is: How can one change the red fraction without either changing the number

density of the blue population or M∗? The fraction between blue and red galaxies around M∗

is dependent on how fast galaxies are approaching M∗. We have to elevate the sSFR at M∗ or

in terms of the SHMR, the power law parameter for the Main sequence γ defined as

Ms ∝ Mγ

h (2.20)

has to be steeper around M∗ than our model prediction.

Our model produces a flattening of the SHMR around M∗ (see Figure 2.8 for z = 0 and Figure

2.9 for the redshift evolution). This is an intrinsic feature of the regulator model and indepen-

dent of quenching. The overall fraction of baryons in stars cannot exceed the cosmic fraction,

and indeed can only asymptotically approach this. In fact, because of the “loss” of outflowing

gas in this first Model A, it will saturate at an even lower value. The regulator fstar saturates

when the gas within the halo is nearly used up.

We note that our model, even without any quenching mechanism, therefore has a saturation

feature coming from the regulator because fstar is limited to some value. Our model predicts

just at the stellar mass when quenching happens a flattening of γ due to the saturation. In

contrast, we get a better match to the red population when abandoning the saturation feature

or invoking an even steeper γ at M∗. This might provide a hidden link between the quenching

process and the running out of gas of the galaxy. We return to this below.

2.4.4 Changing gas in-flow description

One of the weaknesses of our models is that we do not trace the out-flowing gas. The need

for gas reincorporation in a cosmological context was initially analysed in (102; 103). Other

recent works include (105; 146; 147). In our simple model, we don’t allow the expelled gas to
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get back into the same regulator or transfer it to another regulator sitting in the same dark

matter halo. Letting some or all of this gas back into the regulator system will change the

output of our model significantly. We note that at stellar masses around M∗, about 1/2 M∗ of

gas has been ejected earlier in the history of each galaxy. There is only a slight dependence

of this on the adopted value of the parameter λmax. From our discussion in Section 2.4.3,

the saturation feature leads to a mismatch of the red population. To delay the saturation of

our regulator to higher stellar masses above M∗, we might just put some of the ejected gas

back into the regulator at the time when saturation occurs. This process can in principle be

accomplished by setting an appropriate recycling time (of order several dynamical times).

Such a behavior can consistently be applied to our model. The only worry is that this new type

of metal-enriched inflow will significantly change the metallicity-fitted parameters inferred in

L13 and used in our combined model. This might indicate that the metallicity modeling might

be unrealistic.

Some gain in the direction can be achieved by simply modifying how gas is assigned to the

regulators. In combining the different models of Section 2.1 we have a freedom in assigning

the gas in-flow to the different galaxies (central or satellites). So far in our Model A we have

assigned the gas according to the weights of the (sub)haloes (Equation 2.15) with the weight of

the central given in Equation 2.14. The substructure fraction is increasing with halo mass and

therefore the second term in Equation 2.14 assigns a smaller proportion of the infallen gas to

the central galaxy as it grows in stellar mass. This can also contribute to the flattening of the

SHMR.

The Model A assumed no domination of the central galaxy over its satellites at all. The other

extreme would be the central galaxy dominates completely and gets all the gas in-flow and the

satellites do not get any gas infall at all. Our Model B which we present here is identical to our

Model A except that Equation 2.15 is changed so that all of the incoming gas is given to the

central galaxy:

Φb,i =


fb Ṁh,smoothed central

0 satellite.
(2.21)
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Figure 2.12: The same plot as Figure 2.3. The SFRD for Model A of Section 2.3 (red), Model B
(black) and Model C (green) are compared with data compilations. Model B achieves some
boost around z = 2 compared to Model A, but only Model C achieves the required amount of
boost.

The result in terms of the SFRD is plotted in Figure 2.12. We clearly see an additional boost

in the SFRD around z=2 or even at higher redshift. This brings the model closer to what is

required by the data. The reason for the difference between the two proposed models is that

at high redshift the halo merger rate is very high compared to the subhalo decay rate. This

leads to more substructure within a halo at high redshift. In our Model A this leads to less

gas in-flow onto the central galaxy, which is avoided in Model B. Furthermore the gas infallen

onto the central galaxy is turned into stars more efficiently than in (lower mass) satellites. But

despite this improvement, the Model B still under-predicts the SFRD at z = 2.

In terms of the sSFR history we do not get any change in the predictions form Model A to

Model B, as presented in Figure 2.13. To match the sSFR history, we have to change the model

further.

Looking at the SMF at z = 0 predicted by our Model B in Figure 2.14 we can also partially

improve matching the red fraction around M∗. A discrepancy remains, however, coming from

the regulator description as discussed in Section 2.4.3. The SHMR of Model B (Figure 2.15) for

central galaxies is similar to Model A and also comes close to the Model of (78).

Out of this discussion, we see the importance of how one assigns the gas in-flow to the

different galaxies within a halo. But we want to emphasize that no complicated description
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Figure 2.13: The same plot as Figure 2.2. The sSFR for Model A of Section 2.3 (red), Model B
(black) and Model C (green) are compared with data compilations. Model B is very similar
around z = 2 compared to Model A but only Model C achieves the required boost.

(e.g recycling of outflown gas, decoupling of baryonic inflow and dark matter growth, ...) is

needed to achieve the level of agreement that is already presented in Model A and B. In terms

of the quenching “laws", they are instead to be purely descriptive. These laws would likely be

more complicated if they were formulated in terms of physical mechanisms which are still

unclear.

Having said that, the red fraction problem and the sSFR and SFRD at z = 2 still do not match

perfectly. Our next approach is the one of an ‘effective SAM". From our discussion above, we

concluded that the gas inflow description is crucial in perturbing our model and, doing it in

the right way, matching the observables. For our Model C we introduce a redshift and halo

mass dependent gas inflow. We change equation 2.15 to the form:

Φb,i =


fb Ṁh,smoothed · fa(a) · fM (Mi) central

0 satellite,
(2.22)

with

fM (Mh) = 1+30 ·
(

Mh

1012M¯

)2.5

(2.23)
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Figure 2.14: The Stellar Mass Function at z = 0 is plotted for Model B. The green line is the
overall SMF. The blue curves are for the blue population, the red curves for the red population
(including centrals and satellites). The output is compared to the data of (141). Dashed lines
corresponds to Schechter fits to the blue and red population in their paper.
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Figure 2.15: The SHMR at z = 0 of Model B is plotted as a function of the total halo mass Mh

for the set of central galaxies, separated into red and blue (same as Figure 2.8 for Model A).
The blue (red) continuous line is the mean value of the blue (red) population in our model
and the black line is the mean SHMR of the overall sample for centrals (i.e. a suitably weighted
average of the red and blue lines). The thick dotted black line is the contribution of satellites
to the SHMR while the green thin dotted line indicates the cosmic baryonic fraction.
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and

fz(z) =


−1.25 · (1+ z)−1 +1.4 z < 2

0.25+6.75 · (1+ z)−3 z >= 2.
(2.24)

The functions fM and fz are arbitrary and designed to have four desirable features:

1. fz is a decreasing function between z = 2 and z = 0 accounting for the steep decline in

the SFRD.

2. fz is a rapidly increasing function approaching z = 2 accounting for the boost in the

sSFR around z = 0.

3. fM has an additional term such that there is significantly more gas inflow onto massive

galaxies around Mh(M∗) to counter-act the saturation feature of the regulator.

4. fz · fM is normalized such that the baryonic mass within the regulator never exceeds the

cosmic baryonic fraction of the universe.

The functional form of fz and fM are completely arbitrary. The functions and values are

chosen to match the four criteria mentioned above. We want to emphasize that a priori no

physical argument was chosen to justify our approach except their result on the observables

mentioned above. Recently (105; 146; 147) provided physical pictures or reincorporation of gas

and (e.g, 100) discussed extensively the impact of different physical processes on the evolution

of the SFRD. The SFRD of Model C is plotted in Figure 2.12 in red. We get about a factor of ten

difference in the SFRD at z = 2 and at z = 0. The sSFR gets an additional boost at z = 2 (red line

in Figure 2.13) and the SMF at z = 0 does match very well all the different galaxy populations

in shape and amplitude (Figure 2.16). The resulting SHMR plotted in Figure 2.17 looks very

different. The blue population is approaching the cosmic baryonic fraction very rapidly but

gets quenched just before exceeding the limit (in stellar mass).

This extension can not be considered as a “best fit" model. The aim is just to indicate the power

of this specific extension for future model buildings. Other predictions such as the gas-to-star

ratio are only marginally affected by this extension. We will not break the degeneracy between
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Figure 2.16: The Stellar Mass Function at z = 0 is plotted for Model C. The green line is the
overall SMF. The blue curves are for the blue population, the red curves for the red population
(including centrals and satellites). The output is compared to the data of (141). Dashed lines
corresponds to Schechter fits to the blue and red population in their paper.
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Figure 2.17: The SHMR at z = 0 of Model C is plotted as a function of the total halo mass Mh

for the set of central galaxies, separated into red and blue (same as Figure 2.8 for Model A).
The blue (red) continuous line is the mean value of the blue (red) population in our model
and the black line is the mean SHMR of the overall sample for centrals (i.e. a suitably weighted
average of the red and blue lines). The thick dotted black line is the contribution of satellites to
the SHMR while the green thin dotted line indicates the cosmic baryonic fraction. This model
best matches the abundance of red and blue galaxies. Quenching occurs just when the blue
galaxies are approaching the cosmic baryonic limit.
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recycled and newly infallen gas components with this extension of our model. Metallicity and

HI data (see e.g, model of 148) might give further insights into this processes.

2.4.5 The coincidence of getting quenched when approaching the baryonic frac-

tion

We notice from our analysis in Section 2.4.3 and 2.4.4, the SHMR is far below the cosmic bary-

onic fraction fb at low Ms and is coming closer to fb when approaching M∗. By “coincidence",

quenching occurs in our model just when the stellar baryonic fraction approaches the cosmic

fraction fb . In our model, the regulator is not allowed to get more baryons in than the baryonic

fraction (see Equation 2.15)and so will automatically saturate. It will no longer follow the

power law description of Section 2.4.3 and will flatten. In our model this saturation feature is

completely independent of the quenching formalism with its crucial parameter M∗.

However, apparently as a“coincidence", these two completely different features arise at the

same point in the evolution history of a star-forming galaxy. It is ultimately this simultaneous

appearance of these two features that led to the under-prediction of the red population around

M∗. In our Model C, we see that to match the SMF we even have to steepen the SHMR of

the blue population around M∗ such that the blue population must approach the cosmic

baryonic limit even faster, without apparently noticing it, but suddenly then quench just

before reaching the ultimate limit.

If one has one mechanism suppressing star formation in low mass galaxies and quenching

at high masses, a peak is inevitable. But the peak in Ms/Mh that is caused by quenching

could have occurred at any mass, e.g. if it was driven by AGN feedback, morphological effects

and so on. The fact that it appears to occur just when the overall efficiency of converting of

baryons into stars is maximal is, in our view, noteworthy and probably tells us that it is not a

coincidence.

2.4.6 Abundance matching

We note from Figure 2.8 (for Model A) and from Figure 2.15 and 2.17 (for Model B and C) that,

at halo masses around 1012M¯, the mean value of the SHMR of the blue population is elevated
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by about 0.2 dex compared to the mean value of the red population. The 1-σ dispersion in the

blue population alone is about 0.2 dex, and the overall scatter in the combined red and blue

populations at 1012M¯ is larger, 0.35 dex, and the distribution is not Gaussian in log Ms/Mh ,

i.e. log-normal in the ratio. Simple abundance matching techniques usually do not take into

account this possible variation.

(78) noted that the range in star formation rates that is implicit in a star-forming and a passive

population, is only a problem if it results in a distribution of stellar masses at fixed halo mass

that cannot be reasonably modeled by a log-normal distribution (the main assumption in

their work). In our particular model, we produce a clearly different distribution in stellar mass

around the peak Ms/Mh . The SHMR of our Model C in Figure 2.17 is substantially different to

the one of (78) but reproduces the SMF at the same accuracy. In other words, the SHMR from

our Model C is effectively a kind of abundance matching, as it is specifically tuned to match

abundance properties of the galaxy population, but with a different assumption (motivated by

our quenching laws) of how blue and red galaxies will populate the dark matter haloes.

(74) uses measurements of the stellar mass function, galaxy clustering, and galaxy-galaxy

lensing within the COSMOS survey to constrain the SHMR of blue and red galaxies over the

redshift range z = [0.2,1]. Their underlining assumption on the functional form of the blue and

red galaxy SHMR is very different to our output. E.g. their blue population itself is described

with a turn over in the SHMR.

2.5 Summary

We have presented a simple model of the evolving galaxy population that is based on importing

pre-formulated baryonic prescriptions for the control of star-formation in galaxies into a dark

matter halo merger tree. Specifically, the model is based on the gas-regulation model of

star-forming galaxies from L13, and the empirical quenching formulae of P10 and P12.

The parameters for these baryonic prescriptions are taken directly from these earlier works

and are not adjusted according to the output of the current model. A very limited number of

additional a priori assumptions are however required to ensure the model can operate, but

these do not greatly affect the outcome. The model allows us to make predictions about the
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numbers and properties of galaxies that are independent of the observation inputs used to

determine the model prescriptions in the previous papers and which can therefore be used

to test the model. The observational inputs to the previously tuned parameters were: The

exponential cutoff scale M∗ of the main sequence galaxies at z=0, Z(Ms ,SFR) data at z=0 and

the averaged enhanced fraction of red galaxies in groups and clusters. The only input from the

dark matter picture in the previous papers (namely L13) was the average halo growth rate of

(133).

The output of this model is compared with independent observational data and also with

other recent phenomenological models (78) for the evolving galaxy population that have been

based on epoch-dependent abundance matching of haloes and galaxies. Output quantities

examined include (a) the Main Sequence sSFR-mass relation; (b) the integrated star-formation

rate density (SFRD); (c) the stellar mass functions of star-forming and quenched galaxies; (d)

the Ms v s.Mh relation and SF R −Mh relations as well as the epoch dependence of these over

the whole redshift interval 0 < z < 5. The predicted gas content of galaxies is also presented.

The goal of this work has been to see how far we can get with this simple model and to explore

how it may need to be adjusted so as to rectify any failings in reproducing the real Universe.

We have drawn the following conclusions out of this work:

1. Reassuringly, the attractive features of the input baryonic prescriptions that were high-

lighted in the original papers, including the mass-dependence of the Main Sequence

sSFR, the faint end slope of the galaxy mass function, the relative Schechter M∗ and

α parameters of the blue and red (star-forming and quiescent) galaxy populations are

certainly all preserved when transplanted into a realistic dark matter structure. The

argument of L13 in relating the faint end slope α from the regulator scaling laws does

not suffer from the limitations of a single mean sMIR. The mass-function of star-forming

galaxies is also well reproduced and the general form of the SF R −Mh and Ms −Mh

relations are very similar to those constructed by (78) and arise from the competition

between the increased efficiency of turning baryons into stars as the mass increases

(due to lower mass loss in winds) and the quenching of star-formation in galaxies. The
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overall forms of the sSFR(z) and SFRD(z) are also qualitatively produced by the model.

These are major and rather striking successes from an simple model that are very largely

independent of the original observational inputs that were used previously to define

our baryonic prescriptions.

2. As with other models in the literature, our simplest model has quantitative difficulty

in reproducing the steep increase back to z ∼ 2 in both the sSFR(z) and SFRD(z). This

cannot be solved by simple adjustments to the adopted star-formation efficiencies.

We also find that the peak in the Ms − Mh relation is a little softer than in the (78)

representation and, surprisingly, that the ratio of quenched to star-forming galaxies

around M∗ is lower than observed (and than can be predicted from the original P10

formalism). We show that the latter two issues are closely related and are due to a

saturation in the efficiency with which haloes form stars that is inherent in the adopted

regulator model, especially as the cosmic baryon limit is approached.

3. All four of these quantitative deficiencies can be simultaneously solved by adjusting the

specific infall rate of material onto galaxies by allowing them to re-ingest material previ-

ously expelled by winds provided that this occurs in a redshift- and mass-dependent

way, being most effective at masses around M∗ and at redshifts z ∼ 2.

4. Our model allow us to predict the Ms − Mh relation for star-forming and quiescent

galaxies separately. Red galaxies always have a higher Mh at given Ms because of the

continued growth of haloes after star-formation ceases, and there is a 1-σ scatter in

stellar mass of 0.36 dex for haloes of mass Mh = 1012M¯ with two clearly distinguishable

populations. There is significantly less scatter in the blue population than in the red

one. The SHMR around M∗, where mass quenching happens, has to be steeper than

predicted from our original model to match the blue and red galaxy abundances at the

same time. Such a qualitative behavior brings a simple regulator model to its limits as

one expects the SHMR to flatten when approaching the baryonic limit.

5. While others have emphasized the “inefficiency” of star-formation in haloes, we stress

instead the efficiency of M∗ galaxies in forming stars. Further, we note the “coincidence"

that quenching happens in our model just at the time when the regulators are rapidly
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approaching the maximum possible efficiency in covering baryons into stars, even

thought these two description are completely independent of each other in the model.

Our analysis emphasizes the continued importance of pinning down as reliably as possible

the bulk characteristics of the evolving galaxy population over a wide span of cosmic time.

One crucial factor in our model is the gas infall onto galaxies, and it will be of great importance

to trace the gas in the universe in a more observationally comprehensive way.

2.A Appendix of chapter 2

2.A.1 Model sensitivity on additional parameters and initial conditions

Model dependence on fmerge

The parameter fmerge in the model describes the fraction of the stellar and gas mass of a

satellite that enters the central galaxy when the satellite is disrupted. In the main text, this is

set to fmerge = 0.5. To understand the sensitivity to this parameter we present here three models

that each have the same parameters as in Table 2.1 except that fmerge is set to fmerge = 0,0.5,1.

There is a small change in the blue population. Even with fmerge = 1, a blue central galaxy

almost never has more than 20% of it’s mass growth through merging. For the red galaxies

at ms >> M∗, however, which are generally located in massive haloes (e.g. above 1013M¯),

merging is the primary channel for mass growth and there is therefore a significant effect of

fmer g e on the the mass function and the SHMR for these most massive galaxies. The effect

on the SHMR is shown in Figure 2.18. If we want to predict this quantity of the stellar mass

function at these high masses, then we would have to constrain fmerge (or vice versa). This

regime of galaxy mass is not however a central consideration of this work.

Model dependence on λmax

In the model, λmax gives the maximum mass-loading of the wind, which is required to limit

the extrapolation of the λ which varies inversely with mass at higher masses. In Figure 2.19,

three models with different λmax are plotted. As would be expected, there is a significant

dependence for the lowest mass galaxies, corresponding to haloes below 1011M¯, where the
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Figure 2.18: The SHMR at z = 0 is plotted for three different fmerge. Filled lines indicate the
mean in the blue population and dotted lines the mean of the red populations. Increasing
values for fmerge do only significantly affect the high halo mass end.

SHMR scales linearly with λ−1
max at the very low stellar mass end. We choose λmax in such a way

that the regulator above 109M¯ in stellar mass is not affected by the floor value. This gives us a

prior of λmax ≥ 20. Values between 20-200 only affect the intermediate range marginally. We

choose λmax = 50 and note that our model is not tuned to predict the SHMR below 1011M¯ in

halo mass or 108M¯ in stellar mass correspondingly.

Model dependence on Mthresh

The parameter Mthresh controls the threshold above which a (sub-) halo contains a regulator

system, which in turn affects the way in which baryons are brought into the larger haloes.

The dependence of our model on Mthresh parameter is a little more complicated. First, when

lowering Mthresh we increase the merging component Ṁmerger and lower the smoothed ac-

cretion component Ṁsmoothed. Second, the very high host-to-satellite ratio makes those low

mass substructures survive very long (often longer than the age of the Universe). These results

that Mcentral defined by Equation (2.14) is lowered compared to Mh . From Equation (2.15), a

lowered Mcentral leads to a reduction of the infall rate in Model A. In Figure 2.20 four models

with different Mthresh are plotted. We see a scaling difference in the SHMR. When changing

Mthresh by four orders of magnitude, we change the SHMR by less than one order of magnitude.

L13 introduced in their paper a parameter fgal to account for the fact that if they let all the
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Figure 2.19: The SHMR at z = 0 is plotted for three different λmax. In color are the mean values
of the blue population. The mean values of the red fraction are plotted in red for all four
models. We detect no significant deviation in the red fraction above the turn-over. The low
mass population are significantly affected by λmax.

accreted baryons in their regulator they would end up with to high an SHMR. In our model,

we naturally do not let all the baryons fall in the central because of the sub-structure. The

parameter fgal is therefore effectively absorbed into the (more physical) parameter Mthresh. We

get an equivalent of fgal = 0.5 with Mthresh = 109h−1M¯. This mass is consistent with photo-

ionisation heating operating at low masses and suppress cooling and star formation below a

certain halo mass Mγ. This halo mass scale increases from Mγ ∼ 108M¯ during reionisation to

Mγ ∼ few ·109M¯ (126; 127). For a more realistic model aiming to make predictions back to

the epoch of reionisation, one has to account for a change in the mass threshold.

Initial conditions

When we stop expanding our merger tree (in a backward process) at either redshift z = 15 or at

halo masses of 109h−1M¯ < Mh < 2 ·109h−1M¯ we have to initialize the baryonic component

of the halo. To start the forward process of the regulator system, we have to put in some

initial values for Ms and Mgas. In principle we should start with Ms,init = 0. But with this initial

condition the star-formation efficiency is zero and so the differential equation we want to solve

has the solution Ms(t ) = 0 for all times. Whether we start with Ms init = 1M¯ or Ms init = 103M¯

does not really matter when predicting the quantities in Ms = 108M¯ galaxies. The time to

form these first 103M¯ is rather short when considering a gas reservoir of order Mgas ≈ 108M¯.
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Figure 2.20: The SHMR at z = 0 is plotted for four different Mthresh. In color are the mean
values of the blue population. The mean values of the red fraction are plotted in red for all
four models. When changing Mthresh over four orders of magnitude, the SHMR changes by
less than one order of magnitude.

For the initial condition of the gas content in the regulator Mgas,init we have the freedom of

0 < Mgas,init < fb Mh,init. This has not more than a 1% effect on the total amount of gas that

comes into a halo of mass Mh = 1011M¯. We conclude that for merger trees which reach

Mthresh, our freedom in the initial condition do not affect our predictions by more than 1%.

The situation for starting the forward process at z = 15 with a halo more massive than Mthresh

is slightly different. This case only happens for haloes of present-day mass Mh > 1014M¯. We

cannot a priori predict the stellar or gas content of a halo of Mh = 1012M¯ at z = 15. However,

we study the output of the model only at z < 8 , by which point these haloes have grown in

mass by an order of magnitude. Whatever initial conditions we put in, it affects predictions at

z = 8 by only about 10%, and even less at later epochs.
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3 Gravitational lens modeling with basis

sets

This chapter appeared in a similar form in Birrer, Amara & Refregier 2015 (29).

The standard cosmological model is based on the standard model of particle physics, Einsteins

theory of General Relativity, a cosmological constant, cold dark matter and inflation. The

physical origin of the cosmological constant, inflation and dark matter remains a mystery

to date. The predictions of the expansion history of the universe has been probed with high

precision and structure formation has been tested from the horizon scale down to about 1Mpc

or even below (e.g., 1; 149). The smallest scale tests come from the Lyman-alpha forest (see e.g.,

9) and strong and weak lensing in anomalous quadrupole lenses (e.g., 150). At even smaller

scales in the non-linear regime, there are observational and theoretical challenges in bringing

model and data in agreement. This problem occurs predominantly in the number, phase

space densities and density profiles when comparing simulations of dark matter substructure

with observations of luminous satellite galaxies in our Milky Way (see e.g., 10; 11; 12; 14). A

potential non-gravitational (i.e. collisional) effect of a dark matter particle may have an effect

on structure formation on small scales without having an effect on larger scales. Probing the

small scale structure formation and mass distribution may thus provide information beyond

theΛCDM model.

Strong lensing is a powerful probe to test structure formation on small scales (151; 152; 153;

154; 155). Strong lensing is the effect caused by the bending of light by massive foreground
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over-density (e.g. galaxy, group or cluster) such that multiple images of the same background

object appears. This effect is well suited for many astrophysical and cosmological applications

(see e.g. 156, a review focused on galaxy sized lenses). Strong Lensing was also proposed

to detect luminous and dark substructure in the lens (157; 158). This technique has been

successfully applied to data (159; 160) where sub-clumps down to about 2×108M¯ masses

have been detected. Substructure also has an effect on the flux ratios in multiple lensed quasar

images (see e.g., 161; 162; 163; 164; 165). Anomalous flux ratios have thus been reported in

the literature. (166) pointed out that the anomalous flux ratios measured can be accounted

by line-of-sight structure and do not have to necessarily come from structure within the

lens. With recent and upcoming large scale surveys new area and depth becomes available

to discover strong lens systems. (167) forecasted thousands of lensed quasar systems from

DES and LSST. These datasets will help to constrain the statistical features of the small scale

structure imprinted in the strong lensing signal. The increasing number of strong lens systems

will in the future need to be analyzed with automated modeling approaches.

The aim of this chapter is to describe a lens modeling approach that can be applied to different

lens systems without adjusting parameter priors by hand and uses all the information con-

tained in a image to constrain the projected mass density of the lens with a special emphasis

on substructure. Our model approach is based on parameterized basis sets in the source

surface brightness and lens model. The model framework can handle an adaptive complexity

in the source and lens models. In addition to the basis sets, we show the power of modern

sampling techniques and we make use of fast computational methods.

The chapter is structured as follow: In Section 3.1 we give an overview of existing lens model

techniques and show how they relate to our modeling approach. In Section 3.2 the source

surface brightness and lens potential basis sets on which our model relies on are introduced.

Section 3.3 describes the model fitting procedure and in particular how the source surface

brightness reconstruction is done and how we deal with the high number of non-linear

parameters in the lens model. We test our fitting procedure on mock data and on Hubble data

of the lens system RXJ1131-1231. In Section 3.5, we study how well we can detect substructure

in a lens model without prior information on the mass, slope and position. This section is

followed by a summary of this chapter (Section 3.6).
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3.1 Overview of Lens Model techniques

Galaxy-size strong lenses have been modeled extensively in the literature (see references below

in this section). The following aspects have to be modeled in a strong lens system when

comparing data and model on the image level:

• the lens mass model

• the source surface brightness profile

• the lens surface brightness profile

• the point spread function (PSF)

Depending on the lens system and instrument, one has to also model dust extinction, external

convergence, micro lensing by stars and other aspects.

Depending on the scientific aim, the main focus is typically more on the source surface

brightness reconstruction or on the lens mass reconstruction. In both cases one can, broadly

speaking, divide the modeling techniques in two regimes:

(1) Parametric reconstruction: Using simple and physically motivated functional forms with a

controllable number of parameters (∼ 10) (e.g., 168; 169; 170; 171). A controllable number of

parameters implies that one can fully explore the parameter space and convergence to the

best fitting configuration can often be obtained.

(2) Pixel based reconstruction: This is most often done with a grid where each pixel is treated

as a free parameter. Pixelised source surface brightness inversions have been proposed by e.g.

(172; 173; 174; 175; 157; 176; 177; 178; 179). These methods often rely on a regularization of the

pixel grid when there is not a unique solution. Depending on the regularization procedures,

priors and the pixel size, one can come to different reconstructed sources (see e.g. 177; 180).

Recently (181) did an analysis of statistical and systematic uncertainties in pixel-based source

reconstructions. Furthermore, these methods are computationally expensive as they rely

on large matrix inversions. For the lens mass or its potential, grid based modeling has been
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applied by e.g. (182; 183; 184; 157; 185; 186; 187; 158; 188; 160; 189) and even mesh-free models

(190).

Computational techniques also vary for different modeling approaches. Ray-tracing has

generally been used to map extended surface brightness from the source to the image plane. If

significant surface brightness variations occur on very small scales, such as for quasars due to

their compact size, simple ray-tracing can lead to numerical inaccuracies. One way to model

such systems is to approximate quasars as point sources. One then solves the lens equation

numerically for the positions in the image plane (recently e.g. 180). An alternative to avoid the

point source approximation is adaptive mesh refinement (e.g., 164; 191) which changes the

ray-tracing refinement scale depending on the local spacial variation of the source at different

image positions.

In standard ΛCDM, the self-similarity of dark matter indicates that the same amount of

complexity as seen in galaxy clusters must also be present in galaxy-sized strong lens systems.

Its effect is much weaker in terms of deflection and magnification, but it must still be present.

Ideally, we want a model that is flexible such that it can describe any lens mass and source

surface brightness distribution. For this model we need to be able to explore its degeneracies

and to converge to the ‘true’ solution to extract the information contained in a strong lens

system.

One of the aims of our work is to fill the gap between the parametric and non-parametric

models. We do so by choosing basis sets that we treat in a fully parametrized form.

3.2 Choice of basis sets

In the following sections we describe our choices for basis sets and, in addition, we present

how we produce mock data given a set of parameter values.

3.2.1 Basis for the source

We make use of shapelets (introduced by 192; 193; 194) in the source surface brightness

plane. We implemented the two-dimensional Cartesian shapelets (Eq. 1 and 18 in 192, or in
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Appendix 3.A.1 of this work). Independent of this work (195) proposed a different method to

use shapelets in the source reconstruction. Shapelets form a complete orthonormal basis for

an infinite series. Restricting the shapelet basis to order n provides us with a finite basis set

that is linked to the scales being modeled. If we wish to model a larger range of spatial scales

in the surface brightness profile, we need to use more high order shapelets. The number of

basis functions m is related to the restricted order n by m = (n+1)(n+2)/2. The shapelet basis

functions allow us to dynamically adapt to a given problem. We can increase the complexity

when we need them and reduce it when it is not appropriate. Apart from the order n one can

also set the reference scale β of the basis function. Minimal and maximal scales (lmin, lmax)

being resolved up to order n with reference scale β is lmin =β/
p

n +1 and lmax =β
p

n +1. The

parameter β is a user specified choice. Another choice is the peak position of the shapelet

center (x0, y0). For any finite order in n, the choice of the center is crucial for the fitting result.

A natural choice for (x0, y0) is the center of the light profile of the source galaxy. In that sense

(x0, y0) must be interpreted as two non-linear parameters.

3.2.2 Basis for the lens

Choosing a realistic basis set for the lens mass distribution is a challenging task as there are

many different scales involved, especially when considering low mass sub-clumps. These

sub-clumps are very small in scale but are also very dense. Having a basis set which allows a

general description of such clumpy halos on different scales typically involves a large number

of parameters. Depending on the sub-clump mass limit being considered, there are hun-

dreds or even thousands of sub-clumps expected. A minimal description requires at least

information about individual positions, masses and concentrations. Such a description leads

to a degenerate and non-unique lens model (e.g. 196; 197). For cluster lenses, the typical

masses of substructure are several orders of magnitude below the total lens mass, but it is

possible to give strong priors on the location of the substructure, namely at the position of the

luminous galaxies. For detecting invisible substructure such a prior can not be used. As often

called ‘non-parametric’ or ‘free-form’ approach, meaning there are more parameters than

data constraints (i.e. deliberately under-constrained) was proposed and implemented by (198)

and (189). Using the catalog level image position information and time-delay measurements,
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Chapter 3. Gravitational lens modeling with basis sets

there is far less information available than parameters to be constrained. One is able to draw

random realizations of lens models that meet all the constraints. Statements about the validity

of a specific lens model can only be drawn statistically. Doing a comparison on the image

level where about 103 - 104 pixels are involved, more information is available to constrain the

model.

In our approach we start with a softened power-law elliptical potential (SPEP) (e.g., discussed

by 199). The lensing potentialΦ is parameterized as

Φ(x1, x2) =
2E 2

p

η2

(
ρ2

p + s2
p

E 2
p

)η/2

(3.1)

where

ρ2
p = x2

1 +x2
2/cos2βp (3.2)

with cosβp being the axis ratio of the potential, η the power-law index, Ep the normalization

of the potential, sp the smoothing length and x1,2 the position rotated such that x1 is in the

direction of the major axis of the potential. For an additional sub-clump, we model them

either as a spherical NFW (200) profile or a spherical power-law potential (SPP). For both

functions, we set the softening length sp = const = 0.0001" for computational reasons. In that

sense the softening is virtually zero and is not a free parameter in this work.

Combining the two functions (SPEP and SPP) we get 6+4 = 10 non-linear free and partially

degenerated parameters to be fitted. With this parameterization we expect a good overall fit

to many different lens systems and perhaps to catch the largest substructure within the lens,

visible or invisible. Such tests are shown in section 3.4.

In addition, we include two dimensional Cartesian shapelets (same functional form as for

the source in Section 3.2.1) in the potential. We choose the scale factor β to be the Einstein

radius. This allows for perturbations at the global scale of the lens that can not be made

with another peaked profile. The first derivatives of the potential (deflection angle) and

second order derivatives (convergence and shear) can be computed analytically and can be

expressed within the same shapelet basis functions (See Appendix 3.A.1), thus enabling fast

82



3.2. Choice of basis sets

computations.

3.2.3 Basis for the lens light

For the description of the lens light, we use Sérsic profiles (201). Depending on the lens galaxy,

adding multiple Sérsic profiles can lead to better fits (see e.g. 180).

3.2.4 Image making

Having a parametric description of the source surface brightness, a possible point source, the

lens potential, the lens light and the PSF, an image can be generated in the following steps:

1. Starting in the image plane one evaluates the analytic expression of the deflection angle

using grid based ray-tracing. The resolution has to be of order (or slightly smaller than)

β/
p

n to capture the features in the extended source model.

2. We then compute the point source image in a iterative ray-shooting procedure starting

from the local minimas of the relative distance to the point source of step 1. Corrections

for the next proposed ray-shooting position can be made when considering the relative

displacement to the point source and the second order derivatives of the lens potential.

The requirement of the precision of the point source position in the image plane of

about 1/1000 of the pixel size can be reached within very few iterations.

3. For the point sources, which appear as PSF’s, we normalize the externally estimated

PSF to their intrinsic brightness and lens magnification. We do not lose significant

computational speed when modeling the PSF further out to the diffraction spikes. For

the extended surface brightness a numerical convolution needs to be made. This

can be done either at the pixel or sub-pixel level. This step is the most expensive

computational process in the forward image modeling. The process scales roughly

linearly with the number of pixels or sub-pixels in the convolution kernel. We use Fast-

Fourier-Transforms implemented in a scipy routine in python. Our default kernel size

is 15×15 pixels.

4. The lens light is added with analytical Sérsic profiles convolved with the same PSF kernel
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Chapter 3. Gravitational lens modeling with basis sets

as the extended source surface brightness.

For the modeling, we do not add noise. When simulating realistic images, we add a Gaussian

background noise with mean zero to all pixels and a scaled Poisson noise on the signal (pixel

by pixel).

3.3 Model fitting

For the modeling, we have three questions to answer:

1. What is the best fit configuration of the model to match the data of a specific lens system?

We want to find the global minima for the χ2 value.

2. What level of complexity is needed to fit the data to a certain level? We want to compare

consistency with the data by analysing the reduced χ2 value and compare different

model configurations with a Bayes factor analysis.

3. How well is the model solution determined by the data? We want to sample the parame-

ter space and determine confidence intervals.

As a result, many choices have to be made in the lens modeling. More than 10 parameters in

the lens model with non-linear behavior have to be specified. For a realistic surface brightness

description the shapelet order n can be higher than 20 which corresponds to 154 basis’ and

their corresponding coefficients. Given this level of complexity, even the first question on its

own is difficult to address. Once we have a method for addressing the first question, repeating

the procedure with different choices of complexity and parameterization will provide an

answer to question 2. Question 3 can then be answered with a Bayesian inference method

such as a Markov chain Monte Carlo (MCMC) sampling. For this we use the software package

CosmoHammer (202), which is based on the emcee method of (203) and its implementation by

(204). The software package allows for massive parallelization in the sampling process. In this

section, we focus on question 1. We will describe in detail the methods and procedures we

apply to make the algorithm converge to the best fit lens model configuration. Question 2 and

3 are addressed with examples in Section 3.4 and 3.5.
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3.3. Model fitting

3.3.1 Source surface brightness reconstruction

In our method we use a weighted linear least square approach to reconstruct the source surface

brightness. This is a standard procedure to minimize the quadratic distance between data and

model with weighted error measures. The estimation of the covariance can also be calculated

(see Eqn 3.3 - 3.6 below). The minimization problem has to be linear. Let~y be the data vector

of dimension d . In our system, it contains all the pixel values of the image in the area of interest

for a surface brightness reconstruction. Let W be the weight matrix of dimension d ×d . In a

likelihood interpretation, W is the inverse covariance matrix of the data. Assuming the pixel

errors are uncorrelated W is a diagonal matrix. Let~ξ be the parameter vector of dimension

m. In our case,~ξ is the vector of the coefficients of the linear combination of shapelet basis

functions. The number of shapelet basis functions m depends on the shapelet order n as

described in section 3.2.1. Let X be the linear response matrix of the shapelet parameters on

the pixel values in the image plane of dimension d ×m. The product X~ξ describes a lensed

and convolved surface brightness on the image plane. X can be computed by mapping all

m shapelet basis functions from the source to the image plane, convolve and resize them

separately on the pixel scale. The computational cost of this procedure is linear in the number

of basis functions involved and dominates the process for low m.

Figure 3.1 illustrates how the shapelet basis functions are mapped. The problem of finding the

best source configuration~ξ0 given the data ~y and the weights W can be posed as a weighted

linear least square problem:

~ξ0 = minξ‖W 1/2(~y −X~ξ)‖ (3.3)

This equation can be written as

(X >W X )~ξ0 = X >W~y (3.4)

whose solution is given by

~ξ0 = (X >W X )−1X >W~y . (3.5)
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Chapter 3. Gravitational lens modeling with basis sets

source plane lensed convolved

Figure 3.1: An illustration of the modeling of the source surface brightness with three different
shapelet basis functions. Left panels: Shapelet basis function in the source plane. Middle
panels: Mapped shapelets in the image plane with a SIS lens via ray-tracing. Right panels: PSF
convolved image. From top to bottom: Shapelets with (n1,n2) = (1,0), (2,1), (3,5).

The covariance matrix of~ξ, Mξ is therefore given by

Mξ = (X >W X )−1. (3.6)

Mξ becomes important when marginalizing the probability distribution over~ξ.

The procedure involves a matrix inversion of dimension m ×m. The computational cost and

memory allocation of this inversion becomes more significant with larger m. Moreover, the

matrix (X >W X ) has to be invertible. If not, this method fails to find a solution and regular-

ization is needed. A grid based regularization was introduced by (173). Conceptually and

computationally, the method of (173) and the one presented in this chapter differ significantly.

The matrix (X >W X ) is a dense matrix where as the matrix in grid based regularization can

be sparse. A sparse matrix can only be maintained when having a small PSF(e.g. 5×5 pixel).

We use in our method a default PSF kernel of 15×15 pixels and a further extension affects

only the FFT-convolution of the lensed shapelet basis functions. Our method is well suited to
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3.3. Model fitting

reconstruct also lensed sources in images with larger PSF’s than HST images. But the main gain

of our method is in terms of the number of parameters (i.e. the size of the matrix). Well chosen

basis sets can allow for a smaller number of parameters compared to grid based methods

significantly.

In Figure 3.2, we take a mock image produced with a chosen ~ξ0 (incl. point sources) with

maximum shapelet order nmax = 40 and added Poisson and Gaussian background noise to the

image. We check the reconstruction by computing the relative residuals and their correlation

function. We see from Figure 3.2 that the results are almost consistent with purely uncorrelated

noise. Only for very small separations, the correlation is marginally smaller than with noise.

This effect highly depends on the signal-to-noise ratio of the shapelets. Since we know the

input source surface brightness, we can also check its reconstruction. The error in input vs.

output in the source has features which represent the scales of the shapelet basis functions.

The relative error of the surface brightness is about 10% or less. This reconstruction process

with nmax = 40 and 15×15 pixel convolution kernel takes about 4s on a standard personal

computer. When reducing the number of shapelet coefficients to nmax = 20 the reconstruction

falls below 1s.

The specific reconstruction depends on the noise realization. By repeating the reconstruction

1000 times with different noise realizations, we find that the reconstruction is stable. In

Figure 3.3 we plot the reduced χ2 distribution of the different realizations. We find a mean

χ2
red = 1.0015 with a standard deviation of σ= 0.009.

3.3.2 Convergence techniques

In the previous section, we showed that we can linearize all parameters of the source model

given a specific lens model and thus we can express it as a linear minimization problem. The

marginalization of the linear parameters can be made analytically (see Section 3.3.2 below).

Changes in the lens model however have a non-linear effect on the image. In that sense, we

can marginalize over many parameters in our model and are left with about 10-30 non-linear

parameters. To explore this space we use a Particle Swarm Optimization (PSO) (205) algorithm

to find the minimum of the parameter space. The algorithm is described in more detail with
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σ= 0.009.

88



3.3. Model fitting

an illustration in Appendix 3.A.3.

Convergence towards the global minimum in parameter space can depend on several factors.

It depends on the volume of the parameter space, the number of local minima and the shape

of the cost function around the absolute minimum. As we are marginalizing over all the

source surface brightness parameters, one can have unexpected behavior of the cost function

over the lens parameters. In the following we describe our convergence method which goes

beyond simply applying the PSO algorithm and which is important for the performance of our

method.

Parameterization

The sampling in parameter space can be made in any parameterization with a bijective

transformation to the originally described form. The parameterization can have a significant

impact on the convergence capacity and performance of a specific algorithm. If there are

periodic boundaries in a specific parameterization, some algorithms can have difficulties. In

our model, this is the case for the parameter of the semi-major axis angle of the elliptical lens

potential θ0 which is defined in the range [0,π). The model can continuously rotate the axis

but the parameter space has to jump from 0 to π, or vise versa. Mapping θ0 and the axis ratio

q = cosβ into ellipticity parameters (e1,e2) with f : [0,π)× (0,1] → (−1,1)× (−1,1) given as

f
(
θ, q

)= (
1−q

1+q
cos(2θ),

1−q

1+q
sin(2θ)

)
(3.7)

provides a continuous link between the lensing potential and the parameter space. Reducing

the surface area of boundary conditions in the parameter space can also reduce the number of

local minima at the boundary surface. The fewer local minima there are the better one can find

the global minimum. Priors on (θ, q), i.e. based on the observed light distribution, must be

transformed into priors on (e1,e2) accordingly. In this work we assign uniform uninformative

priors on (e1,e2).

In general, the particular choice of the parameterization can be crucial. The smoother a change

in parameter space reflects a small change in the model output, the better a convergence

algorithm can deal with the system. The fewer constraints and boundary surfaces there are

89



Chapter 3. Gravitational lens modeling with basis sets

−4
.5

−4
.0

−3
.5

lo
g 
θ E

 (c
lu

m
p)

1.8
0

1.9
5

2.1
0

2.2
5

γ
 (c

lu
m

p)

−1
.80

−1
.75

−1
.70

−1
.65

θ 1
 (c

lu
m

p)

1.4
4

1.4
8

1.5
2

1.5
6

θ 2
 (c

lu
m

p)

1.1
1

1.1
4

1.1
7

1.2
0

n
s
 (s

ou
rc

e)

0.3
36

0.3
39

0.3
42

0.3
45

R
s
 (s

ou
rc

e)

−0
.02

5

−0
.02

0

−0
.01

5

e 1
 (s

ou
rc

e)

1.8
97

5

1.9
00

0

1.9
02

5

1.9
05

0

γ (lens)

−0
.09

5

−0
.09

0

−0
.08

5

−0
.08

0

e 2
 (s

ou
rc

e)

−4
.5

−4
.0

−3
.5

log θE  (clump)
1.8

0
1.9

5
2.1

0
2.2

5

γ (clump)
−1

.80
−1

.75
−1

.70
−1

.65

θ1  (clump)
1.4

4
1.4

8
1.5

2
1.5

6

θ2  (clump)

1.1
1

1.1
4

1.1
7

1.2
0

ns  (source)
0.3

36
0.3

39
0.3

42
0.3

45

Rs  (source)
−0

.02
5

−0
.02

0

−0
.01

5

e1  (source)
−0

.09
5

−0
.09

0

−0
.08

5

−0
.08

0

e2  (source)

Figure 3.4: Illustration of a combined PSO and MCMC chain in a 9 dimensional non-linear
parameter space. The blue lines connect the best fit particle during the PSO process. The red
lines mark the true input parameter. Dark (light) gray contours mark the 68%-CL (95%-CL)
interval estimated from the MCMC process.
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in the parameter space, the more general convergence algorithm manage to converge to the

global minimum.

Convergence with additional constraints

In cases where the source galaxy hosts a quasar that dominates the luminosity, its lensed

positions in the image plane can be determined by the data without knowledge of the lens,

source position or the extended surface brightness. The feature in the image is very well

predicted by the PSF model and dominates the brightness over an extended area in the image.

Any proposed lens model that predicts the image positions displaced from the features in the

image will be excluded by the data with high significance. The quasar point sources introduce

a degeneracy of acceptable solutions within the original parameter space. Knowing about this

degeneracy can lead to faster convergence.

When having N bright point source images, there are 2N constraints to the system (their

positions in the image plane). This reduces the effective dimensionality of the parameter

space by 2N . Lensing has three symmetries imprinted in the positional information: Two

translations and one rotation. These transformations do not change the lens model apart

from its own transformation.

In general, we can use any parameterization θi of an originally M-dimensional parameter

space to dimension n = M −2N +3 (with N >= 2) if there exists a bijective transformation (an

exact one-to-one mapping of the two sets) to the original parameter space with the applied

constraints. In the case of four bright images of a quasar, we determine an (M−5)-dimensional

parameter space and solve for the source plane position of the quasar and five additional lens

model parameter with a non-linear solver. This reduces the non-linear parameter space in the

PSO process and leads to faster convergence without breaking any degeneracies. The choice of

the five lens model parameters is arbitrary as long as the parameters can provide a solution of

the point source mapping. Priors on these parameters have also to be applied in the sampling

process.
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Likelihood computation

The likelihood calculation on the image level is the product of the likelihoods of each pixel

(see e.g. 180, for a similar approach). We estimate the variance on the intensity at pixel i as

σ2
pixel,i =σ2

bkgd,i + f dmodel,i (3.8)

where σbkgd,i is the background noise estimated form the image, dmodel,i the model prediction

at pixel i and f a scaling factor. A pure Poisson noise results in f being the product of exposure

time and gain. The likelihood of the data ddata with Nd image pixels given a model dmodel with

non-linear lens model parameters θ can then be written as a marginalization over the linear

parameters ξ, the source surface brightness parameters:

P (ddata|θ) =
∫

dξP (ddata|θ,ξ)P (ξ) (3.9)

where

P (ddata|θ,ξ) = 1

Zd
exp

Nd∑
i=1

[
− (ddata,i −dmodel,i)

2

2σ2
pixel,i

]
. (3.10)

with d model = X (θ)ξ. Zd is the normalization

Zd = (2π)Nd/2
Nd∏
i
σpixel,i (3.11)

and P (ξ) the prior distribution of the shapelet coefficients. We assume a uniform prior

distribution which is independent of the lens model. The integral in equation (3.9) can be

computed around the maximum ξ0 coming from equation (3.5) with covariance matrix Mξ

from equation (3.6). With a second order Taylor expansion around ξ0, equation (3.9) can be

written as

P (ddata|θ,ξ0 +∆ξ) ≈ P (ddata|θ,ξ0) ·e−
1
2∆ξ

T (Mξ)−1∆ξ. (3.12)
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Integrating equation (3.12) over ∆ξ results in

P (ddata|θ) = P (ddata|θ,ξ0)
[

(2π)mdet(Mβ)
] 1

2
(3.13)

In principle, equation (3.10) is the cost function to use for image comparison. The information

about the image positions is included in this cost function. The problem with this cost

function is that convergence to a good model can be difficult. The use of additional or derived

information, such as the explicit image positions, can facilitate convergence.

Steps towards convergence

Having presented our model parameterization in Section 3.2 and discussed certain aspects

of model fitting and convergence in the previous paragraphs, we describe our steps which

allows us to find a reasonable fit to the data. Figure 3.5 illustrates the framework. Prior to the

convergence algorithm, the image data has to be analyzed, the model configuration has to

be chosen, the prior values have to be set and the specific configuration of the PSO process

have to be given as an input. The fitting should be done within an automated process where

no interaction of the modeler is needed. The output of the PSO run can then be analyzed

by the modeler in terms of convergence and quality of fitting. This may lead to a change

in the model parameters, functions, configuration etc and the process is run again. Once

convergence is achieved and the fitting result is good, the MCMC process is run to map out the

valid parameter space given the model parameters chosen. Figure 3.4 illustrates the PSO and

MCMC process in a 9 dimensional parameter space. The thin blue lines corresponds to the

PSO process. Once this process is converged we start the MCMC process around this position

(light and dark gray contours). Certain parameters are more degenerate than others. We try to

map the parameter space such that remaining degeneracies are controllable.

3.4 Example - RXJ1131-1231

In the following, we test our method on the gravitational lens RXJ1131-1231. This lens was

discovered by (206) and the redshift of the lens zl = 0.295 and of the background quasar source
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Figure 3.5: Chart of the framework highlighting user interactions. Human interactions are
needed for some tasks (green) and decisions (blue). Automated tasks are shown in gray. The
core of this framework is to clearly split the preprocessing from the fitting algorithm.

zs = 0.658 was determined spectroscopically. The lens was extensively modeled by (207; 208;

180). We use the same archival HST ACS image in filter F814W (GO 9744; PI: Kochanek) as

(180) for our lens modeling and follow a similar procedure for the reduction process and error

estimation. We make use of the MultiDrizzle product from the HST archive. The PSF is

estimated from stacking of nearby stars. We estimate a PSF model error by computing the

variance in each pixel from the different stars after a sub-pixel alignment with an interpolation

done using all the stars. We assume that this model error is proportional to the intensity

of the point source. This method is meant to demonstrate our method in fitting the best

configuration. The lens model is parameterized as a SPEP (ellipsoid) and a second SPP (round)

profile (see Eqn 3.1). Furthermore we choose 15 shapelet basis sets in the potential and a

constant external shear component. For the lens light we follow (180) and use two elliptical

Sérsic profiles with common centroids and position angles to describe the main lens galaxy

and a circular Sérsic profile with nsersic = 1 for the small companion galaxy.

Figure 3.6 shows our result of the fitting process to the HST image. In the upper left panel

we show the reduced data. Upper middle shows the best fit model. On the upper right the
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3.5. Detectability of substructure

normalized residuals are plotted. The reduced χ2 value of this fit is χ2
red = 1.5 without adjusting

any Poisson factors nor the background noise level originally derived from the image data

products. We clearly see that there are significant residuals around the point sources which

indicates clearly that our PSF model needs further improvement and that even our error model

on the PSF seems to underestimate the model error in certain regions. Furthermore, extended

regions of over- or under-fitting indicate that the lens model can be improved. Source surface

brightness adoptions could have acted to reduce the error in the fit in case of a perfect lens

model. The lower left panel shows the reconstructed extended source surface brightness

profile. We clearly see the presumably star forming clumps which lead to the features in the

extended Einstein ring. In the lower middle panel of Figure 3.6 our lens model is shown in

terms of the convergence map. We notice that without mass-to-light priors, the position of

the two modeled clumps is strikingly close to the position of the luminous galaxy and its

companion. In the lower right panel, the magnification map is shown. The reconstruction of

the image depends on the number of shapelet coefficients used. In Appendix 3.A.2 we discuss

the effect of nmax on the quality of the source and image reconstruction for this particular

lens system.

Comparing different lens and source model reconstructions from different methods is difficult.

Different source surface brightness reconstruction techniques use different number of param-

eters and thus can have different χ2 values without changing the lens model. Error models and

masking do have a significant impact on χ2. Setting priors may also lead to different results

(In case of (180) the position of the sub-clump modeled as a singular isothermal sphere was

fixed at the position of the luminous companion and additional information from velocity

dispersion measurements). All in all, different lens modeling techniques can only be properly

compared based on mock data. And even on mock data, different input types of lens and

source models might have a significant influence on the relative performance of the methods.

3.5 Detectability of substructure

One of our main focuses for the model we present is to find and quantify substructure within

a lens. In this section, we want to discuss the following issues:
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Figure 3.6: Modeling of RXJ1131-1231 HST ACS F814W image. Upper left: Observed image.
Upper middle: Best fit pre-construction. Upper right: normalised residuals of the reconstruc-
tion. Lower left: Reconstructed source with 1326 shapelet coefficients (up to order 50). Lower
middle: Convergence model of the lens. Lower right: Magnification model of the lens.

1. To what extend are our model basis functions and description able to reproduce the

true image?

2. In case of a perfect modeling: Are we able to recover the true parameter configuration

in a large parameter space?

3. In case of an imperfect modeling: How does this affect the sensitivity limit, finding and

quantification of substructures?

To answer our first question, we refer to our data example of RXJ1131-1231 in Section 3.4

of Figure 3.6. Even though the observed and predicted images can hardly be distinguish by

eye, the residual map indicates room for improvements in our modeling. Nevertheless the

fact that our mass-to-light prior-free lens model provides us with a realistic solution might

indicate that we are not far from reality. A priori, we do not know whether the solution found

in Section 3.4 is the global minimum of the parameter space chosen and therefore the best

reachable solution within the choices and parameters made. We will investigate whether the

finder algorithm is able to recover the true input parameters when fitting mock images in the

next section.
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3.5. Detectability of substructure

3.5.1 Substructure finding

To approach question 2 above we take a mock image that is highly inspired by RXJ1131-1231

of section 3.4. We keep the image quality fixed (i.e. noise levels, pixel size and PSF) but change

the lens model such that we have one big SPEP profile and a minor sub-clump, a spherical

power law potential (SPP). Ideally, we do not want to set any prior on the position, mass, shape

and number of substructures. If we were interested in luminous sub-structure we could add

mass-to-light priors. As we want to use our method to potentially detect dark sub-structure,

we are not allowed to give any mass-to-light prior. Therefore we want to check whether our

algorithm finds the preferential parameter space in the model. The main focus is on the

position of the sub-clump. To explore our capability of finding sub-clumps, we generate mock

data with a sub-clump in the lens model at a random position. We add Poisson and Gaussian

noise on the mock image. We then run the convergence method on that image with the same

weak prior information as was done for the real image in section 3.4. We repeat this procedure

10 times. Our result is:

• Success rate in position of 100%. For our setting with a random sampling of the prior

parameter space, all the runs ended around the right solution (PSO).

• Detectability down to 10−4 level of the total lens mass in the arc of the Einstein ring

(MCMC).

• Time for convergence of about 105 evaluations of a model configuration needed. One

evaluation takes few seconds.

For one realization of the input-output process the comparison is shown in Figure 3.7 in terms

of convergence and magnification and their residuals. We clearly see that the position of the

sub-clump can be well recovered and the appearance of the critical line do match very well.

This means that there is no other degenerate solution within the parameter space that can

reproduce a similar feature like a sub-clump no matter what combination of source surface

profile and lens model we chose. This test shows that with a ideal model we can find a single

sub-clump in the lens mass without any prior on its existence and position. We also highlight

that the relative likelihood comparison is large (more than 5 sigma compared with the best fit
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Figure 3.7: Lens model input-output comparison for convergence and magnification
log(abs(magnification)). Without priors on the size or position of the sub-clump of order
108M¯, the PSO can find the lens configuration. The input-output comparison of the image is
illustrated in Figure 3.2. The sensitivity for the sub-clump detection is analyzed in Figure 3.4.
We clearly see that the we are sensitive to the position up to 0.1".

model without a sub-clump). This statement in this form can only be made if other effects

(such as error in the PSF model) do not interfere. As we showed for the real image in section

3.4, errors in the PSF model alone can potentially lead to a higher increase in the minimal

χ2. This test together with the finding of a sub-clump in RXJ1131-1231, in both cases without

setting priors on position, mass-to-light, concentration and mass, are encouraging hints that

our model approach can extract valuable information about a lens system in a rather unbiased

way.

3.5.2 Substructure sensitivity

The last section discussed the potential to recover sub-structure. We showed that this is possi-

ble for substructure with mass ratios of Msub ∼ 10−4Mlens consistent with a direct detection

of a sub-clump in (160). This implies, that we are sensitive to this mass regime in fitting a

mass-concentration relation. The concentration of the sub-clump is not exactly matched

when comparing with the most likely solution of the PSO in Figure 3.7. To effectively see how
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well we can constrain certain parameters in the model from the data, we do a full likelihood

analysis with a MCMC. The mapping of the entire parameter space of this realization with an

MCMC is illustrated in Figure 3.4 for exactly the same realization as Figure 3.7. The red lines

mark the input parameters. We see, that the input parameters are always within 2 sigma of the

output parameter distribution. We see that there is a partial degeneracy between mass and

concentration of the sub-clump (γ (clump) and log θE (clump) in Figure 3.4. Not surprising, it

is difficult to constrain the profile of a very small clump which itself is close to the detection

limit. Even better data than HST, such as JWST or ALMA can potentially detect clumps down

to lower mass levels and also constrain the profiles of these small clumps. The sensitivity limit

relies mostly on three criteria: FWHM of PSF, magnification at the position of the sub-clump

and source surface brightness variation at the lensed position of the sub-clump. For any

different data qualities, telescopes etc, we are able to perform such sensitivity tests.

3.6 Summary

In this chapter, we introduced a new strong lensing modeling framework which is based on

versatile basis sets for the surface brightness and lens model. We identified the following

aspects of our framework:

• Its modular design allows for a step-by-step increase in complexity. We are able to

determine which part of the modeling needs more complexity to reproduce a lens

system.

• It allows for automated or semi-automated fitting procedures. An adaptive cost function

combined with a best fit algorithm, allows it to fit different strong lens systems without

giving specific priors to each one of them. This allows for faster and more systematic

analyses of large numbers of lens systems.

• It is suitable for a wide range of strong lensing systems and observing conditions. Our

framework can be applied to various levels of image quality, different type of lens system,

sizes of the lens, etc, as the convergence algorithm does not rely on strong initial priors.

• It features fast source reconstruction techniques. The evaluation of the cost function
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Chapter 3. Gravitational lens modeling with basis sets

given a position in parameter space including the simulation of the image can be

achieved within seconds. Furthermore our convergence algorithm allows for massive

parallelization on a distributed computer architecture.

We further proposed a way to model strong lens systems to extract information about the

substructure content within the lens. Such investigations can potentially provide useful

constraints on the abundances of low mass objects. To learn about the dark matter properties

from strong lensing, one needs to combine well chosen descriptions for the source light

and lens mass, algorithm techniques which can find solution in high dimension parameter

spaces and a combination of different data sets to break degeneracies (multi-band imaging,

spectroscopy, etc.). A special focus has to be made in choosing the right set of basis functions

and the algorithmic design of the convergence method. Our approach is encouraging as it

succeeds in recovering substructure in the lens without setting mass-to-light priors.

3.A Appendix of chapter 3

3.A.1 Shapelets

The two dimensional Cartesian shapelets as described in (192) are the multiplication of two

one-dimensional shapelets φ(x):

φn(x) ≡φn1 (x1)φn2 (x2). (3.14)

The one-dimensional Cartesian shapelet is given by:

φn(x) ≡
[

2nπ
1
2 n!

]− 1
2

Hn(x)e−
x2

2 (3.15)

where n is a non-negative integer and Hn the Hermite polynomial of order n. The dimensional

basis function is described as

φn(x;β) ≡β− 1
2φ(β−1x). (3.16)
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In two dimensions, we write

Bn(x;β) ≡β−1φn(β−1x). (3.17)

This set of basis functions is used for the source surface brightness modeling and the lensing

potential. To find the derivatives of this functions, (192) introduced raising and lowering

operators which act on the basis functions as

âφn =p
nφn−1, â†φn =p

n +1φn+1, (3.18)

the derivative operator can be written as

d

d x
= 1p

2

(
â − â†

)
(3.19)

and therefore any derivative can be written as a superposition of two other shapelet basis

functions (for further discussions, see (192)) In Figure 3.8, it is illustrated how shapelet basis

functions in the potential space do map in the deflection angle and convergence.

3.A.2 Number of shapelet coefficients

The choice of the maximal order of the shapelet coefficients nmax and its corresponding

number m = (nmax + 1) · (nmax + 2)/2 has a significant influence in the goodness of fit to

imaging data. In Figure 3.9 we illustrate this by reconstructing the source surface brightness

with different nmax. We use the same lens model as in Figure 3.6. We see that even with

nmax = 10, most of the features in the arcs of the image could be reconstructed qualitatively

but significant residuals remain. By increasing nmax, more and more details in the source

appear and the residuals go down.

3.A.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) description was introduced by (205) as a method

to find the global minima in a high dimensional non-linear distribution. The algorithm is

motivated by the physical picture of a swarm of particles moving in a physical potential. Every
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potential φ deflection α1 deflection α2 convergence κ

Figure 3.8: The shapelet functions in potential space are plotted in the first row. From top to
bottom: (0,0), (1,0), (0,1), (0,1) + (3,0). The second and third rows show the deflection angles
α1 and α2. The last row shows the corresponding convergence κ.
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nmax =10 nmax =20 nmax =30 nmax =40 nmax =50

Figure 3.9: The source surface brightness reconstruction of the lens system RXJ1131-1231 is
modeled with different shapelet orders nmax. Upper panel: The reconstructed image. Middle
panel: The normalized residual maps. Lower panel: The reconstructed source. From left to
right: Increasing number of shapelet order nmax from 10 to 50.

103



Chapter 3. Gravitational lens modeling with basis sets

0 50 100 150 200
PSO steps

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

lo
g 

lik
el

ih
oo

d

log likelihood

0 50 100 150 200
PSO steps

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
parameter positions

0 50 100 150 200
PSO steps

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
parameter velocities

Figure 3.10: Illustration of the PSO process in 20 dimensions with 160 particles and 200
iterations. Left panel: Evolution of the log likelihood of the best fit particle. Middle panel: The
difference of the parameter values from the best fit at each iteration relative to the end point
of the PSO process. Right panel: Velocity of the best fit particle at each iteration. Different
colors are used for each of the parameters.

particle gets assigned a position in parameter space, a function evaluation (the log likelihood

value) and a velocity in parameter space. The particles is assigned a swarm “physical" behavior

when moving up or downwards a potential and a “swarm" behavior when redirecting their

velocity towards the particle at the deepest place of the potential. The PSO process is illustrated

in Figure 3.10 in a 20 dimensional parameter space. The implementation of the PSO algorithm

used in this work is publicly available as part of the CosmoHammer (202) software package. The

inertia weight strategy comes from (209) and the stopping criteria of (210) was implemented.
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4 Line-of-sight effects of strong lensing:

Putting theory into practice

This chapter appeared in a similar form in the submitted publication Birrer, Welschen, Amara & Refregier

2016 (31).

Gravitational lensing is a unique probe for measuring dark matter and dark energy by map-

ping the mass distribution of the universe on different scales. On the largest scales, weak

gravitational lensing surveys measure the linear and non-linear regime of structure forma-

tion (see e.g. reviews of (211; 212) and references therein). On scales of individual galaxies,

time-delay cosmography measures angular diameter distance relations ((213; 214) or (215) as

a recent review), which gives us information on the background expansion of the universe.

On sub-galactic scales, the abundances of dark substructure that can be studied using strong

lensing is sensitive to the physical properties of dark matter (151; 152; 153; 163; 154; 155).

These different gravitational lensing regimes each developed formalisms to connect their

observables with the underlying physical distribution of dark matter being studied. The

distinction between these domains effectively reflected the simplifying assumptions they

each used. For example, the simplest approach in modeling strongly lensed systems is to

describe the process in terms of a single strong perturber and to neglect contributions of other

masses along the line-of-sight (LOS). On the other hand, for weak lensing studies, the focus

is on integrated tidal distortions due to structure along the LOS, but higher order non-linear

stronger lensing effects are typically not included. However, with increasing volumes and
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quality of data, this distinction between the different regimes is no longer sufficient and an

integrated approach to lensing problems needs to be adopted.

There are several examples in strong lensing where the LOS needs to be considered carefully.

One is the inference of dark matter substructure properties from Quasar flux ratios (168),

where LOS structure can have a significant impact on this observable and therefore can affect

the interpretation of the data (216; 150; 166; 165). Another example is strong lens cosmography

(213; 214; 217; 218) since integrated LOS structure in the vicinity of galaxy scale strong lens

systems can have a significant impact on relative time-delay measures. These must be taken

into account to perform precision cosmographic estimates (219; 220; 221; 222; 223).

Early work studying external shear and ellipticity in gravitational lensing described the impact

of LOS mass distribution as an equivalent additional mass sheet at the redshift of the main

deflector with uniform surface mass density κext (224; 225). In the literature, the LOS structural

parameter κext is typically estimated using: (i) imaging and spectroscopy of objects in the

neighborhood of the lensing systems (e.g. 226; 227; 220; 228; 179; 221; 229); (ii) weak lensing

(e.g. 230); and (iii) using comparison with cosmological numerical simulations (e.g. 231; 232).

Recently, a general multi-plane lensing framework has been introduced (50). The authors later

use this approach to test their accuracy in modelling LOS structure using mock position data

(223) for quadrapole lens systems. They point on the need for properly accounting for LOS

structure in precision lens modeling.

In this chapter, we present a set of simplified approximation of the multi-plane framework

for accounting for LOS structures. These give reliable reconstructions for strong lens systems

around the Einstein ring. The advantage of this is that accuracy is maintained while also

allowing us to separate the calculations of the LOS effects from the strong lensing deflections

of the main lens. This, in turn, allows us to incorporate LOS modelling into our modelling

tools of chapter 2 and 3 that aim to reconstruct the full extended lens system. We apply

our modeling formalism to the lens system COSMOS0038+4133 and demonstrate the power

gaining insights into the LOS structure through strong lens image reconstruction.

The chapter is structured as follows: In section 4.1 we revisit the geometry of multi-plane

gravitational lensing, review the approaches being taken in the literature and introduce our
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notation. In section 4.2, we state our approximations, the phenomenological modeling pa-

rameterization for strong lens image reconstruction, provide the link to the physical mass

distribution in the universe and present test on mock data. In section 4.3, we apply our

modelling formalism to a strong lens in the COSMOS field. Independently, we perform an en-

vironmental analysis based on the galaxies in the vicinity of the lens and show the strength of

the combination of strong lens and environment analysis. Finally, in section 4.4 we summarize

this chapter.

Throughout this chapter, we assume a flatΛCDM cosmological model with parametersΩΛ =
0.7,Ωm = 0.3, H0 = 67 km s−1Mpc−1.

4.1 Multi-plane gravitational lensing

In this section, we review multi-plane gravitational lensing, the joint effect caused by multi-

ple lens planes at different distances. We further introduce our notation and state suitable

approximations to the full non-linear multi-plane ray-tracing in the regime of one main

strong lens. Mathematical aspects of multi-plane strong gravitational lensing were studied

in (233; 234; 235; 236; 237). Of practical use for our analysis is the multi-plane lens equation

(238; 239; 240).

4.1.1 General description

In gravitational lensing, the mapping from source to image is given by the lens equation (e.g.

see 241, for background material) and the introduction of this thesis 1.3

~β=~θ−~α(~θ), (4.1)

where~θ is the un-lensed angular position, ~β is the post lensing position and α is the deflection

angle. When studying strong lens systems, the thin lens approximation is widely used. This

models the light travel path as straight between lens planes with sharp deflections at the
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Strong lens deflected Born approximation (SLB)

Undeflected Born approximation (noSLB)

Critical Sheet Born approximation (CSB)

Full ray-tracing (FRT)

Figure 4.1: Illustration of different approximations of the light path on which to compute the
LOS effects. Strong lens deflected Born approximation (SLB, red line): Computation along
the strong lens deflected path, which is accurate but leads to non-linear couplings to the
strong lens. Undeflected Born approximation (noSLB, green dotted line): Born approximation
ignoring the strong lens. This method is inaccurate for accounting of the effects of background
perturbers. Critical Sheet Born approximation (CSB, blue dashed line): Replacing the strong
lens deflected path (SLB) by a critical mass-sheet deflected path (see section 4.2). Full ray-
tracing (FRT, thin black line): No approximations and every (small) deflector is modeled as a
single lens plane.
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positions of the lenses. In the case of a single lens, the lens equation becomes,

~β=~θ−~α(~θ) =~θ− Dd s

Ds

~̂α(Dd
~θ), (4.2)

where ~̂α(Dd
~θ) is the physical bending angle that is linked to~α(~θ) through the angular diameter

distance Ds (the angular diameter distance from the observer to the source), Dd (the angular

diameter distance from the observer to the lens) and Dd s (the angular diameter distance from

the lens to the source).

In the case where there are n thin lenses along the LOS, the total mapping is the sum of all the

deflections, weighted by their distance relations and evaluated at the light path as

~βs =~θ− 1

Ds

n∑
k=1

Dks~̂αk (Dk
~βk ) (4.3)

where ~βk is the angle under which the k’th lens deflects the light ray and ~β1 =~θ. The ordering

in Dk follows the backwards light path such that the light passes the lens at k before k −1 (see

also (50) for a different notation of the same expression).

4.1.2 Case of one strong deflectors and several weak ones

Often in strong lensing, the dominant deflection is due to one single object at a specific redshift

with additional deflectors causing secondary weaker effect. The black path shown in Figure

4.1 shows an illustration of the light travel path through a multiple lens system (full ray-tracing

FRT). One way to simplify the calculation is to treat the smaller additional lenses as tidal

perturbers (neglecting higher order terms). This tidal approximation depends on the light

path. The undeflected Born approximation (noSLB, green dotted line in Figure 4.1) computes

the light path ignoring any deflector. The noSLB approximation leads to a distortion that is

given by the distortion matrix (Γi j ):

Γi j ≡ ∂βi

∂θ j
≡

 1−κ−γ1 γ2

γ2 1−κ+γ1

 (4.4)
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where κ is the convergence and γ1, γ2 are the shear components of the linear distortion

matrix. Another approach, we call it “strong lens deflected Born approximation" (SLB), takes

the main deflector into account when evaluating the effects of the LOS perturbers. This

approximation (the red path shown in Figure 4.1). The advantage of this approach is that

this approximation replicates that of the full ray-tracing calculation with high fidelity relative

to noSLB. Higher order effects (flexion) are small for LOS perturber (see e.g. (223)). The

problem, however, is that the tidal effect can only be calculated after the light path has been

found. This coupling between the ray-tracing and the impact of the secondary lenses makes

such a calculation impractical when modelling strong lens systems. For this reason, there

are significant advantages to finding further simplifications that are able to separate the two

computations. The most commonly used method for achieving this is to perform ray-tracing

for the main lens (red in Figure 4.1) with the additional effect from the secondary lenses

calculated along the un-lensed path (noSLB, green dotted path of Figure 4.1).

As we will demonstrate later, ignoring the bending of the main deflector can lead to significant

inaccuracies in strong lens calculations. To over come this problem we introduce a new ap-

proximation (detailed in the next sections) that better captures effects of secondary perturbers

close to strong lenses without a coupling to the ray-tracing by the main lens.

4.2 Critical Sheet Born Approximation (CSB)

Since most of the information from strong lens systems typically comes from regions close to

the Einstein radius, we have focused on finding an approximation that is valid in this region.

At the Einstein radius the light bending is critical (~α(~θE ) =~θE ) irrespective of the mass and

detailed shape of the strong lens.

A critical mass sheet holds α= θ everywhere and fulfills by construction the condition at the

Einstein radius, irrespective of the Einstein radius of the strong lens. The ray-tracing through

the full main deflector and evaluating the LOS effects based on light rays bent by a critical

mass sheet leads to the same LOS effects around the Einstein radius compared to SLB. We

call this approximation the Critical Sheet Born (CSB) approximation. In Figure 4.1, CSB is

indicated with the blue dashed line. With such a description of the light path in computing
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LOS effects, we can avoid non-linear coupling between main deflector and LOS perturbers.

4.2.1 Formalism

The lens equation 4.2 with additional first order distortion effects from LOS structure can be

written as

~βs =~θ− Dd s

Ds

~̂αd (DdΓ
A
i j
~θ)−

(
ΓB

i j +ΓC
i j

)
~θ, (4.5)

where ~̂αd is the physical deflection angle of the main deflector, ΓA
i j is the distortion matrix at

the deflector plane caused by foreground perturbers, ΓB
i j is the distortion caused by the same

foreground perturbers at the source plane and ΓC
i j is the distortion caused by background

perturbers on the source plane.

For foreground perturbers, we evaluate the distortion effect on undeflected light paths ~βk<d =
~θ. For background perturbers, we use instead the light path caused by a critical mass-sheet at

the main deflector plane. This results in a light path

~βk>d =~θ
(
1− Ddk

Dk

Ds

Dd s

)
. (4.6)

Given these approximations on the light paths ~β, the distortion matrices of equation 4.5 are

given by

ΓA
i j = δi j −

∑
k<d

Dk Dkd

Dd

∂α̂i
k

∂x j
, (4.7)

ΓB
i j =

∑
k<d

Dk Dks

Ds

∂α̂i
k

∂x j
, (4.8)

and

ΓC
i j =

∑
k>d

Dk Dks

Ds

(
1− Ddk

Dk

Ds

Dd s

)
∂α̂i

k

∂x j
. (4.9)

α̂i
k are the physical deflections caused by the LOS perturbers and x j are physical distances at

111



Chapter 4. Line-of-sight effects of strong lensing: Putting theory into practice

the perturber. The only explicit deflection in equation 4.5 is the main deflector α̂d . As pointed

out by (223), the non-linear effect of the term ΓA
i j on α̂d is important and not taking this effect

into account can lead to significant biases in the lens model inference. Furthermore, the LOS

structure close to the source plane is of less importance as the light rays are bent and get closer

to each other and reduced the induced tidal distortion.

4.2.2 Phenomenological parameterization

In this section, we discuss what the observables from strong lensing image reconstruction are

when the underlying description is approximated by equation (4.5). The effect on the lens

equation of the LOS structure can be expressed as tidal distortions (equation 4.4). Equation

4.5 becomes

~βtrue =~αtrue

(1−κd )Dbkgd
d

 1−γ′1,d γ′2,d

γ′2,d 1+γ′1,d

~θ
+(1−κs)

 1−γ′1,s γ′2,s

γ′2,s 1+γ′1,s

~θ, (4.10)

where γ′ = γ/(1−κ) is the reduced shear. ~βtrue and ~αtrue indicate that in the stated form above

including the true physical lens model is recovered. Dbkgd
d states the cosmological background

angular diameter distance. Additionally to the main deflector, 6 additional parameters, namely

the shear and convergence terms to the lens (γ1,d , γ2,d , κd ) and the source plane (γ1,s , γ2,s , κs)

describe the LOS effect.

The convergence terms κd and κs lead to particular degeneracies with other lensing effects.

A non-zero convergence κd changes the angular diameter distance according to D lens
d =

(1−κd )Dbkgd
d . The angular diameter distance D lens

d must be considered when computing

other physical quantities of the lens, such as lensing potential and kinematics. The angular

diameter distance D lens
d can not be determined from strong lens image reconstruction without

relying on other information. The effect ofκs leads to a rescaling of the lens equation (Equation

4.1, 4.5 or 4.10) without changing image observables. The physical interpretation of the

rescaled quantities can change significantly. This is known as the mass-sheet degeneracy

(242; 243; 244; 245).
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4.2. Critical Sheet Born Approximation (CSB)

The convergence effects can be decoupled from the image reconstruction. Instead of modeling

~αtrue, ~βtrue κd and κs one can model a rescaled lens equation

~βscaled =~αscaled

Dbkgd
d

 1−γ′′1,d γ′′2,d

γ′′2,d 1+γ′′1,d

~θ
+

 1−γ′1,s γ′2,s

γ′2,s 1+γ′1,s

~θ. (4.11)

The physical interpretation of the inferred deflection angle ~αscaled, source scale ~βscaled and

shear terms on the lens plane γ′′d change according to the convergences. The actual physical

deflection relates to the scaled one as ~αtrue = (1−κd ) (1−κs)~αscaled. The source plane coordi-

nate scales as ~βtrue = (1−κs)~βscaled and the shear induced on the main deflector γ′′d scales as

γ′′d = γd

(1−κd )2 (1−κs)
. (4.12)

4.2.3 Validity test

To test the accuracy of the approximations stated in Section 4.2.1, we construct a test scenario

and compare the full multi-plane ray-tracing solution with our proposed formalism. For this

purpose, we position a singular isothermal sphere (SIS) lens with velocity dispersion σv = 200

km s−1 at a redshift zd = 0.5 and a source at zs = 2. The Einstein radius of this configuration is

θE = 0.73". We place a single perturber in the form of a Navarro-Frank-White (NFW) profile

(200) with an angular separation of 8" away from the center of the SIS profile. We chose the

mass within a mean over-density of 200ρc as M200 = 1013M¯. We vary the redshift of the

perturber (z = [0.1,0.3,0.5,0.7,0.9]) to test our formalism for different LOS positions.

The perturber is a group scale halo close to the main deflector. This is a relatively strong LOS

perturber. Any perturber less massive and/or further away in angular separation will have

a weaker impact on the deflection angles and will be approximated as well or better in our

formalism. The integrated lensing effect from multiple perturbers adds linearly on the shear

and convergence terms. The accuracy of multiple perturbers should be valid as long as the

integrated shear terms are of comparable strength as the single group scale halo.
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Convergence maps

We first test the accuracy of the predicted convergence map. In Figure 4.2, we compare the

computed convergence maps of the full ray-tracing (FRT) with the approximation of our

formalism (CSB). The convergence map for FRT is computed with differential ray-tracing. The

top panel of Figure 4.2 shows the deviation of the convergence map of CSB to the full solution

(FRT) (κC SB −κF RT ). The lower panel shows a same comparison with the Born approximation

(noSLB) of the LOS perturber (κnoSLB −κF RT ). The Einstein radius is plotted in black dashed

lines.

The main differences in accuracy occur when the perturber is placed in front of the lens

(z < zd ). The non-linear effect on the lens model can be well captured by CSB whereas noSLB

ignores those effects and leads to significant residuals in the convergence map. The higher

order distortion effects of the LOS perturber results in ∆κ< 0.01 at the Einstein radius for CSB.

When the perturber is placed between the source and the lens (zd > z > zs), the two approaches

have different predictions but neither of them can predict the convergence map accurately

over the entire area of the lensing system to a precision better than ∆κ ≈ 0.1. The main

difference is that CSB reproduces the mean convergence within the Einstein radius while

noSLB over-estimates the convergence induced by the perturber significantly. CSB reproduces

the mean convergence within the Einstein radius by construction while the induced error in

the mean convergence in the noSLB is ∆k ≈ 0.05. This behavior of the two approximations

becomes emergent when looking at extended surface brightness simulations (see section 4.2.3

below).

Extended surface brightness

To test how well extended lensed surface brightness information can be predicted and re-

produced by the CSB formalism, we take the same test case of 4.2.3 and model a Gaussian

source surface profile with a width σ= 0.02" in the source plane positioned in line with the

center of the main deflector. In the absence of external perturbers, this configuration leads to

a perfectly circular Einstein ring in the image plane. In Figure 4.3, the simulated mock images

are shown for the different computations of the LOS structure. For the moment, we do not
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Figure 4.2: Comparison of different approximations with respect to the convergence pre-
diction. Blue (red) corresponds to an under-(over-)estimation of the convergence by the
approximation scheme. Upper row: Relative convergence of CSB compared to FRT. Lower row:
Relative convergence of the Born approximation (noSLB) compared to FRT. From left to right:
Comparisons with increasing LOS perturber redshift. The main deflector is placed at zd = 0.5.
The black dashed circle indicates the Einstein radius of the main deflector.

include any observational effects into the simulation (e.g. PSF and noise). In the top row, the

full ray-tracing (FRT) simulations are shown. In the middle row, the predictions of the CSB

formalism are shown. We see no distinguishable effect in the image plane. In the bottom

row, the predictions with a Born approximation (noSLB) is shown. This test shows that the

CSB approximation provides a good description for lens and source configurations that form

an Einstein ring-like extended structure. We also see that the features in the image are not

predicted accurately by a noSLB approximation. In particular, for foreground perturbers (first

two columns in Figure 4.3), the real feature is a sheared Einstein ring/ellipsoid. This feature

can only be reproduced when the non-linear effect of the perturber on the main deflector is

taken into account. For background perturbers, the CSB approximation for the light paths is

valid around the Einstein ring and can accurately predict the observational features. A noSLB

approximation overestimates the induced tidal distortion and convergence (see also (223)).

4.2.4 Testing the constraining power of LOS inference

We analyze the information content of strong lens imaging data on constraining the LOS

structure parameters. To do so, we set up a test case with realistic observational conditions
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FRT

CSB

noSLB

z=0.1 z=0.3 z=0.5 z=0.7 z=0.9

Figure 4.3: Comparison of different approximations with respect to the image prediction. In
this model, a Gaussian source is placed at zs = 2 and a main deflector as a SIS profile at zd = 0.5.
In addition, a LOS perturber is placed at different redshifts. Top column: Image computed with
full ray-tracing (FRT). Middle column: Image computed with the CSB formalism presented
in this work. Bottom column: Image computed with the noSLB approximation of the LOS
perturber.
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and source surface brightness. We then do a parameter inference and test the recovery of the

LOS induced effects.

Specifically, we generate a mock image of a source at redshift zs = 2, a main deflector at redshift

zd = 0.5 and a LOS perturber at zlos = 0.1. The main lens is modeled as a SIS with velocity

dispersion σv = 200km s−1. The LOS perturber is positioned 8" from the main deflector with

an NFW profile with mass M200 = 1013.5M¯. We model the extended light emission from

the source as a Gaussian light profile with width σs = 0.02". We compute the observable

light emission with sub-pixel resolution ray-tracing, convolution with a HST-like PSF and

adding Poisson noise on the observed flux and a Gaussian noise realization of the background

comparable to HST image quality of the COSMOS field.

We reconstruct the mock imaging data described above to infer the lens model parameter

posteriors (including the LOS terms of Equation 4.11). For the lens model, we choose a

smooth power-law elliptical mass profile (SPEMP), which allows for arbitrary elliptical mass

distributions and power-law slopes. In the reconstruction modeling, we rescale the source

size by 1/(1−κs) to ensure that the same source description is applied in the reconstruction.

Source size - power-law slope degeneracies are known and highly depend on the source

reconstruction technique applied (see e.g. chapter 5). The more general lens model compared

with the mock realization tests more rigorously the capability of recovering the LOS structural

parameters. The inference is done with the formalism presented in chapter 3 with a Monte

Carlo Markov Chain (MCMC), implemented in the CosmoHammer (202) software. In Figure 4.4,

the inferred parameter posteriors are illustrated. Red vertical and horizontal lines indicate

the input parameters for the lens model and the expected scaled shear parameters caused

of the LOS perturber. The inference accurately recovers the expected lens and shear terms

provided by the CSB formalism and shows that a separability of main deflector and LOS

structure can be made with the given lens model assumptions. The posteriors in the ellipticity

of the lens and the external shear terms are degenerate but the effects in the image (i.e. the

ellipticity of the ring) can not be fully reproduced by an elliptic lens model configuration of

the specifically used parameterization. The marginalized constraints on all the shear terms

results in constraints of ±0.003, a high precision measurement of the reduced shear field at a

specific angular position on the sky.
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Figure 4.4: Parameter inference of the mock image described in Section 4.2.4. Red lines
indicate the true input for the lens model parameters e1, e2 and θE . For the LOS shear
parameters, the red lines correspond to the prediction of the CSB formalism modulo the
convergence parts (Equation 4.11, 4.12). All parameter posteriors are consistent with the input
model. The four external shear terms can be accurately determined to a precision of ±0.003.
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4.3 The strong lens COSMOS0038+4133 and its environment

In section 4.2, we used mock data to show that strong lensing systems can allow us to infer

scaled shear terms of the LOS structure with high precision. The prediction of the same

environmental quantities can be independently inferred by specifically modeling the LOS

structure. Additionally, an explicit modeling of the mass structure enables us to simultaneously

infer the external convergences κd and κs . The external convergences are important for many

strong lens studies that involve the knowledge of the physical scales at the lens and/or source

plane.

We next apply our formalism to the strong lens system COSMOS 0038+4133 and its environ-

ment to test the capabilities of our method on real data. The lens system COSMOS 0038+4133

(R.A. = 10h00m38.2s DEC =+02◦41arcmin33arcsec J2000) was chosen as our primary target

as the configuration is close to an Einstein ring and there are massive galaxies in its close

proximity that potentially add significant external shear and convergence contributions to the

lens system. Detailed information about the lens system is provided in appendix 4.A.1 and the

data, catalogs and derived stellar masses of the galaxies in appendix 4.A.2.

First, we perform the strong lens modeling in section 4.3.1. Second, we perform the indepen-

dent LOS structure modeling based on galaxy catalogs in section 4.3.2. Third, we combine the

constraints of the two approaches and show the results on the inferred external convergence

and on the halo mass of specific galaxies in the vicinity in section 4.3.3.

4.3.1 Strong lens reconstruction

We model a 1202 pixels cutout centered on the lensing galaxy. The lensing galaxy light profile is

modeled with an elliptical Sérsic profile (201). The source is modeled with shapelet basis sets

(192) with nmax = 10, which corresponds to 66 basis functions. The shapelet scale is chosen to

be β= 0.016", which provides a good fit to the data (modulo mass-sheet transform, see e.g.

chapter 5). For the lens model, we model a Singular Isothermal Ellipsoid (SIE) and in addition

the external reduced shear components of Equation (4.11). We use the framework of chapter 3

as in section 4.2.4 to infer the parameter posteriors. In this particular inference, we further
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Figure 4.5: The strong lens COSMOS 0038+4133. In the left panel, the observed HST F814W
image is illustrated. In the middle panel, the best fit reconstruction is shown. The right panel
shows the reduced residuals. The model allows to reconstruct the arc features in detail. The
largest residuals are present in the central part of the lens galaxy.

max likelihood 1-σ posteriors

θE 0.663 0.663±0.001
e1 -0.105 −0.104±0.006
e2 0.018 0.017±0.004
γd

1 -0.114 −0.115±0.002
γd

2 -0.061 −0.061±0.002
γs

1 -0.219 −0.218±0.003
γs

2 -0.034 −0.035±0.002

Table 4.1: Lens model parameter inference for COSMOS 0038+4133. Not included in this
list are the lens light model parameters. The column labeled "max likelihood" shows the
parameter position of the global maximum in the likelihood. The image reconstruction of this
lens model is shown in Figure 4.5 middle panel. The second column shows the 1-σ marginal
posteriors.

assume that the lens mass of the SIE is centered at the position of the luminous profile of the

lensing galaxy.

Figure 4.5 shows the original HST F814W image (left), the best fit reconstructed model (middle)

and the reduced residuals (right). In Table 4.1 the lens model parameter posteriors are stated

for COSMOS0038+4133. We see that the precision on the shear terms is comparable to the

mock example in Section 4.2.4 (Figure 4.4). With the stated model assumptions, the shear

parameters associated with the LOS structure can be inferred with an uncertainty of ±0.002.

120



4.3. The strong lens COSMOS0038+4133 and its environment

4.3.2 Halo rendering

We estimate the mass distribution in the vicinity of COSMOS 0038+4133 by linking the galaxies

in the catalog (see appendix 4.A.2 for details about the galaxy catalog used) to the underling

matter distribution. Similar approaches have been taken by (e.g. 228; 246) on the COSMOS

field. Direct halo mass measurements come for example from galaxy-galaxy lensing (e.g 66; 68).

Indirect methods use galaxy clustering (e.g 64; 247) or abundance matching (e.g 248; 249; 250).

Phenomenological evolutionary models incorporating galaxy evolution in dark matter halos

are presented in (e.g. 78) or alternatively in chapter 2 of this thesis.

We use the stellar-to-halo mass relation (SHMR) by (71), which is based on simultaneously

modeling galaxy-galaxy lensing, galaxy clustering and abundance matching on data from the

COSMOS survey. The scatter in the SHMR is described as a log-normal probability distribution

function M∗ = fSHMR(Mh) and its inverse (250). We use the best fit parameters found in three

redshift bins, which can be found in (71, Table 5). For z > 1 we use the same parameters as for

z ∈ [0.74,1].

Uncertainties in the involved stellar mass estimates propagate non-linearly through the SHMR

and affect the halo mass function, in particular it leads to a more frequent sampling of rare

high mass halos. This is in contradiction to the method applied to determine the SHMR,

which is based on a given fixed halo mass function. To avoid this inconsistency, we apply a

conditional rendering on a fixed halo mass function.

For the spacial distribution of the mass, we assume spherical symmetric Navarro-Frenk-White

(NFW) profiles (251). The masses inferred are taken to be the masses enclosed in a mean over-

density of 200ρcrit. The mass and redshift dependence of the NFW concentration parameter c

is taken from (252; 253). The object-by-object dispersion in c at fixed halo mass and redshift

is assumed to be log-normal as 0.08 dex. The lensing distortions of the NFW profiles are

computed following e.g. (254; 255). Uncertainties in the measurements and modeling (i.e.

stellar mass, SHMR, mass-concentration relation, redshift) can be incorporated by rendering

different realizations of the uncertain quantities and propagate their uncertainties through

their dependencies.
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We only model over-dense regions of the universe explicitly. This leads to a manifestly over-

dense universe compared to the assumed underlying cosmological model. (223) compensated

this effect by ray-tracing through a homogeneous under-dense universe populated with over-

dense halos. We chose a different approach. The necessary and sufficient requirement to

keep the mean curvature of the universe to the one imposed by the background is that the

mean convergence of all angular directions in the universe to all redshifts is zero 〈κ〉 = 0. A

homogeneous under-dense mass distribution contributes a negative convergence κm<0 < 0.

The model thus has to satisfy

0 = 〈κhalo +κm<0〉 = 〈κhalo〉+κm<0. (4.13)

This results in a shift of the convergence estimate of

κrender = κhalo −〈κhalo〉 . (4.14)

The term 〈κhalo〉 is the mean convergence in a randomly sampled distribution of the galaxies in

the field. This method is valid when the universe is homogeneous on the scale being rendered.

Figure 4.6 illustrates the environment of COSMOS0038+4133 and the influence on the shear

of the nearby galaxies in two different zoom-out regions. The shear estimate converges with

a mask of 6.5 arcmin around the strong lens system. For the final sampling, we take a mask

of 13 arcmin around the strong lens system. In the selected area, more than 22’000 galaxies

are found in the catalog and the contribution to the shear and convergence of each of them is

rendered individually and summed up according to equation 4.7, 4.8 and 4.9.

The conservative stellar mass estimate uncertainties of the galaxies and the uncertain SHMR,

especially at high stellar masses, results in weak constraints on the shear and convergence

estimates. Nevertheless, a clear direction (sign) of the shear components is inferred (see Figure

4.7 and further discussions in section 4.3.3). Furthermore, the mass rendering indicates a

highly over-dense LOS, which is not surprising given the way we selected the lens system.
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Figure 4.6: Illustration of the environment of the lens COSMOS0038+4133 and its influence
on the shear at the position of the strong lens. Left panel: 30" cutout of the HST COSMOS
field centered around the lens system. The shear contribution on the source plane γ1,s of
the neighboring galaxies is shown. Right panel: 160" zoom-out of the left panel. Blue circles
indicate galaxies between the observer and the strong lens. Green diamonds indicate galaxies
between the strong lens and redshift z = 2.7. The size of the circle/diamond indicates the
shear strength induced on the strong lens system from the galaxy.
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4.3.3 Combining mass rendering and strong lens inference

Figure 4.7 shows the posterior distributions of the scaled reduced shear components. We see a

consistent inference of the two independent methods in all the four shear terms. The strong

lens image analysis leads to much tighter constraints on the shear terms as compared to the

halo rendering approach.

From the halo rendering, we can compute the probability distribution

Phalo(γ1,d ,γ2,d ,κd ,γ1,s ,γ2,sκs , M 1
h ,c1, ..., M n

h ,cn), (4.15)

which involves all the galaxies (mass and profile parameters) and the lensing quantities,

including the external convergence terms. The strong lens modeling provides the probability

PSL(γ′′1,d ,γ′′2,d ,γ′1,s ,γ′2,s). For the combined analysis, the two probability distributions can be

taken as two independent unnormalized likelihoods as

PHalo+SL ∝ PHalo ·PSL. (4.16)

The two probabilities PHalo and PSL are represented by a discrete sample. To numerically

combine the two likelihoods, we use kernel density estimators for PSL to evaluate for each

sample in PHalo a probability weight from the strong lens analysis. The marginalized errors on

the parameters of interest come from the samples of PHalo with their weights from PSL.

Figure 4.8 shows the inferred external convergence at the lens plane κd (left) and the source

plane κs (right). The halo rendering only constraints are drawn in green and halo rendering

and strong lens reconstruction joint constraints are drawn in blue. The tight constraints on

the reduced shears of the strong lens image reconstruction leads to a significant increase in

precision of the inferred convergence values.

The additional constraints on the scaled shear terms from the strong lensing image recon-

struction can also help constrain the halo masses of individual galaxies neighboring the strong

lens system. Figure 4.9 shows the constraints on the halo mass for a selected massive and
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Figure 4.7: Reduced shear at the lens position γ1,2 (left panel) and the source position γb
1,2

(right panel). Green contours: The 1-2-3 σ posteriors of the halo rendering approach based on
the galaxy catalogue (section 4.3.2). Blue contours: The 1-2-3σ posteriors of the strong lens
image reconstruction based on HST image (section 4.3.1). Both independent approaches are
in agreement with each other. The strong lensing analysis provides much tighter constraints
on the reduced shear components. In addition, the mass rendering approach simultaneously
provides information about the external convergences and the halo masses of each individual
galaxy in the catalogue.
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Figure 4.8: The inferred external convergence at the lens plane κd (left) and the source plane
κs (right). The marginalized posteriors are shown for the halo rendering only constraints
(green) and with the additional constraints on the shear from the strong lens modeling (blue).
The tight constraints on the reduced shears of the strong lens analysis leads to double the
precision in the inferred convergences.
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Figure 4.9: Halo mass constraints for the galaxy 62 arcsec away along the LOS of the strong
lens system at z = 0.342. This is the galaxy with the large blue circle in the lower right half of
Figure 4.6, right side.

nearby galaxy. The strong lens inference implies for this particular galaxy that a very high

halo mass can be ruled out. In particular for a nearby massive galaxy, including the strong

lens information, the posterior on the halo mass shifted by 0.4 dex to lower halo masses. The

statistics of one single strong lens system does not allow to draw significant constraints on the

SHMR. Joint constraints of multiple strong lens systems may add valuable information to the

galaxy-halo connection.

4.4 Summary

We have presented a method to infer line of sight integrated lensing effects for galaxy scale

strong lens systems through image reconstruction. Our approach enables us to separate

weak lensing line of sight effects from the main strong lens deflector and allows a physical

interpretation of both effects in parallel without relying on additional estimates in the image

reconstruction. In particular, our approach reconstructs the observed shape and structure of

extended arc and ring structure in strong lens systems and the approximations of the light

paths and the parameterization allows us to decompose non-linear shear effects caused by

intervening structure from the main deflector. We validated our method on mock data and

demonstrated that strong lens systems can be accurate and precise probes of cosmic shear. In
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a second step, we applied our formalism to the COSMOS field. We reconstruct the HST image,

including the extended strong lens features. Independently, we modeled the LOS structure

inferred from halo rendering using galaxy position, redshift and stellar mass estimates. When

performing a combined analysis of our formalism with the halo rendering approach, we

improve the constraints on the external convergence by a factor of two compared with a

halo-rendering only analysis of the environment.

Strong lenses also allow a very precise direct shear measurement at few specific positions on

the sky. This is complementary to galaxy shape weak lensing measurements. Including strong

lensing constraints in large scale lensing surveys might thus help in calibrating galaxy shear

measurements and constraining the mass distribution in the universe. Furthermore with

increasing samples of strong lenses, one can gain insights into the galaxy-halo connection by

combining strong lens image modeling and halo rendering of their environments.

4.A Appendix of chapter 4

4.A.1 The strong lens COSMOS 0038+4133

The strong lens COSMOS0038+4133 was discovered and first quantified by (256). This system

has a lensing arc including four images of a source object, see Figure 4.5 left panel. The redshift

of the lens in (256) was calculated with the publicly available Le Phare photometric redshift

estimation code using 8 bands, to be z = 0.89+0.05
−0.03 at 68% confidence level. (257) released a

revisited redshift estimate inferred from 30 bands at z = 0.733+0.008
−0.012 at 68% confidence level.

In this analysis we take the more recent redshift estimate of the lens. The Einstein radius is

about θE = 0.73" and the effective radius of the lens galaxy Reff = 0.72". The magnitude of the

lensing galaxy was determined mag(I814w ) = 20.4 and the maximum brightness of the ring

as mag"−2(I814w ) = 20.5. The (unknown) redshift of the source was placed to be at twice the

co-moving distance to the lens at zs = 2.7 for their lens kinematics and mass estimates. This

choice maximizes the lensing efficiency and therefore provides lower bounds on the mass of

the lensing galaxy. We adopt the same choice in our analysis for the source redshift.
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4.A.2 COSMOS data and catalogues

The COSMOS field (see e.g. (258)) has been continuous covered by the HST Advanced Camera

for Surveys (ACS) Wide Field Channel (WFC) in filter F814W. The median exposure depth

is 2028s and the limiting point-source depth is F814WAB = 27.2(5σ). This results in a 50%

completeness for galaxies with a radius of 0.25arcsec at I AB = 26.0 mag. The images were

combined with the MultiDrizzle software (259) where the final resolution of the drizzled data is

0.03arcsec/pixel. We use the third public release v2.0 of the COSMOS ACS data (31. Oct. 2011)

1. Details of HST ACS/WFC observations, the data calibration and processing procedures

are explained in (260). The raw data of the ACS WFC were corrected for the charged transfer

inefficiency by (261).

The COSMOS field provides, apart from the HST coverage, a wealth of additional data products

to reconstruct the environment of the lens. Detailed information of the HST observations

can be found in (262). We take the redshifts and magnitudes from the COSMOS photometric

redshift release (257) for the neighboring galaxies, including apparent magnitudes provided

by (263).

The photometric redshifts in (257) were calculated using fluxes in 30 different bands (broad

and narrow bands covering UV, visible near-IR and mid-IR). Up to z ∼ 2 the accuracy is

σ∆z/(1+zs ) = 0.06 at i+AB ∼ 24, where ∆z = zs − zp and zs are the spectroscopic redshifts of a

comparison sample. We do not include the redshift uncertainty in our analysis as they are of

order the cosmological uncertainties.

We use the NIR K band to calculate luminosities and the broad bands g+ and i+ as a color

indicator to estimate the mass-to-light ratios. We take the color dependent mass-to-light ratio

by (264; 265) in the functional form of (e.g. 266)

log

(
M

LB

)
= a C

B+b C
B · C, (4.17)

where in our case C= (g+ − i+) and B= K . To calibrate the coefficients aB and bB we

1STScI-MAST: http://archive.stsci.edu/ or IPAC/IRSA: http://irsa.ipac.caltech.edu/data/COSMOS/
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use a sample of stellar masses from the COSMOS group membership catalog (267) where

the stellar masses are calculated according to the method described in (68). We split the

calibration sample in six redshift bins and infer the coefficients for the different redshift

samples independently.
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5 The mass-sheet degeneracy and time-

delay cosmography

This chapter appeared in a similar form in Birrer, Amara & Refregier 2016 (30).

Strong lensing systems and the time delays between different images of the same background

source can provide information about angular diameter distance relations (see (213) and

review of (268) for the early work). Cosmographic analyses rely on measurements of time delay

(see e.g., 269; 270; 271; 272; 273; 274, and the COSMOGRAIL collaboration)1 and estimates

of the line-of-sight structure and lensing potential. This cosmography technique has been

applied to determine the Hubble parameter H0 using different strong lens systems (see e.g.

243; 214; 217; 275; 276; 277; 278; 279; 280; 281; 179; 180; 282) and also by applying statistics

to multiple systems (see e.g. 185; 218; 283). In the past, some of the measurements have

produced a wide range of results for H0 (e.g. see section 8.2 of 179). One concern has been to

evaluate the impact of potential systematic errors. In particular, the mass-sheet degeneracy

(MSD) (242) and related degeneracies that cause biases due to model assumptions (e.g. 243;

244; 245; 284; 285) need special consideration. For instance, this has been illustrated by (286)

where they show that assuming a power-law lens model can cause significant biasing of results.

In this chapter, we introduce a new treatment of the MSD and source reconstruction for

cosmographic analyses. This approach integrates information coming from imaging, velocity

dispersion, external convergence and time delay measurements. For the choice of data and

1www.cosmograil.org
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the parameterization of the lens we follow the work of (180), and we infer the values of

the parameters using our recent framework presented in chapter 3. In our framework we

reconstruct the source using shapelet basis sets. This allows us to explicitly set an overall

scale for the reconstruction. We will show that this enables us to better disentangle the effects

coming from source structure and MSD. This then makes it simpler to robustly combine the

information coming from the different data sets.

The chapter is organized as follow: Section 5.1 presents the data used in this chapter. Section

5.2 describes the details of the lens modeling, including kinematics, likelihood analysis and

the source reconstruction technique of (29) introduced in chapter 3. In Section 5.3, we show

that the use of this reconstruction technique turns out to be well designed for mapping out

the MSD. Section 5.4 describes the combined likelihood analysis and posterior sampling.

Section 5.5 discuss the cosmological constraints in terms of angular diameter relations and

cosmological parameters. In Section 5.6, we compare our results to others. We summarize our

conclusions in Section 5.7.

5.1 RXJ1131-1231 system

The quadrupole lens system RXJ1131-1231 (Figure 5.1) was discovered by (206) and the red-

shift of the lens zl = 0.295 and of the background quasar source zs = 0.658 was determined

spectroscopically by (206). The lens was modeled extensively by (207; 208; 180; 287) and in

chapter 3 with single band images. We use the archival HST ACS WFC1 images in filter F814W

and F555W (GO 9744; PI: Kochanek). The filter F814W was also used for lens modeling in

(180), (282) and (29). We make use of the MultiDrizzle product from the HST archive. We

use a 1602 pixel image centered at the lens position with pixel scale 0.05". This corresponds to

a FOV of 8".

For the analysis in this chapter, we take the time delay measurements and uncertainties from

(288), namely ∆tAB = 0.7±1.4 days, ∆tC B =−0.4±2.0 days, and ∆tDB = 91.4±1.5 days, where

[A,B ,C ,D] represent the quasar images in Figure 5.1. This data was used in (180), where they

also measure the LOS velocity dispersion of σv = 323±20 km s−1, that we use in our analysis.

For the external convergence κext, we take the estimate of (180) based on relative galaxy counts

132



5.2. Lens modeling
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Figure 5.1: HST ACS WFC1 images in filters F814W (left) and F555W (right). The F814W filter
has more high signal-to-noise pixels than the F555W filter. In the F555W filter, the substructure
in the Einstein ring and the diffraction spikes of the quasar images are more prominent. The
letters A,B,C,D indicate the quasar images for the time delay differences.

in the field (229) and their modeled external shear component compared with ray tracing of

the Millennium Simulation (see their Figure 6). As their probability density function for κext

is not given in a parameterized form, we use an approximation of their PDF in the form of a

skewed normal distribution with mean µκ = 0.1, standard deviation σκ = 0.042 and skewness

γκ = 0.8. This function is illustrated in Figure 5.2 and described in Appendix 5.A.5.

5.2 Lens modeling

In this section, we present the parameterization of the lens model, the lens light description,

the source reconstruction technique, PSF modeling, the modeling of the lens kinematics and

the likelihood analysis.

5.2.1 Lens model parameterization

For the lens model, we use:
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Figure 5.2: Probability density function of the external convergence in the form of a skewed
normal distribution. The parameters chosen are designed to match well the probability density
function quoted in (180) (their Figure 6).

1. An elliptical power-law mass distribution parameterized as

κlens(θ1,θ2) = 3−γ′
2

 θE√
qθ2

1 +θ2
2/q


γ′−1

(5.1)

where θE is the Einstein radius, q is the ellipticity and γ′ is the radial power-law slope.

2. A second spherical isothermal profile (Equation 5.1 with fixed γ′ = 2 and q = 1) centered

at the position of the visible companion of the lens galaxy about 0.6 arc seconds away

from the center.

3. A constant external shear yielding a potential parameterized in polar coordinates (θ,ϕ)

given by

ψext(θ,ϕ) = 1

2
γextθ

2 cos2(ϕ−φext) (5.2)

with γext is the shear strength and φext is the shear angle.

5.2.2 Lens light parameterization

The light distribution of the lens is modeled in a parameterized form. We use the same profiles

as (180), namely two elliptical Sérsic profiles (289) with common centroid for the central
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elliptical galaxy and an additional spherical Sérsic profile for the companion galaxy. The

intensity profile is parameterized as

I (θ1,θ2) = A exp

−k




√
θ2

1 +θ2
2/q2

L

θeff


1/nsersic

−1


 (5.3)

where A is the amplitude, k is a constant such that θeff is the effective half-light radius, qL is

the axis ratio and nsersic is the Sérsic index. We use the value of half-light radius θeff as the

effective radius in the kinematics modeling of Section 5.2.5.

5.2.3 Source surface brightness reconstruction

We use the source reconstruction method presented in chapter 3 based on shapelet basis

functions introduced by (192). To apply this method, three choices have to be made. (1)

The shapelet center position, which we fixed to quasar source position. The determination

of the quasar source position is explained in detail in 3.3.2. (2) The width of the shapelet

basis function β (see Section 5.3 for its impact). (3) The maximal order nmax of the shapelet

polynomials. We set nmax = 30 for modeling and parameter inference. With this, most of

the features in the extended source can be modeled. Given these three choices, one can

reconstruct the angular scales between β/
p

nmax +1 and β
p

nmax +1 around the center of the

shapelet in the source plane.

5.2.4 PSF modeling

We use four bright stars in the same ACS image to model the PSF. After normalizing for flux,

we apply a sub-pixel shift to recenter the stars and then stack. When comparing the individual

star images and the stack, we see significant variations that we need to consider in our analysis.

To do this by measuring the scatter for each pixel and assume that the scatter in high signal-to-

noise pixels is due to a model error that we quantify as a fraction of the flux. This leads to an

additional error term, beyond the Poisson and background contribution, that is important

close to the center of the bright point sources (see Section 5.2.6). For the quasar point sources,

we use a cutout of the PSF of 1112 pixels to cover most of the diffraction spikes. For the
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extended surface brightness we apply a PSF-convolution kernel of 212 pixels.

5.2.5 Stellar kinematics

We follow the analysis of (179) for the modeling of the stellar velocity dispersion. The mass

profile is assumed to be a spherical symmetric power-law in the form of

ρlocal(r ) = ρ0

(r0

r

)γ′
(5.4)

where ρ0 is the density at radius r0 and γ′ is a power-law slope of the mass profile (the same γ′

as for the lens model in Equation 5.1). The normalization of the mass profile can be expressed

in terms of the lensing quantities as

ρ0r γ
′

0 = (κext −1)Σcritθ
γ′−1
E Dγ′−1

d

Γ
(
γ′
2

)
π1/2Γ

(
γ′−3

2

) . (5.5)

where κext is the external convergence, Σcrit is the critical projected density, θE is the Einstein

radius, Dd is the angular diameter distance from the observer to the lens and Γ is the Gamma

function. The estimation of the projected velocity dispersion along the line of sight requires a

description of the anisotropic velocity component split in radial and tangential component

βani ≡ 1− σ2
z

σ2
r

. (5.6)

Massive elliptical galaxies are assumed to have isotropic stellar motions in the center of the

galaxy (βani = 0) and radial motions in the outskirts (βani = 1). A simplified description of

the transition can be made with an anisotropy radius parameterization rani defining βani as a

function of radius r as

βani(r ) = r 2

r 2
ani + r 2

. (5.7)

Assuming a Hernquist profile (290) and an anisotropy radius rani for the stellar orbits in the lens

galaxy, the three-dimensional radial velocity dispersion σr at radius r from Jeans modeling is

given by
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σ2
r =

4πGa−γ′ρ0r γ
′

0

3−γ′
r (r +a)3

r 2 + r 2
ani

×
(

r 2
ani

a2

2F1
[
2+γ′,γ′;3+γ′; 1

1+r /a

]
(2+γ′)(r /a +1)2+γ′ +2F1

[
3,γ′;1+γ′;−a/r

]
γ′(r /a)γ′

)
, (5.8)

where a is related to the effective radius of the lens light profile θeff by a = 0.551θeff and 2F1 is

a hyper geometric function. The modeled luminosity-weighted projected velocity dispersion

σs is given by

IH (R)σ2
s = 2

∫ ∞

R

(
1−βani(r )

R2

r 2

)
ρ∗σ2

r r drp
r 2 −R2

(5.9)

where R is the projected radius, ρ∗ is the stellar density and IH (R) is the projected Hernquist

distribution. The luminosity weighted LOS velocity dispersion within an aperture Ais then

(see also equation 20 in (179))

(σP)2 =
∫
A

[
IH (R)σ2

s ∗P
]

RdRdθ∫
A[IH (R)∗P]RdRdθ

(5.10)

where ∗P indicate the convolution with the seeing. In Appendix 5.A.1 we describe in detail

how we compute a modeled σP in a numerically stable way. This calculation assumes no

rotational behaviour of the lensing galaxy. Priors on the anisotropic behaviour βani(r ) are

discussed in section 5.4.3.

Equation (5.10) can be expressed as a function of angular scales of rani and θeff paired with

a cosmological dependent angular diameter distance relation and an external convergence

factor as

(σP)2 = (1−κext) · Ds

Dds
·H(γ′,θE,βani(r ),θeff) (5.11)

where H is capturing all the computation of equation (5.10) without cosmological and external

convergence specifications. With this calculation, we see that any estimate of the (central)
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velocity dispersion is dependent on the ratio of angular diameter distance from us to the

source and from the deflector to the source. This fact is important when kinematic modeling

is used to infer cosmographic information. We separate in the modeling the angular and

the cosmological information. The separability allows us to consistently infer cosmographic

information without the need of cosmological priors in the kinematic modeling.

5.2.6 Likelihood analysis

We estimate the pixel uncertainty in the image with a Gaussian background contributionσbkgd

estimated from an empty region in the image and a Poisson contribution from the model

signal dP,i scaled by the exposure map ti. In addition, the modeling uncertainty of the PSF of

the bright point sources with amplitude A j , PSF kernel ki j and model uncertainty coming

from the star-by-star scatter δPSF is given as

σPSF,i =
NAGN∑
j=1

A j ki jδPSF,i j , (5.12)

at a pixel i, where NAGN is the number of quasar images. All together, the uncertainty for each

pixel i sums up in quadrature as

σ2
pixel,i =σ2

bkgd + t−1
i dP,i +σ2

PSF,i. (5.13)

For the linear source surface brightness reconstruction dP,i is replaced by the image intensity

dACS,i.

The likelihood of an image dACS given a model dP is

P (dACS|dP) = 1

Zd
exp

Nd∑
i=1

[
−

(
dACS,i −dP,i

)2

2σ2
pixel,i

]
(5.14)

with Nd being the number of pixels in the modeled image and Zd is the normalization

Zd = (2π)Nd/2
Nd∏
i
σpixel,i . (5.15)

At this stage, it is useful to separate the model into nonlinear parameters η and linear parame-
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ters s. The likelihood of the non-linear parameters is given by

P (dACS|η) =
∫

d sP (dACS|η, s)P (s). (5.16)

The integral is computed in equation 3.6 assuming flat priors in s, which we adopt in this

chapter.

The likelihood for the time delays∆t is the product of the likelihoods of all relative delays of

the quasar pairs (ab)

P (∆t |Dmodel
∆t ,η) = ∏

(ab)

(
1p

2πσab
exp

[
−

(
∆tab −∆t P

ab

)2

2σ2
ab

])
. (5.17)

The likelihood of the LOS central velocity dispersion is given by

P (σv |η) = 1p
2πσσ

exp

[
−

(
σv −σP

)2

2σ2
σ

]
. (5.18)

5.3 The mass sheet degeneracy

There exists many different degeneracies in strong lens modeling (e.g., 244; 291). In this

section we focus on the MSD (242) and in particular its impact on time delay cosmography as

it was pointed out by (286). As shown by (242), a remapping of a reference mass distribution κ

by

κλ(~θ) =λκ(~θ)+ (1−λ) (5.19)

combined with an isotropic scaling of the source plane coordinates

~β→λ~β (5.20)

will result in the same dimensionless observables (image positions, image shapes and magnifi-

cation ratios) regardless of the value of λ. This type of mapping is called mass-sheet-transform

(MST), and shows that imaging data, no matter how good, can not break the MSD.
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The additional mass term in MST (Equation 5.19) can be internal to the lens galaxy (affecting

the lens kinematics) or due to line-of-sight structure (not affecting the lens kinematics) (see

e.g., 244; 245). The external part of the MST can be approximated by an external convergence

κext, which rescales the time delays accordingly. The external contribution also rescales the

source plane. Lens modeling often only explicitly models the internal structure of the lens.

The inferred source scale has to be rescaled by the external mass sheet to match the physical

scale.

5.3.1 Source scaling and the MSD

An important parameter in the lens model inference is the physical source scale. Neither the

lens model nor the source size are direct observables, but they share the MST in each others

inference. Given a lens model, certain source sizes are preferred. The opposite is also true:

Given a source size, certain lens models are preferred. This is a direct consequence of the

MST (Equation 5.19 and 5.20). Therefore, it is important to control the prior on the assumed

source scale in the modeling. A particular source surface brightness reconstruction method,

depending on the choice of regularization, basis set, pixel grid size or parameters of the source

reconstruction, will potentially favor a certain size of the reconstructed source and therefore

may indirectly lead to priors on the internal mass model through the MST. As one does not

know a priori the physical scales in the source galaxy, this may lead to significant biases in the

inference of the lens model.

We use shapelets (192) as the source surface brightness basis functions as implemented in

chapter 3. These basis functions form a complete basis set when the order n goes to infinity.

When restricting the shapelet basis to a finite order nmax, the reconstruction of an image

depends on the chosen scale β of the shapelet basis function. As pointed out by (192), for a

given nmax, there is a scale β̂ that best fits the data. From Equation 5.20, we see that changes

in β can be remapped into changes in the lensing potential through the linear parameter λ.

Therefore, since our source reconstruction technique has an explicit scale, we have a tool to

walk along the MST.
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5.3.2 Varying source scale in the ACS WFC1 images

We have identified the source scale to have an impact on the inference of the lens model

within the MST. To investigate the specific dependence of the shapelet scale in the source

reconstruction in combination with lens model parameterization (Section 5.2.1) in our analysis

of RXJ1131-1231, we model the ACS WFC1 F814W and F555W images with different choices of

the shapelet scale β. For the F814W image, we use the range 0.14" - 0.19" and for the F555W

image the range 0.13" - 0.18". The shapelet order was held constant at nmax = 30. To find

the best fit model, we used a particle swarm optimization as used in chapter 3 to maximize

the likelihood (Equation 5.16). In this section, we only use the HST images for our modeling.

Time-delay and kinematic data will be added in Section 5.4.

Figure 5.3 shows the source reconstruction of the best fit models of filter F814W for six different

scales β. We see that the source reconstructions are very similar but scaled by the relative

factors of the chosen shapelet scale. More explicitly, we overlay in Figure 5.4 the intensity con-

tours of the different source reconstructions rescaled by β. We also show the reconstructions

for the F555W image, which shows the same behavior. On the right of Figure 5.4 we over-plot

a joint source reconstruction of the two bands in a fake color image. In Appendix 5.A.2, we

present the corresponding normalized residuals for this analysis of the F814W reconstruction.

The difference in the likelihood value for different scales β from the imaging data exceeds the

10-σ level between each modeled scale β. This reflect the fact that the chosen lens model

parameterization (see Section 5.2.1) does not allow for the full freedom needed for a perfect

transform according to the MST (Equation 5.19). The source scale β can not be fixed to

an arbitrary value and caution on any scale dependent source reconstruction description

is needed. When assigning a prior on β and infer this parameter together with all the lens

model parameters from the image reconstruction, we are able to very precisely determine the

corresponding source scale and the parameters of the given functional form of the lens model.

5.3.3 Relaxing on the lens model assumption

As pointed out by (286), there can also be an internal component to the MST. Namely when

the lens model can not reproduce the underlining internal mass distribution. The assumption
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Figure 5.3: Reconstructed source surface brightness profiles as a function of shapelet scale
β for filter F814W. The source reconstructions of the best fit lens model configurations are
shown with a given β. We see that the features become larger with larger choices of β.

Figure 5.4: Left: Intensity contours of the reconstructed source surface profiles rescaled to
fiducial value β = 0.2" for the different shapelet scales β in filter F814W of Figure 5.3. The
contour lines overlay well. The lens model does adopt to the choice of β such that the source
reconstruction catches the best scales. Middle: Same as left for the filter F555W. The same
behavior can be seen as for F814W. Right: Color composite model of the filters F814W and
F555W for a chosen joint lens model.
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of a power-law lens model formally sets the internal part of the MST. The parameters will fit

preferentially those models, whose shape, modulo an artificial MST, are the most similar to the

underlying mass distribution. The only effect visible in the modeling of the imaging data is on

the source scale. The inferred source scale will be different from the one of the true lens model.

Any assumed mass distribution which can not be rescaled according to Equation (5.19) can

thus potentially lead to biased inferences, in particular on the slope of the mass profile. This

also can result in significant biases in the inferred lensing potential and lens kinematics. In

particular, it was stated by (286) that the assumption of a power-law lens model can potentially

lead to a significant bias in the inference of the time delay distance.

Three approaches to handle the concerns of (286) in performing cosmographic estimates are:

1. One assumes that the true lens model can be described within the functional form of

the chosen parameterization. This is the approach done by (180). In this case we end up

with the potentially biased inference discussed in (286), a situation we want to avoid as

good as possible.

2. One choses a more flexible lens model than a single power-law mass profile. This ap-

proach was followed in (282) in response to (286). Different profile parameterizations

may lead to different preferred source scales. It is not guaranteed that a more sophis-

ticated lens model parameterization infers an unbiased result in the cosmographic

inference.

3. Perform simplifications and approximations that lead to greater robustness against

known degeneracies. For instance accommodating MST through careful handling of the

source size inference.

In this chapter, we chose the third option mentioned above. This option requires the least

assumptions on the lens model and a prior is placed on the source size, rather through

the functional form of the lens model. In Appendix 5.A.4 we specifically state the process

in a Bayesian inference way to make clear our steps and approximations and show that a

renormalization of the imaging likelihood for different imposed source scales β is needed to

explore the impact of plausible internal MST on the cosmological inference.
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5.3.4 Adding lens kinematics

Additional constraints on the lens model can come from kinematic data at a different scale than

the Einstein ring. This becomes of particular importance when weakening the constraining

power of the lens model, as described in Section 5.3.3. Lens models with different source scales

predict different lens kinematics. The prediction depends on the stellar velocity anisotropy

βani which can not be known from the existing data and the external convergence κext which

has to be inferred separately.

As long as the relative likelihood of additional kinematic data (Equation 5.18) can not compete

with the relative likelihood of the different shapelet scales β (on the 10-σ level between the

chosen source scales, see Section 5.3.2), the combined likelihood will be dominated by the

lens model assumption. Only when re-normalizing the likelihood of the imaging data for

different scales β, the kinematic data can have a significant impact in the determination of the

lens profile and in particular the lens potential for time-delay cosmography.

5.4 Combined likelihood analysis

In this section, we discuss how we combine the different data sets and their likelihoods. We

showed in the previous section that biases can emerge from choices in the lens and source

modeling. These aspects have to be taken into account when the data sets are combined.

5.4.1 Combining imaging and time delay data

In a first step, we do a joint analysis of the independent measurements of the time delay and

imaging data. The combined likelihood is

P (dACS,∆t |η,Dmodel
∆t ) = P (dACS|η)P (∆t |Dmodel

∆t ,η) (5.21)

with the independent likelihoods of Equation (5.16) and (5.17). We do not yet combine the

kinematic data at the likelihood level. We sample all the lens model parameters and the time

delay distance Dmodel
∆t . We keep the lens light parameters fixed at the final position of the

particle swarm process in the MCMC process to achieve a more efficient sampling of the
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5.4. Combined likelihood analysis

relevant parameters. We included the full flexibility of the lens light parameters on a subset of

the MCMC chains and come to the conclusion that the additional covariance of the lens light

model on the cosmographic analysis is very minor, i.e. the impact on the uncertainty on H0 is

below 0.1%.

From Bayes theorem, the likelihood of the parameters given the data is (modulo a normaliza-

tion):

P (η,Dmodel
∆t |dACS,∆t ) ∝ P (dACS,∆t |η,Dmodel

∆t )P (η)P (Dmodel
∆t ). (5.22)

We apply flat priors on the parameters γ′ ∈ [1,2.8], θE ∈ [0.1",10"], q ∈ [0.5,1], θE ,clump ∈ [0",1"],

γext ∈ [0,0.3] and Dmodel
∆t ∈ [0,10′000] Mpc.

At this stage, we want to emphasize that there are 3 data points in the time delay measurement

compared to several thousands of high signal-to-noise pixels in the imaging comparison. In

principle, the provided time delay measurement can not only determine Dmodel
∆t , which is

independent of the imaging data but also can partially constrain the lens model. In practice,

any even minor bias introduced in the image modeling can out-weigh the constraining power

of the two additional time delay measurements.

In the following, we present the results of the analysis of filter F814W. The results of the

equivalent analysis of filter F555W can be found in Appendix 5.A.3. To sample the posterior

distribution of the parameter space we use CosmoHammer (202). We fix the shapelet scale β

at [0.14", 0.15", 0.16", 0.17", 0.18", 0.19"] and do a separate inference of the parameters for

each choice of β. Figure 5.5 shows the posterior distribution of some of the parameters for

the different choices of β. The inferred parameter constraints for different β values do not

overlap. We see that γext is very narrowly determined for a given shapelet scale β but varies

from 0.07 up to 0.11 depending on the position in the degeneracy plane. We want to stress

that the external convergence κext estimated by (180) is based on an external shear prior of

γext = 0.089±0.006.
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Chapter 5. The mass-sheet degeneracy and time-delay cosmography

Figure 5.5: Posterior distribution (1-2-3 sigma contours) of lens model parameters and time
delay distance of the combined analysis of imaging data of F814W and time delay measure-
ments. Different colors correspond to different choices of the shapelet scale β. The posterior
samples for different β values mutually disagree in almost all parameters presented.
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5.4.2 Constraints from kinematic data

To investigate the potential constraining power of the velocity dispersion data, we are inter-

ested in how distinguishable different positions within the MST are in terms of their predicted

central velocity dispersions. To do so, we fix the cosmology and the external convergence κext

to fiducial values. This allows us to evaluate the predicted LOS central velocity dispersion σP

(Equation 5.11) for all the posterior samples of Figure 5.5. We assume a random realization of

rani with a flat prior in the range [0.5,5]θeff for all the posterior positions.

In Figure 5.6 we illustrate the predicted σP samples vs the predicted time delay distance D∆t .

We see that the samples can not be fully distinguished with the current velocity dispersion

measurement and the assumed anisotropy prior. The relative distance in the predicted velocity

dispersion σP between the different samples are all within 4σ (model given data).

There are three factors which affects the distinction of the source scales by kinematic data.

(1) The uncertainty in the spectroscopic measurement, analysis and modeling of ±20km

s−1 which is about 6%. This is visually the most obvious contribution in Figure 5.6, marked

by the gray band. The mean values of the predicted samples of the different source scales

differ by about one sigma of this estimated uncertainty. (2) The anisotropic uncertainty in

the lens galaxy kinematics. This is the main driver of the spread in the predictions of the

velocity dispersion within each source scale sample. This scatter has a relative spread of 10%

given P[0.5,5](rani). (3) The predicted velocity dispersion depend highly on the observational

conditions and configuration. The PSF and the slit size of the spectrograph results in a

convolution and averaging over a wide range of radial scales. The predicted velocity dispersion

for different concentrations of the mass in the lens galaxy (i.e. power-law slope γ′) differ the

most in the very center of the lens. At the Einstein radius itself, the different lens models

predict basically the same kinematics. With the PSF of 0.7" and a slit size of 0.81"× 0.7",

power-law mass profiles with slopes in the range γ′ ∈ [1.8,2.2] differ by about 100 km s−1 in

their predicted velocity dispersion σP. A smaller slit and seeing conditions of FWHM 0.1"

can double this relative difference and therefore could improve the constraining power of the

kinematic data significantly.

The combined effect of non-perfect data and non-perfect modeling of the kinematic data with
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Figure 5.6: Estimated LOS central velocity dispersions σP vs. time delay distances D∆t of the
sample of lens models from Figure 5.5 (in the same colors) for a kinematic anisotropy prior of
P[0.5,5](rani). The 1-2-3 sigma contours are shown. The external convergence κext was explicitly
set to zero and the cosmology has been fixed to the Planck mean values in this particular plot.
The gray band reflects the 1-σ uncertainty range of the LOS velocity dispersion estimates from
the data. This shows that velocity dispersion estimates add important information on the lens
model constraints.

prior P[0.5,5](rani) can be translated in a relative error in the time delay distance D∆t of about

7.5% from Figure 5.6. Only kinematic data of the lens galaxy and its analysis can reduce this

error budget.

In Section 5.3.2 we showed that the individual image likelihoods of the different β samples

differ by more than 10σ. Before including the velocity dispersion measurement in our cos-

mographic analysis, we re-normalize the image likelihood such that it is independent of the

source scale β (see Section 5.3.3). This re-normalization is done by taking the same number of

MCMC posterior samples from the different source scales β when doing further inferences

with the lens model parameters.
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5.4. Combined likelihood analysis

5.4.3 Source scale and kinematic anisotropy priors

The combination and inference coming from the different data sets relies on priors on the

source scale of the background galaxy and on the anisotropic behaviour of the stellar kinemat-

ics in the lens galaxy. In particular, the inference of the Hubble constant H0 is related to the

inference of the angular diameter distance D∆t as

H0 ∝ D−1
∆t . (5.23)

In Figure 5.6, we see a significant dependence between the size of the source galaxy (∝ β)

and D∆t . Furthermore the interpretation of the kinematic data is also dependent on the

anisotropic behaviour of the lens galaxy.

Choices of the priors on the source size P (β) and aniosotropic kinematic P (βani(r )) must be

chosen with care based on information gained from other work as these priors potentially

have a significant impact on the infered parameter posterior (i.e. H0). In the following, we

discuss two different priors in the kinematic anisotropy and the source scale.

Source size prior P (β)

A simple form of the source size prior which does not impose any specific form of knowledge

about β is a uniform prior in the range [0",10"]. We refer to this prior as Pflat(β). This prior

ignores any knowledge about the population of galaxies. The model parameter β is directly

related to the brightness L of the source as

β2 ∝ L. (5.24)

The number density of galaxies as a function of luminosity is a well measured quantity (lumi-

nosity function, LF) and its faint end slope for the blue galaxy population can be well described

with a single power-law slope as

dn

dL
∝ LαLF (5.25)
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with αLF =−1.30 (292). In this form, the expected source size can be stated as

PLF(β) = dn

dβ
= dn

dL

dL

dβ
∝β2αLF+1. (5.26)

This prior is weakly dependent on β such that smaller source sizes are prefered. We chose

Pflat(β) as our default prior and explore the impact with PLF(β) in section 5.5.4.

Anisotropic kinematic prior P (βani(r ))

Studies of early type (lens) galaxies have been made by e.g. (293; 294) which reveal similar

properties compared to local early type galaxies. We consider two priors which cover the same

range in the mean anisotropic behaviour and their predicted velocity dispersion σP. (1) The

prior used in Figure 5.6 is flat in rani (equation 5.7) in the range [0.5,5]θeff. This prior should

cover the expected scale where the transition between isotropic and radial velocity dispersion

should occur in an uniform way and is exactly the same prior used in (180). We refer to this

prior as P[0.5,5](rani).

(2) We model a global contribution of the anisotropic behaviour in the form

βani = 1− σ̄2
z

σ̄2
r

≡ 1− 1

b
(5.27)

in the range [1,1.5]. This reflects the same range in allowed σP values for a given mass model.

We refer to this prior as P[1,1.5](b). b = 1 indicates a isotropic velocity dispersion and b = 1.5,

for which the velocity dispersion ellipsoid is very elongated along the radial direction with

βani = 0.33, corresponds to rani = 0.5θeff with the same mean anisotropy within the aperture.

This is the same functional form of the prior as used in (295) to analyze a spiral lens galaxy

althought with less range into a pure radial dispersion.

5.5 Cosmological inference

In this section, we study the cosmological constraints from strong lensing using data from

images, time delays, central velocity dispersion of the lensing galaxy and independent external

convergence estimates. We first show that the data can be used to constrain the angular diam-
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5.5. Cosmological inference

eter relation. Based on the constraints on the angular diameter distances, we then introduce

the likelihood that allows us to infer the parameters within the flatΛCDM cosmological model.

5.5.1 Angular diameter distance posteriors

We can combine the posterior samples of Figure 5.5 with the independent velocity dispersion

measurement to calculate the angular diameter distance relations Dd and Ds/Dds (Equation

5.11 and 1.77) as

Ds

Dds
= (σP)2

(1−κext)

1

H(γ′,θE,βani(r ),θeff)
(5.28)

and

Dd = Dmodel
∆t

(1+ zd )(1−κext)

Dds

Ds
. (5.29)

To take into account the errors in σv , κext and rani, we importance sample the posteriors from

the independent measurements (σv and κext) and for rani we uniformly sample in the range

[0.5,5] times θeff (see e.g. 296; 179; 180, for similar use).

The Dd vs Ds/Dds plane as shown in Figure 5.7 inherits the cosmological information of this

analysis coming from the combined data and consistently translates the uniform prior in

the source scale into the cosmological inference. This plane covers a wide range but the

constrained region is more narrow. (297) did a very similar analysis in term of folding in the

velocity dispersion measurement. In our case, we get a degeneracy in the two-dimensional

plane coming from the MST whereas (297) and the forecasting of (298) assume independence

in the two quantities. We over-plot the posterior samples of WMAP DR9 (299) and Planck15

(1) converted to the angular diameter distances of the lens system. We find that at least the

posterior samples of one chosen source scale parameter β is consistent within 2σ with the

CMB experiment posteriors in a flatΛCDM cosmology for the low redshift angular diameter

distance relations. Without the renormalization of the imaging likelihood (see Section 5.3.3),

this statement can not be made.

151



Chapter 5. The mass-sheet degeneracy and time-delay cosmography

400 600 800 100012001400160018002000
Dd

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
s
/D

d
s

β=0.14"

β=0.15"

β=0.16"

β=0.17"

β=0.18"

β=0.19"

WMAP DR9

Planck 2015

6.0 6.2 6.4 6.6 6.8 7.0 7.2
lnDd

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

D
d
s/

(D
d
D
s
)

1e 4

slope α = 0.00058216

intercept C = -0.00318134

width σD = 9.781e-05

skewness γD  = -0.307

β=0.14"

β=0.15"

β=0.16"

β=0.17"

β=0.18"

β=0.19"

Figure 5.7: The constraints of the angular diameter distance relation for discrete positions in
the MSD plane for filter F814W (same analysis for filter F555W is shown in Figure 5.11 in the
appendix). The chosen priors in the source scale and the kinematic anisotropy of the lensing
galaxy are Pflat(β)and P[0.5,5](rani). Different colors indicate different imposed source scales.
On the left panel: Dd vs Ds/Dd s . Also over-plotted are the posteriors of the WMAP DR9 and
Planck 2015ΛCDM posteriors mapped in the same angular diameter distance relation. On the
right panel: Re-mapping of the angular diameter relations into a lnDd vs Dds/(DdDs) plane.
The linear fit is indicated by the thick black line and the (1,2,3)-σ upper and lower limits of
the projected distribution are plotted in different gray scale. The parameters of the fit are
indicated in the figure.
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5.5.2 An analytic likelihood for cosmology

So far, we have discretized the degeneracy plane by uniformly sample β in steps of 0.01".

Effectively this means that while all the other parameters are sampled through standard

MCMC methods, the β direction is sampled on a grid. This separation is needed to allow

us to do the re-normalization of the likelihood as described in Section 5.4.2. Sampling the

β-grid finely is computationally expensive. In the following, we show how we can analytically

describe the posterior distribution and fill the gaps in β without additional sampling.

To do so, we first map the Dd vs Ds/Dds plane of Figure 5.7 (left panel) into a lnDd vs

Dds/(DdDs) plane (right panel). We see a linear relations between the posterior samples

in a monotonic and equally spaced increasing fashion as a function of β. We fit with linear

regression the function

Dds

DdDs
=α ln(Dd)+C (5.30)

with α being the slope and C being the intercept. The legend of Figure 5.7 (right panel) shows

the best fit values, which we discuss in more detail later. The linear fit is a good description of

the combined samples of different source scalings. The same is shown for the filter F555W

analysis in Appendix 5.A.3. The spread of the distribution orthogonal to the linear relation is

not well fit by a Gaussian distribution, but we find a skewed normal distribution provides a

good description.

The one-dimensional likelihood P (dRXJ,π) of the strong lens system data dRXJ given a cosmo-

logical model π is given by the one-dimensional probability density of the samples relative to

the fitted line:

P (dRXJ,π) =φγ
(

x = Dds

DdDs
,µ=α ln(Dd)+C ,σD ,γD

)
, (5.31)

where σD is the standard deviation, γD the skewness and φγ is the re-parameterized skewed

normal distribution function described in Appendix 5.A.5. How the different source scale

priors on β fold in the likelihood is described in Appendix 5.A.6 and equation 5.52. In this

section, we apply a flat prior in β, Pflat(β), and a flat prior in rani, P[0.5,5](rani), (see section
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5.4.3). The inferences for the other combinations of the choices of priors are presented in

Section 5.5.4.

For the analysis of the HST band F814W we fit the values C =−3.18 ·10−3, α= 5.82 ·10−4, σD =
9.78 ·10−5 and γD =−0.307. For band F555W the fits result in C =−4.70 ·10−3, α= 8.20 ·10−4,

σD = 1.32·10−4 and γD =−0.333. Fitting the combined samples of the band F814W and F555W

leads to C =−3.43 ·10−3, α= 6.22 ·10−4, σD = 1.04 ·10−4 and γD =−0.307. The units of these

parameters are given in respect with the angular diameter distances in Mpc.

The simple form of the likelihood enables a fast and consistent combination of different strong

lensing systems also in combination with other cosmological probes.

5.5.3 Cosmological parameter constraints

The constraints on the angular diameter distance relations can be turned into constraints

on the cosmological parameters of the background evolution. In the following we assume a

flatΛCDM cosmology. The homogeneous expansion can be described in terms of the matter

density Ωm and the Hubble constant H0. We use the likelihood of Equation (5.31) with the

values of α, C , σD and γD from the analysis of F814W and F555W separately. First, we sample

the parametersΩm and H0 simultaneously with uniform priors ofΩm ∈ [0,1] and H0 ∈ [0,200].

Figure 5.8 shows the posterior distributions for the filter F814W (left panel) and F555W (middle

panel) for the priors (Pflat(β), P[0.5,5](rani)) separately. The degeneracy in Ωm is strong but

H0 can be determined fairly well. A good approximation of the degeneracy shown in the

H0-Ωm-plane can be described by

H0 = H∗
0

[
1+ 1

2
(Ωm −Ω∗

m)

]−1

±σH∗
0

(
H0

H∗
0

)
(5.32)

where H∗
0 is the value for H0 at fixedΩ∗

m and σH∗
0

is the marginalized error at fixedΩ∗
m . This

form allows us to more directly compare with other results from the literature.

For a fixed value ofΩm = 0.3, we infer a Hubble constant of H0 = 85.0+6.0
−6.3 km s−1Mpc−1for the

F814W and H0 = 88.5+7.5
−7.4 km s−1Mpc−1for the F555W analysis.
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Figure 5.8: Posterior sampling of the cosmological parameters for the filters F814W (left),
F555W (middle) and combined with equal weight of the likelihoods of the two images (right).
The posterior distribution of WMAP DR9 and Planck 2015 are over-plotted. The chosen
priors in the source scale and the kinematic anisotropy of the lensing galaxy are Pflat(β)and
P[0.5,5](rani).

From the analysis of each filter separately, we get an uncertainty coming from the imaging

data only to be below 1% in the resulting inference of H0. Given the fact that our estimates for

the two filters F814W and F555W is about 4.0% different while using exactly the same analysis

and the same time-delay and kinematic data for all other parameters involved, we conclude

that the imaging data inference is partially driven by unknown systematics in the modeling

and the data. To marginalize out potential systematics in the analysis, we combine the two

analyses on the angular diameter posterior level. The two-dimensional posteriors are shown

in the right panel of Figure 5.8. In this way, we get a Hubble constant of H0 = 86.6+6.8
−6.9 km

s−1Mpc−1. The full posteriors for both samples are shown in Figure 5.9.

5.5.4 Prior dependence

In this section we investigate the dependence of the cosmological inference from the choice

of priors of the source scale β and the anisotropic kinematics of the lensing galaxy βani. In

Section 5.4.3 we stated for each parameter two different priors, each of them being quoted

to be uninformative and probing the same range in the physics. In table 5.1 the likelihood

parameters and the resulting H0 inference for fixed Ωm = 0.3 in flat ΛCDM are stated. We

see a strong prior dependence on the posterior distribution which can result in a mean

shift in H0 of more than 10 km s−1Mpc−1. The source scale prior P (β) can result in a weak

mean shift of about 1-2 km s−1Mpc−1without a change in the uncertainty. This means that
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Figure 5.9: Posterior distribution for the value of H0 for a fixed Ωm = 0.3 for filter F814W
(green), F555W (blue) and the combined samples (red). The chosen priors in the source scale
and the kinematic anisotropy of the lensing galaxy are Pflat(β)and P[0.5,5](rani).

P (βani) P (β) C α σD γD Cβ αβ H0
a

P[0.5,5](rani) Pflat(β) −3.43 ·10−3 6.22 ·10−4 1.04 ·10−4 −0.307 - - 86.6+6.8
−6.9

P[0.5,5](rani) PLF(β) −3.43 ·10−3 6.22 ·10−4 1.04 ·10−4 −0.307 -0.0012 263.8 84.3+6.7
−7.0

P[1,1.5](b) Pflat(β) −3.64 ·10−3 6.30 ·10−4 1.41 ·10−4 −0.089 - - 75.7+8.3
−7.8

P[1,1.5](b) PLF(β) −3.64 ·10−3 6.30 ·10−4 1.41 ·10−4 −0.089 -0.0014 264.2 74.5+8.0
−7.8

a For fixedΩm = 0.3 in flatΛCDM.

Table 5.1: Likelihood and posteriors for different choices of priors. The H0 inference is for fixed
Ωm = 0.3. P[0.5,5](rani) indicates a flat prior in rani in the range [0.5,5]θeff in the parameteriza-
tion of equation 5.7 and P[1,1.5](b) indicates a flat prior in b of equation 5.27 of the anisotropic
behavior of the lens galaxy. Pflat(β) reflects a flat prior in the source scale and PLF(β) reflects
a prior of the galaxy luminosity function (see section 5.4.3). The parameters describe the
likelihood function stated in equation 5.31 and 5.52.

the information content in the imprinted priors are roughly the same and the systematic

uncertainty is subdominant to the quoted total uncertainty. The situation changes for the

kinematic prior P (βani). The flat prior approach for the two different parameterizations shifts

the mean infered value of H0 by more than 1σ. The precision is also affected: The prior

P[0.5,5](rani) results in a significantly higher precision inference than P[1,1.5](b). This implies

that P[0.5,5](rani) inherits more information for the specific task of measuring H0 than P[1,1.5](b).

If this prior is not representative of the distribution of early type galaxies, the inference with

P[0.5,5](rani) can be significantly biased compared with P[1,1.5](b).
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5.6 Joint uncertainties and comparison with other work

In this Section we analyze the impact of the different data sets on the cosmological inference

and we compare our method and results with the literature.

5.6.1 Uncertainties from the different data sets

We assign uncertainty estimates on the inference of H0 coming from the independent data

sets, namely the time delays, the HST ACS images, the line-of-sight analysis of wide field data

and the spectra of the lens galaxy for the kinematic estimate 2. We do so by forecasting a

perfect modeling result for all data sets except the one in question. We then proceed in exactly

the same way as presented in Section 5.5. This leads to an inference of the cosmological

parameters only affected by the uncertainties coming from one single data set. We perform

this analysis with the default priors P[0.5,5](rani) and Pflat(β).

In Table 5.2 the estimated uncertainties from the different data sets are summarized and the

1-σ uncertainties on H0 for fixedΩm is stated. The Gaussian approximation of all these errors

leads to a total uncertainty of 9.4% on H0. The estimate of the uncertainty coming from the

full sampling results in 7.9%. This analysis does not include further potential systematics and

does not question the priors chosen.

Our approach on the error analysis is different than the one chosen by (180). We do not quote

an error on the lens model itself, as this inference is dependent on different data sets. We

quote an error on the lens model modulo a MST for the image reconstruction and separately

an error on the kinematic estimate, which potentially can fully break the degeneracy.

We clearly see that the dominant contribution in the final uncertainty can be related to the

kinematic data and its modeling. As discussed in Section 5.4.2, high resolution spectroscopy

can provide data which can better constrain different positions in the MST and therefore

significantly reduce the uncertainty on the angular diameter distance relation. The second

most dominant uncertainty come from the line-of-sight contribution.

2In this analysis we ignore the dependence of the line-of-sight analysis on the shear term from the ACS image
reconstruction.
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5.6.2 Comparison with other work

Cosmographic inference has been published by (180) with the same lens model parame-

terization and by (282) in combination with a composite (dark matter and baryonic matter

separated) lens model, in response to the work of (286). The values and uncertainties on the

Hubble constant are H0 = 78.7+4.3
−4.5 km s−1Mpc−1for a value ofΩm = 0.27 in (180), a 5.5% error,

and H0 = 80.0+4.5
−4.7 km s−1Mpc−1, a 5.75% error, withΩm = 0.27 for a flatΛCDM universe.

One difference between the work of (180; 282) and the one presented in this chapter arise

from the explicit treatment of the MSD and related degeneracies in our work and its link to

the source surface brightness reconstruction method. This allows us to overcome (at least

partially) systematics from the source reconstruction method and the mass profile assumption.

On the other hand, this weakens the constraining power of the image reconstruction. This

explains our larger uncertainties compared to (180; 282). Furthermore, their stated values

on H0 areΩm-independent in the flat scenario while our values do depend onΩm (see our

Figure 5.8 vs. Figure 8 in (180)). This comes from the different description of the cosmological

likelihood. The likelihood in (180) is described fully in terms of the time-delay distance D∆t

where else our likelihood has an additional dependence on Dd . In that sense, their stated H0

value is independent ofΩm but ours requires a prior onΩm .

A second difference is that we work in a 2D-plane of angular diameter distance relations

(Figure 5.7) without the need of cosmological priors to define our angular diameter distance

likelihood. This results in a different shape of the posterior distribution in theΩm-H0 plane

(Figure 5.8) and the inferred projected H0 posteriors have a strongΩm dependence.

The best comparison with the work of (180; 282) should be done when comparing the inference

with the same kinematic prior P[0.5,5](rani) (first or second row in Table 5.1). We want to stress

that we use explicit priors on the source scale. The cosmological inference is dependent on

this prior as the constraining power of the kinematic data is weak. Therefore a shift of about

1σ in our stated uncertainty on the inference of H0 is not surprising.

Comparing our results with the CMB experiments, we get a 2.5 σ shift for P[0.5,5](rani) and

a 1σ shift for P[1,1.5](b) in the ΛCDM parameter inference. We conclude that the angular
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Description Uncertainty
Time delays 1.6%
HST ACS image reconstruction 2.8%
Line-of-sight contribution 4.7%
Lens kinematics a 7.5%
Total (Gaussian) 9.4%
Total (full sampling b) 7.9%

a The quoted uncertainty includes the uncertainty in the
unisotropy radius rani with a prior of [0.5,5]θeff.
b The uncertainty in the full sampling is given as half of
the 68% confidence interval divided by the mean poste-
rior value.

Table 5.2: Error budget on H0 for a fixedΩm .

diameter distance at last scattering and the inferred angular diameter distance relation at

lower redshift from this analysis are consistent with a flat ΛCDM cosmology. Our analysis

depends on uninformative priors on the kinematics of the lens galaxy βani and the source

reconstruction scale β. Further systematics can potentially also occur and are not included in

this analysis.

5.7 Summary

In this chapter we applied the newly developed source reconstruction technique of (29) to

the strong lens system RXJ1131-1231 to extract cosmographic information. We showed how

different source reconstruction scales probe different regimes in the MST even when the lens

model is not fully transformable through the MST.

This chapter is built on the modeling and the data of (180) and the systematics analysis of

(286). We incorporate a re-normalization of the imaging likelihood such that we have explicit

priors on the source scale before combining with the kinematic data.

We introduced a cosmographic inference analysis which enables us to combine imaging,

time-delay and kinematic data without relying on any cosmological priors. We came up with

a likelihood function only based on the angular diameter distance relations, which can be

described in analytic terms.

We find that the choice of priors on lens model parameters and source size are subdominant
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for the statistical errors for H0 measurements of this systems. The choice of prior for the source

is sub-dominant at present (2% uncertainty on H0) but may be relevant for future studies.

More importantly, we find that the priors on the kinematic anisotropy of the lens galaxy have a

significant impact on our cosmological inference. When incorporating all the above modeling

uncertainties, we find H0 = 86.6+6.8
−6.9 km s−1Mpc−1(forΩm = 0.3), when using kinematic priors

similar to other studies. When we use a different kinematic prior motivated by Barnabè et

al. (2012) (295) but covering the same anisotropic range, we find H0 = 74.5+8.0
−7.8 km s−1Mpc−1.

This means that the choice of kinematic modeling and priors have a significant impact on

cosmographic inferences. Further systematics in the data and modeling can also occur. The

way forward is either to get better velocity dispersion measures which would down weight

the impact of the priors or to construct physically motivated priors for the velocity dispersion

model.

This inference analysis was achieved with a single strong lens system in two imaging bands.

Combining the information of multiple systems with comparable data can add vital constraints

about the late time expansion history of the universe, also in terms of extensions of the

standard cosmological model.

5.A Appendix of chapter 5

5.A.1 Numerical computation of the luminosity-weighted LOS velocity dispersion

The computation of the luminosity-weighted LOS velocity dispersion within an aperture under

certain seeing conditions σP (Equation 5.10) involves numerically challenging projection

integrals and convolutions. In this section, we describe our approach to achieve a numerically

stable and fast computation with a Monte-Carlo ray-tracing approach, similarly used by e.g.

(300) to render convolved Galaxy light profiles. This method is based on drawing positions

representing the total light distribution of the galaxy.

For the light in the galaxy, we take a Hernquist profile (290)

I (r ) = I0a

2πr (r +a)3 (5.33)

160



5.A. Appendix of chapter 5

where I0 is the total flux and a relaxed to the effective radius of the galaxy by a = 0.551θeff. The

radial distribution function of flux is then

P (r )dr = 2r

(r +a)3 dr. (5.34)

The cumulative distribution function is

P (< r ) =
∫ r

0

2r ′

(r ′+a)3 dr ′ = r 2

(a + r 2)
. (5.35)

A sample of P (r ) can then be drawn from the distribution

P (r ) =
a
p
U

(p
U+1

)
1− U

, (5.36)

where U is the uniform distribution in [0,1].

In the following, we describe the steps starting from a representative sample of the flux in the

galaxy to get to the estimate of the aperture averaged velocity dispersion:

1. Draw a representative sample of radii ri drawn from the three-dimensional light distri-

bution of the Hernquist profile (Equation 5.36).

2. Project the radius ri on a random two-dimensional plane and compute its projected

radius Ri and the projected coordinates (xi , yi ). This sample represents the projected

light profile of the galaxy.

3. Displace the two-dimensional coordinates (xi , yi ) with a random realization according

to the seeing distribution to (x ′
i , y ′

i ). We assume the PSF is a two-dimensional Gaussian

distribution. This sample represents the convolved, projected two-dimensional light

distribution of the galaxy.

4. Select samples, whose displaced position is on the aperture (x ′
i , y ′

i ) ∈A. This selects a

sample representative for the luminosity and radial weighting within the aperture.

5. Evaluate σ2
s (ri ,Ri ), the projected (but unweighted) velocity dispersion for the remaining

samples.
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Figure 5.10: The normalized residual maps for the best fit reconstruction for the different
choices of the shapelet scale β for the F814W image. The residuals differ significantly for the
different choices of β. From the imaging data only, a scale β= 0.19" is favored over a scale
β= 0.14" by more than 30 σ. This statement is entirely lens model dependent.

6. Take the sample average of the velocity dispersion 〈σ2
s (ri ,Ri )〉. This average (once

converged) corresponds to (σP)2 with the assumption of a Gaussian velocity dispersion.

About 100 samples evaluated in the aperture gives already an accuracy in σP of about 1%. In

this chapter, the computation is done with 1000 samples.

5.A.2 Residual maps

In Figure 5.10 the normalized residuals corresponding to the source models with different

source scales β in Section 5.3.2 are shown. The residual maps differ significantly between the

best fit values of the different shapelet scales β. This reflects the fact that extended structure

in the Einstein ring can give constraints on the local slope of the mass profile and the given

mass model can not adopt equally well to different source scales as it is can not be rescaled

according to the mass-sheet transform. The inferred lens models can be understood as the

best fit power-law profiles at different positions within the MST.
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Figure 5.11: The constraints of the angular diameter distance relation for discrete positions in
the MSD plane for filter F555W (same as Figure 5.7 for filter F814W). Different colors indicate
different imposed source scales. On the left panel: Dd vs Ds/Dd s . Also over-plotted are the
posteriors of the WMAP DR9 and Planck 2015ΛCDM posteriors mapped in the same angular
diameter distance relation. On the right panel: Re-mapping of the angular diameter relations
into a lnDd vs Dds/(DdDs) plane. The linear fit is indicated by the thick black line and the
(1,2,3)-σ upper and lower limits of the projected distribution are plotted in gray scale. The
parameters of the fit are indicated in the figure.

5.A.3 Analysis on WFC1 F555W

In the chapter, we did focus on the analysis of the WFC1 F814W filter band. Here we present

the same analysis for filter F555W. Figure 5.12 shows the posterior distribution of the lens

model parameters and time delay distance for F555W. Figure 5.11 shows the constraints on

the angular diameter distance relation. The values describing the distribution can be found in

the main text.

5.A.4 Bayesian description and renormalization of the imaging likelihood

One of the steps presented in this chapter is the renormalization of the imaging likelihood for

different source scales β. In Section 5.3.3 we provided heuristic arguments for this approach

in the case of time delay cosmography. In the following Section, we provide a Bayesian

interpretation and justification of our choice in performing this calculation.

Let us assume that there is a complete model that is able to fully describe the lens, with
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Chapter 5. The mass-sheet degeneracy and time-delay cosmography

Figure 5.12: Posterior distribution (1-2-3 sigma contours) of lens model parameters and time
delay distance of the combined analysis of imaging data of F555W and time delay measure-
ments. Different colors correspond to different choices of the shapelet scale β. (same as Figure
5.5 for filter F814W).
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parameters α. However, when we fit the data, in our modeling process, we use a restricted

subset of the model containing only the parameters α̂ and that the missing degrees of freedom

are captured by the parameters θ. To complete our notations, the source scale is given as β,

the cosmological parameters as π. We also denote the image data as D I , the kinematic data as

Dσ and any other independent data of the time delays and the lens environment as Do .

Our goal is to estimate the cosmological parameters π given the data, which is P (π|D I ,Dσ,Do).

We can state, using Bayes rule

P (π|D I ,Dσ,Do) =
∫

P (π|α̂,θ,β,D I ,Dσ,Do)P (α̂,θ,β|D I ,Dσ,Do)dα̂dθdβ. (5.37)

Independence of D I , Dσ and Do results in

P (π|D I ,Dσ,Do) =
∫

P (π|α̂,θ,β,D I ,Dσ,Do)P (α̂,θ,β|D I )P (α̂,θ,β|Dσ,Do)dα̂dθdβ. (5.38)

The internal part of the MST is encapsulated in the term P (α̂,θ,β|D I ). One way to think about

MST is that the source scale cannot be measured from imaging data alone. In other words,

given image data and marginalizing over all possible lens models, one should recover the

source size prior. The Bayesian expression for the MST is then

∫
P (α̂,θ,β|D I )dα̂dθ = P (β), (5.39)

which can also be written as

P (α̂,θ,β|D I ) = P (α̂,θ|D I ,β)P (β|D I ) = P (α̂,θ|D I ,β)P (β). (5.40)

Incorporating this into the earlier expression we get

P (π|D I ,Dσ,Do) =
∫

P (π|α̂,θ,β,D I ,Dσ,Do)P (α̂,θ|D I ,β)P (β)P (α̂,θ,β|Dσ,Do)dα̂dθdβ.

(5.41)

This can be simplified further by considering the dependencies of the variables. For instance
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P (π|α̂,θ,β,D I ,Dσ,Do) simplifies to P (π|α̂,θ,Dσ,Do), since all the information from D I and

β are captured by α̂ and θ. Further more the parameter β is not directly dependent on the

velocity dispersion Dσ and related quantities Do through the lens model. This relation of

parameters and conditional data leads to

P (π|D I ,Dσ,Do) =
∫

P (π|α̂,θ,Dσ,Do)P (α̂,θ|D I ,β)P (β)P (α̂,θ|Dσ,Do)dα̂dθdβ. (5.42)

Until now, no approximations are made in the Bayesian analysis. The split of α→ (α̂,θ) has

been useful in working out the impact of the internal MST in our Bayesian analysis. However,

to move the analysis further, we will have to make some simplifying assumptions about the

further, i.e. beyond MST, impact of the unknown lens model parameters θ. (301) showed

that time delays (and hence the cosmological inference) depends mostly on the slope of the

density profile in the annulus over which the lens images are observed, which is part of α̂ in

our model. From this we assume that α̂ is a good approximation of the overall lens model α

and the relative deviation θ is small in terms of the impact on the cosmographic analysis (π).

We approximate α≈ α̂ at this stage, which leads to

P (π|D I ,Dσ,Do) ≈
∫

P (π|α̂,Do)P (α̂|D I ,β)P (β)P (α̂|Dσ,Do)dα̂dβ. (5.43)

This equation is the formal expression of the steps that we perform in our analysis of combining

imaging, time-delay, kinematic and environment data in our cosmographic analysis. The

imaging data D I folds in the analysis through the term P (α̂|D I ,β). This term is conditional on

the source scale β. This conditional likelihood is effectively computed by a renormalization of

the imaging likelihood to a given source scale β.

5.A.5 Skewed normal distribution

The the skewed normal distribution is defined with a parameter α as

φγ(x) = 2φ(x)Φ(αx) (5.44)
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with φ(x) being the standard normal probability density function and Φ(x) its cumulative

distribution. Location and scale can be added with

x → x −ξ
ω

. (5.45)

The mean µ of this distribution is given by

µ= ξ+ωδ
√

2

π
(5.46)

where

δ= αp
1+α2

. (5.47)

The variance σ2 is

σ2 =ω2
(
1− 2δ2

π

)
(5.48)

and the skewness γ as

γ= 4−π
2

(
δ
p

2/π
)3(

1−2δ2/π
)3/2

. (5.49)

The skewed normal distribution φγ(x,ξ,ω,α) can be re-parameterized to φγ(x,µ,σ,γ) by

inverting the equations (5.46)-(5.49).

5.A.6 Source size prior

To account for an arbitrary prior in β in the Bayesian inference, one has to marginalize as

P (dRXJ|π) =
∫

P (dRXJ|π,β)P (β)dβ=
∫

P (dRXJ|π)P (π|β)P (β)dβ. (5.50)

β does not appear as a parameter in the likelihood of Equation 5.31. From Figure 5.7 one

sees that the different source scale posteriors are equally spaced in the Dd s/(Dd Ds) axis. The

likelihood defined in Equation 5.31 is an approximation for a flat prior in the source scale β.
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We approximate P (π|β) by a delta function in the parameter Dd s/(Dd Ds) as

P (π|β) ≈ δ
(
αβ

Dd s

Dd Ds
+Cβ−β

)
(5.51)

where αβ is the slope of the Dd s/(Dd Ds) vs β and Cβ the intercept. In this form, the prior on β

can be added to the likelihood of Equation 5.31 as

P (dRXJ,π) =φγ
(

x = Dds

DdDs
,µ=α ln(Dd)+C ,σD ,γD

)(
αβ

Dd s

Dd Ds
+Cβ

)2αLF+1

. (5.52)
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6 Strong lensing constraints on dark

matter from substructure

This chapter will appear in a similar form in Birrer, Amara & Refregier in prep.

The physical properties of dark matter affects cosmological structures on small, sub-galactic

scales. This has been used to set constraints on the mass of thermal relic warm dark matter

(WDM) using the Lyman-α correlation function (see e.g. 20, for latest results) and the counts

of dwarf satellites in the Milky Way (see e.g. 21; 22). Strong lensing is another probe of sub-

galactic scales (151; 154; 155). For example, strong lensing was used to detect luminous and

dark substructure in strong lens systems (157; 158). This has led to the detections of individual

clumps down to masses of about 2×108M¯ (159; 160; 302). To measure the properties of WDM

one needs however to go beyond the clump-by-clump analysis and to statically probe the

population of more numerous smaller clumps.

Statistical approaches to quantify substructure have been done in simple lens configurations,

for instance by analyzing flux ratios in multiple imaged lensed quasars (see e.g., 161; 163;

164; 165). Deviating flux ratios have been reported relative to a prediction based on simple

smooth lens models, known as flux-ratio anomalies. This approach requires multiple strong

lens systems as the statistics is rather poor for a single lens system.

In this chapter, we take a different statistical approach to quantify substructure in strong

gravitational lenses. It is based on an extended forward modeling scheme that relies on

rendering of the subhalo population for different dark matter models, coupled to image
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simulations. These generated mocks are tuned to be similar to the data (see e.g. 303; 304;

305; 306; 307; 308; 309; 310; 311; 312; 313; 314; 315, for other application of forward modeling

in cosmology). A simple feature of a forward modeling approach is that the same analysis

tools are run on both simulations and the data. This allows us to make statistically significant

inference statements, even for cases where the full likelihood is not tractable, by understanding

the statistical behaviors coming from the simulated mocks. A key step is to find diagnostic

measures that are sensitive to the signal we wish to target, which is substructure in our case.

The chapter is structured as follows: In section 6.1, we describe the smooth lens model and

source reconstruction of the lens RXJ1131-1231. In section 6.2, we describe the substructure

modeling and how we create realistic mock lenses for different dark matter models. We then

describe how we perform a substructure analysis and how we compare the statistical features

in section 6.3. In section 6.4, we present our dark matter model constraints based on the

analysis of the lens RXJ1131-1231 based on hundreds of different simulations. In section 6.5

we discuss the results, compare them to the literature and discuss possible extensions to this

work. We summarize this chapter in section 6.6. Further technical details about the analysis

are provided in the appendices of this chapter.

Throughout this chapter, we assume a flatΛCDM cosmological model with H0 = 69.31kms−1Mpc−1,

Ωb = 0.049,Ωm = 0.315, σ8 = 0.829 and ns = 0.968.

6.1 Smooth lens model

Before we measure the signatures of substructure, we first need to model the smooth global

features of the lens. This is needed to separate global effect from small scale effects since the

former does not depend on dark matter properties.

To fit the smooth lens model, we apply the method presented in chapter 3 on the data used in

chapter 5. The main difference in the lens modeling is that, for this chapter, we reconstruct the

two HST ACS filter bands F814W and F555W simultaneously and combine the likelihood of the

lens model given the imaging data. For the global source structure, we use shapelets up to order

nmax = 50 with scale parameter β= 0.18" centered at the position of the quasar. In chapter

5, we discussed and quantified the impact of the source scale on time-delay cosmography
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through the internal part of the mass-sheet degeneracy (286). We do not expect a significant

impact of this known degeneracy for the substructure analysis, as the lens profile re-scaling by

the mass-sheet degeneracy only affects large scales.

In modeling the global feature that do not come from substructure, care needs to be taken in

two respects. The first is that the smooth lens model needs to be sufficiently flexible to capture

the scales that are larger than the scales where dark matter substructure has an impact. In

appendix 6.A.1, we show how the choice of the smooth model can affect the substructure

analysis. The second consideration is that the substructure signal depends on the source

surface brightness variations. This means that we need to ensure that the simulations have

the right level of small scale variation in the source to give reliable statistics in the mocks. We

also need to allow the model to have sufficient small scale features so as not lead to biases. In

appendix 6.A.1, we present illustrative examples and a discussion of how these model biases

affect substructure signatures.

For the smooth lens model, we use the same model parameters as in chapter 5. It is composed

of a ellipsoidal power law mass distribution, a SIS profile centered on the visible lens substruc-

ture and external shear parameters. Additionally, we use shapelets potential perturbations as

introduced in chapter 3. We chose the Einstein radius of the lens as the scale parameter of

the lens model shapelet. In total, we use 21 additional shapelet parameters (corresponding to

nmax = 5) which enables us to model the lens mass distribution down to 0.4" resolution.

In the source, we identify, in the residual map of the best fit reconstruction, multiple distinct

features that correspond to source structure on smaller scales. We traced back the residual

features to the source plane and identify 15 distinct regions with flux being emitted by small

scale structure. For each of these specific regions, we position additional source surface

brightness shapelets with order nmax, clump = 3 and scaleβclump being the magnified resolution

limit of the data. This procedure allows us to fit the data well an extensive expansion of the

basis set. The source reconstruction is performed independently for the two imaging bands,

but with the same configuration and order of the basis sets.

We use the framework of chapter 3 to fit the high dimensional non-linear parameter space

by a Particle-Swarm Optimization (205). The best fit lens model results in a reduced χ2 value
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of χ2
red = 1.03. This model is the starting point for the substructure analysis on the data and

allows to explicitly quantify lensing structure emerging from scales below 0.4".

6.2 Simulations

We now compare the statistical features in the image residuals with the features of simulations

based on different dark matter models. For our analysis, we target deflection angle perturba-

tions arising from substructure within the lens relative to a smooth lens model. To investigate

the statistical significance of a signal, we use multiple realizations of the same physical model

(WDM, CDM) and for different halo masses. We chose semi-analytic descriptions to compare

a large number of realizations of given models. The details on how we produce the set of

simulations and how we incorporate WDM in the semi-analytic description is given in this

section.

6.2.1 Dark matter substructure model

To compute a sample of expected deflection perturbations, we use a semi-analytic model

based on EPS merger trees and a subhalo evolution and disruption prescriptions, tuned to

N-body CDM simulations.

Power spectrum

We follow (8) in describing a power spectrum for WDM. The relative transfer function rT (k),

defined as the ratio of WDM to CDM model can be defined as

rT (k) = [P (k)λWDM/P (k)λCDM]1/2 (6.1)

In case of WDM, the relative transfer function can be described as (17)

rT (k) = [
1+ (αk)2ν]−5/ν

, (6.2)
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where α is the scale of the free streaming break of the WDM particle and ν was fixed by (8) to

ν= 1.12 and

α= 0.049
( mχ

1keV

)−1.11 (
Ωχ

0.25

)0.11 (
h

0.7

)1.22

h−1Mpc. (6.3)

mχ is the DM thermal relict mass andΩχ is the normalized dark matter density. Of importance

for structure formation is the mass variance S(M), which can be computed as

S(M) ≡σ2(M) = 1

2π2

∫ ∞

0
4πk2P (k)W 2(k|M)dk, (6.4)

which depends on the window function W used. For a top-hat filter in real space, the corre-

sponding mass M for a given filter size R is given by

M = 4π

3
ρ̄R3. (6.5)

A sharp-k filter can capture the features of WDM well, as the suppressed high k modes lead to

a flattening of S(M). The sharp-k filter

W (k|M) =


1 if k ≤ ks(M)

0 if k > ks(M)
(6.6)

defines the mass M according to the filter scale ks and a clear physical relation on the ks(M)

relation is missing. We follow (316) and relate ks to the mass radius R as defined in equation

6.5 through a scale parameter a as ks = a/R , where a = 2.5 was set by (316) to predict the same

turnover in the halo mass function.

Merger tree

To generate stochastic merger trees based on the power spectrum and mass variance, we

follow (316), which is based on the original merger tree for CDM structure of (46). Using a

sharp-k filter to compute S(M) will change the halo mass function at high mass. To avoid
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over-predicting high mass halos, the barrier for collapse has to be increased by a factor of 1.197

(see 316). Furthermore, WDM further changes the collapse threshold below a characteristic

mass (317). (316) found, based on work of (317), that the threshold of collapse δc (M , t ) from

WDM and CDM can be fitted. We adopt for this their equation 7-10 of (317). We do not, for

simplicity, incorporate the non-Gaussian walks of a moving barrier in WDM, as proposed by

(316). On the other hand, we set the resolution limit of the merger tree to the characteristic

mass. This semi-analytic description allows us to produce many realizations of substructure

and the in-fall histories of the substructure.

Mass-concentration relation

The concentration of the dark matter halos depend on the mass assembly history. Halos that

assemble earlier are more concentrated (e.g. 200; 318; 319). Taking a mass-concentration-

redshift relation based on CDM simulations may not reflect the fact that WDM halos form

later and therefore are expected to have lower concentrations. We use the c(M , z) relation of

(320) for CDM cosmologies, namely

c = A

(
M

Mpivot

)B

(1+ z)C . (6.7)

Throughout this work, we set A = 5.22, B =−0.072, C =−0.42 and Mpivot = 2 ·1012, taken from

(320). In the WDMW case, we set the c(M , z) relation by a mapping of the same formation

histories of CDM halos as described in (321).

Substructure evolution

To describe the evolution of the subhalos from the time they get assigned to a more massive

halo, the information extracted from a merger tree is insufficient, since subhalos get disrupted

by tidal stripping. We use the semi-analytic description of (322) to describe the average mass-

loss rate of a dark matter subhalo, work based on (323). The parameterized form of the subhalo

decay ṁ depends on the instantaneous mass ratio m/M as

ṁ =−A
m

τdyn

( m

M

)ζ
, (6.8)
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where A and ζ describe the normalization and mass dependents of the subhalo decay, respec-

tively. We use the values derived from (324), A = 1.54 (corresponding to τ0 = 2.0) and ζ= 0.07.

We use differential evolution to solve for the final subhalo mass. We do not introduce scatter in

this relation (as done by 322) as we expect a realistic scatter from the merger tree realizations.

Dynamical friction plays also a role in subhalo disruption. We use the description of (325),

which provide a fitting formula from simulations

ndyn ≡ τmerge

τdyn
= A

(M/m)b

ln(1+M/m)
exp[cη] (6.9)

where η= j / jc (E) is the orbital circularity. We ignore the dependence on orbital energy. The

fitting parameters are tuned to simulations and given by (325) as A = 0.216, b = 1.3 and c = 1.9.

(123) showed that the circularity η of subhallos at infall can be well fit by

P (η) ∝ η1.22(1−η)1.22. (6.10)

We draw from this distribution for every subhalo at in-fall to compute the dynamical friction

time. We use τdyn = 0.1H−1 for this computation, which results in the scale factor of disruption

adyn

adyn = ainfall exp
[
ndyn/10

]
. (6.11)

Subhalos whose dynamical friction time adyn is shorter than that needed to survive to the red-

shift of interest (in our case to the redshift of the lens alens) are assumed to be fully disrupted.

For the evolution of the subhalo internal structure, we use the description of (326; 327), used as

well for comparison in (328). The relation rmax/rmax,infall and vmax/vmax,infall is parameterized

as a function of mass loss x = m/minfall as

y(x) = 2αxβ

(1+x)α
(6.12)

where α and β are fitting coefficients and y(x) is either the ratio of radii or maximal velocity.

(326; 327) provides (α,β) = (0.4,0.3) for vmax and (α,β) = (−0.3,0.4) for rmax.
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The semi-analytic prescription used to compute the disruption of halos does not have a

specific concentration dependence. In the case of WDM, where the concentration of halos

is expected to be lower than for CDM, ignoring the concentration as a parameter in the

disruption process might slightly under-predict the strength of disruption. For all of our

conclusions, the bounds on the thermal relict mass of a WDM particle are conservative with

respect to the subhalo disruption effect.

The spacial positioning of the subhalos is computed based on the orbit at infall. The orbit is

computed based on the orbital circularity distribution (see equation 6.10) and provides a radial

distribution function from which we draw from. Our tests show that the radial distribution of

substructure mass follows the NFW profile of the parent halo.

The prescriptions and assumptions mentioned here allow us to generate mock halos of differ-

ent masses with substructure with different WDM thermal relict masses. Figure 6.1 shows a

set of realizations of halos in the range 12.0-13.5 log(M/M¯) and thermal relict masses 1.0-3.0

keV. The enhanced amount of substructure of higher WDM mass is visible on the figure.

6.2.2 Mock image generation

In our approach, our aim is to separate the effects of global features from those coming

from substructure. In generating mock images, we have therefore decided to use a hybrid

approach. For the global features, we use the deflections coming from the smooth lens model

~αsmooth that we infer from the data. This allows us to generate mock strong lens systems that

are in the same regime as that for the data. The small scale features, which is where dark

matter properties have an impact, are modeled using the halos generated by the merger tree

procedure described in section 6.2. To do this, we first calculate the full deflection angles for

the mock halos ~αdm . We then generate a smoothed field ~αs
dm through a convolution with a

Gaussian kernel g of width φmin,

~αs
dm =~αdm ∗ g (φmin). (6.13)
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Figure 6.1: The projected mass of a set of different stochastic semi-analytic substructure
realizations. From left to right: Increasing dark matter thermal relict mass from 1 keV to 10
keV. From top to bottom: Increasing parent halo mass from 1012M¯-1013.5M¯. The size of the
region is identical to the HST image being modeled, i.e. 4" by 4". The color scale is fixed for
different dark matter models but change with halo mass.
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Figure 6.2: The deflection perturbation ∆α1,dm of the same set of different stochastic semi-
analytic substructure realizations as in figure 6.1. From left to right: Increasing dark matter
thermal relict mass. From top to bottom: Increasing parent halo masses. The the size is
again 4" by 4". The color scale is chosen such that full color (red or blue) indicate deflection
perturbation of 0.04".

We then approximate the perturbations to the deflection angles ∆~αdm as

∆~αdm =~αdm −~αs
dm . (6.14)

We chose the kernel width φmin to match the smooth lens model shapelet deflection scale,

θmin = 0.4". The result is a deflection angle map that has no net mass beyond scales of θmin.

As an example, figure 6.2 shows the deflection perturbation map of one of the components of

∆αdm for the cases shown in figure 6.1.

The deflection used to generate the mock images is therefore

~αmock =~αsmooth +∆~αdm . (6.15)
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We also use the same source model as inferred from the data, the same PSF model with its

errors, same weight map and add Poisson and Gaussian noise on the mock image.

6.3 Substructure model comparison

In our forward modeling approach, we develop an analysis method that can be applied to data

and mock data in the same way. Instead of trying to identify individual structures within the

lens, we use the scanning strategy described below. The feature maps that we generate from

these scans can then be studied to discriminate between different models of dark matter.

6.3.1 Substructure scanning procedure

Our scanning procedure works by fitting a lens model that includes a single subclump per-

turber, with corresponding deflection ~αclump, at a position (xi , yi ) as well as the smooth global

model. The combined deflection angle is then

~αpert(xi , yi ) =~αsmooth +~αclump(xi , yi ), (6.16)

where again ~αsmooth the deflection angles for the smooth global model.

We have chosen the perturber to be a truncated SIS profile,

αclump(r ) =


θE,clump if r ≤ rtrunc

θE,clump

(
2− r

rtrunc

)
if rtrunc < r ≤ 2rtrunc

0 if r > 2rtrunc

(6.17)

where θE,clump is the Einstein radius of the clump and rtrunc its truncation radius. For our

analysis, we set θE,clump = 0.01" and rtrunc = 0.1". The total mass enclosed in the truncation

radius is Mclump = 108.35M¯.

We then move the position of the subclump perturber in increments of 0.05" over the image

in both the horizontal and vertical directions. At each position (xi , yi ), we make a best fit

reconstruction of the lensed image I (this can be a fit to data or to simulated data) using the
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perturbed model (~αpert). We call this reconstructed image I pert
i . We also perform fits using

the smooth model ~αsmooth leading to reconstructed images I smooth
i . When performing a fit we

again use the source basis sets as described in section 6.1. In addition, we add source surface

brightness shapelets of order nmax = 5 at the source position

(x ′
i , y ′

i ) = (xi , yi )−~αsmooth(xi , yi ), (6.18)

which corresponds to the source plane position being mapped through the subclump pertru-

ber. We set the scale β of these additional shapelets to the average magnification within the

truncated SIS profile at (xi , yi ).

From the set of images that we generate, we can define three different residual measure (R),

related to the relative agreement of the images I , I pert
i and I smooth

i as

Rpert
i =∑ 1

σ2

(
I − I pert

i

)2
, (6.19)

Rsmooth
i =∑ 1

σ2

(
I − I smooth

i

)2
, (6.20)

and

Rsens
i =∑ 1

σ2

(
I pert

i − I smooth
i

)2
, (6.21)

where the sum is over the pixels of the image and σ is the noise associated with each pixel. We

further introduce a relative excess distance ∆Ri defined as

∆Ri = Rpert
i −Rsmooth

i . (6.22)

Figure 6.3 shows the scanning results, in terms of ∆R values, for the HST data (left column), a

model with a halo mass of 1013.5M¯ (second column), a model with a halo mass of 1013.0M¯

(third column). The last column shows the sensitivity map, Rsmooth
i . The different rows indicate
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Figure 6.3: The scanning results for ∆Ri of the HST data (left column) and two selected CDM
semi-analytic realizations with halo masses 1013.5M¯ and 1013M¯ (middle two columns) and
the sensitivity map (right column). The different rows indicate the analysis of filter F814W
(top), F555W (middle) and combined F814W+F555W (bottom). Each pixel in the plot reflects
∆Di when placing the perturber at the position of the pixel.

the results for different filters. Filter F814W results are shown in the top row, F555W in the

middle and the combined results F814W+F555W at the bottom.

6.3.2 Model comparison based on summary statistics

Given the scan maps that we are able to generate for both data and mocks, the challenge is

to construct a statistical test that will allow us to select from different dark matter models.

The framework of Approximate Bayesian Computing (ABC) (329; 330) allows to construct a

posterior distribution even for cases where the likelihood of a model, given the data, is not

accessible. ABC requires distance measures (metric distances) between the output of different

simulations, based on summary statistics. In general, the summary statistic can take many

forms but need to map to one or several metric distances.

Our goal is to construct measures that are sensitive to dark matter properties. This means
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that comparisons of different realization of the same dark matter model should result in small

distances D. One the other hand, comparing realizations of different dark matter models

should result in large distances.

We find that a good distance measure can be constructed based on the cumulative dis-

tribution P (x) = N (∆Ri < x) and the spherical averaged two-point correlation function

C (dr ) = 〈∆Ri (r )∆Ri (r +dr )〉r , both based on the relative excess distance ∆Ri (6.22) of the

scanning procedure.

The specific metric we adopt is the product of the two metrics involving the cumulative

distribution DN and the correlation function DC

D(∆R1
i ,∆R2

i ) = DC (∆R1
i ,∆R2

i ) ·DN (∆R1
i ,∆R2

i ), (6.23)

where

DN (∆R1
i ,∆R2

i ) =∑
x

[
P (∆R1

i , x)−P (∆R2
i , x)

]2
(6.24)

and

DC (∆R1
i ,∆R2

i ) =∑
dr

[
C (∆R1

i ,dr )−C (∆R2
i ,dr )

]2
(6.25)

are the quadratic distances between the two distributions in respect of P (x) and C (dr ). The

sum in DN is uniform spaced in the range∆Ri in [10,300] in incremental increases of∆Ri = 10.

The sum in DC is uniformly spaced in the range 0"−2.5" in incremental increases of∆r = 0.05".

The expression 6.23 provides, without normalization, an equal weight on both diagnostics. We

emphasis that the expression in equation 6.23 is in no means a likelihood.

The cumulative distribution is an indicator that quantifies the strength of the substructure

signal and the correlation function to quantify the spatial signature. Figure 6.4 shows the

cumulative distribution P (x) for different realizations of the same dark matter models, split in

four different halo masses and six different dark matter models. The cumulative distribution
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can well distinguish different halo masses. Higher halo masses relate to more and more

massive substructures.

Figure 6.5 shows the one-dimensional correlation function C (dr ) for different realizations of

the same dark matter models with the same splits in halo masses as in figure 6.4. We see clear

discrimination of the correlation function of different dark matter model samples. In both

Figures, the thick black line indicates the statistics of the data.

6.4 Dark Matter model constraints

In this work, we focus on thermal relict mass constraints for dark matter. From the diagnostics

of section 6.3 and Figure 6.4 and 6.5 we see that the mass of the parent halo has a significant

impact on our distance metric and needs to be included as a free parameter in our analysis.

In this chapter therefore, we will focus on the two parameters space of relic mass and parent

halo mass Mh . We do this by making 20 realizations per point in parameter space for a grid of

[1.0,1.5,2.0,2.5,3.0,10] keV in thermal relict mass and [12.0,12.5,13.0,13.5] log(M/M¯) for the

parent halo mass. This leads to a total of 480 realizations. This current number of realizations

is a little too low for a converged likelihood with the ABC formalism but it already allows us to

construct a conservative inference of our parameters.

Figure 6.6 shows the 1- and 2-σ posterior distribution when performing a distance threshold

cut so the best 100 realizations are selected. This is an ABC estimated posterior with a weak

(i.e. conservative) threshold.

Even with this conservative procedure, we can exclude parent halo masses below 1012.9M¯ with

> 2σ confidence. This alone shows that we are detecting a significant amount of substructure

and that the statistical information contained in this analysis allows us to make measurements

that are not sample variance limited. We see that the ABC method preferentially selects models

with high keV thermal relict masses. The thermal relict constraints are partially degenerate

with the parent halo mass. Nevertheless, even for high parent halo masses, e.g. 1013.5M¯, the

pattern is inconsistent with WDM with mT H <2keV on the 2−σ level and in agreement with a

CDM scenario. This result is comparable in strength and in agreement with the other probes

of the small scale structure. The latest constraints from the Lyman-α forest (20) results in a
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Figure 6.4: Cumulative distribution P (x) = N (∆Ri < x) for different realization. Top left to
bottom right: Increasing parent halo mass. Bold black line indicates the distribution of the
data. Continuous lines are the mean distribution for the different dark matter models. Dashed
lines are individual realizations of the mocks.
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Figure 6.5: Correlation function of the excess residuals C (dr ) for different realizations. Top left
to bottom right: Increasing parent halo mass. Bold black line indicates the distribution of the
data. Continuous lines are the mean distribution for the different dark matter models. Dashed
lines are individual realizations of the mocks.

185



Chapter 6. Strong lensing constraints on dark matter from substructure

lower bound on the thermal relic mass mT H = 3.3keV at the 2σ confidence level. The limits

obtained from dwarf galaxy counts disfavors particle masses below mT H = 2.3keV at the 2σ

confidence level(21; 22).

6.5 Discussion

Our method is able to statistically capture substructure features in strong lensing systems and

allows us to discriminate between different dark matter models. Our substructure scanning

probes the mass range of Mclump = 108.35M¯ withing 0.1" (see section 6.3.1). This filter

matches qualitatively a free streaming mass of a 2keV particle 1.

The model shows that multiple substructures within the same mass range have a significant

impact on the lensing statistics. This means that probing substructure on the one-by-one

basis at this mass limit may not be feasible. However, when pushing the limits to lower

substructure masses, a statistical approach like ours is able to account for the effects of

hundreds of subclumps simultaneously. For instance, this can be important for ALMA. ALMA

can provide higher resolution data than HST images, which leads to greater potential for

measuring smaller lens perturbations (see e.g. 302; 331; 332) if the information from these

higher resolution data can be properly tapped.

Our method can be extended to probe other statistics of lensing substructure, such as mass-

concentration relations and disruption efficiencies and might provide a window to probe

suggested solutions of the cusp-core discrepancies. Such studies are in reach with the current

HST data and are only limited by the predictive power of the physical models and the sample

variance.

Our current constraints are mainly limited by the statistics of the single lens and the moderate

sample size from our simulations. This results in a conservative estimate of the likelihood.

Better data (more lenses, better quality data) can discriminate models with high significance.

Tackling the partial degeneracy between parent halo mass and dark matter thermal relict

mass can also be done by incorporating additional, independent, priors on the halo mass. For

1The mean cosmic mass enclosed within a free-streaming volume for a 2keV particle is roughly 109.2M¯.
However, the effects that we are sensitive to, and are probed by our filter, come from the central regions of
collapsed clumps, which contain a fraction of the overall free-streaming mass.
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Figure 6.6: 1−σ (dark region) and 2−σ (light region) posterior distribution estimated by
ABC method on the thermal relict mass vs halo mass plane from the lens RXJ1131-1231. The
sample number is limited and the details in the posterior distribution is not fully converged.
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instance coming from abundance matching or galaxy-galaxy lensing. What we do have from

the strong lensing measures is an accurate measure of the total mass (dark matter + baryonic

mass) within the Einstein, which for RXJ1131-1231 is M<θE = 1011.9M¯. The host galaxy of the

lens is a very massive elliptical early-type galaxy. A significant fraction of the mass withing θE

comes from baryonic matter. These observations allow us to set a conservative lower limit

on the expected halo mass of the lens RXJ1131-1231 to be 1013M¯ from abundance matching

and forward modeling of the galaxy population through cosmic time (e.g. 78; 28), as shown in

chapter 2.

Systematics in the lens modeling can be another limiting factor. In this work, we focus on

the source reconstruction scale and the intermediate lens model scale descriptions. Further

effects that we do not include could mimic lensing substructure effects, such as micro-lensing

by stars of the lensing galaxy, luminous structure of dwarf galaxies, substructure displaced

along the line-of-sight or dust extinction. For the current constraints, we do not expect a major

impact of such effects.

6.6 Summary

In this chapter, we presented a statistical analysis of the substructure content in the strong

lens RXJ1131-1231. We report a lower limit for the mass of thermal relic dark matter of 2keV

at 2σ confidence level. This is comparable to earlier limits derived from Lyman-α clustering

and MW dwarf counts. Our statistical method significantly improves upon clump-by-clump

strong lensing analyses. It can easily be extended to multiple lens systems.

6.A Appendix of chapter 6

6.A.1 Systematics in the modeling

Spurious effects in the reconstruction modeling may lead to effects in the substructure scan-

ning that may be interpreted as caused by substructure. Here, we investigate on the resolution

of the smooth model and on the source surface brightness reconstruction.
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Figure 6.7: The distributions
(
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i

)
for the data with different resolution in the smooth

lens model. Positive y-axis refers to the expected improve in the fit in the presence of the
perturber in the mock data. The projected samples are displayed above and on the right.

Substructure deflection perturbations

The smooth lens model described in section 6.1 allows us to use multiple shapelet potentials.

This basis set enables to model the intermediate scales of the lens model. To test the impact

on the substructure scanning analysis, we model the data with different number of lens model

shapelets in addition to the smooth model. We fit the data with 10 (nmax = 3) and 21 (nmax = 5)

additional shapelets. Figure 6.7 shows the
(
∆Ri ,Rsens

i

)
distributions of those models, including

a model without any additional lens shapelets. We see that the statistics changes dramatically

when adding the first 10 shapelets. This means that the most of the “signal" in the smooth

model can be attributed to features arising from scales captured by the first 10 lens shapelets.

Increasing the shapelet number to 21 does not lead to a significant change in the statistics.

Our underlying assumption is that the features present in the scanning of the model with 21

shapelets arise from scales smaller than being captured by the lens shapelets.
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Source surface brightness

The specific source reconstruction model may also have an effect on the substructure scanning

statistics. To investigate this dependence, we take the lens model with 21 additional (our

default model) lens shapelets and perform the scanning based on three different source

reconstructions. First, we only reconstruct the source with the global shapelets with nmax = 50.

Second, we add the nested shapelet description at the position of the lens perturber (see

section 6.1). Third, additionally to the nested shapelets, we add 15 fixed high resolution clumps

to the source model (also described in section 6.1). Figure 6.8 shows the scanning statistics of

those three reconstruction models. Substructure perturbation can change the magnification

locally significantly. When the source reconstruction can not resolve the existing scales,

substructure can significantly help in reconstructing the image because it can demagnify

those regions such that the source reconstruction description better match the scales involved.

This effect is an artifact. A substructure detection method requires to be able to describe the

smallest scales involved in the source surface brightness. We tested our method by further

enhancing the nested shapelets and increasing the additionally modeled source clumps.

Neither of those pushes to smaller scales did significantly change the substructure scanning

statistics. The underlying assumption in our inference is that we are able to match the smallest

scales in the source reconstruction description relevant to match the observations.
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Figure 6.8: The distributions
(
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)
for the data with different resolutions and descrip-

tions of the source surface brightness reconstruction. Negative x-axis refers to improved
fit when adding a perturber. Positive y-axis refers to the expected improve in the fit in the
presence of the perturber in the mock data. The projected samples are displayed above and
on the right.
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7 Conclusions

The aim of this thesis was to probe the fundamental predictions of the standard model of

cosmology with the main emphasis on the small cosmological scales.

To link the luminous structure with the underlying dark matter structure, we developed a

semi-analytic phenomenological model of galaxy evolution embedded in cosmological dark

matter structure formation by incorporating pre-defined baryonic prescriptions into a dark

matter hierarchical merger tree. Specifically the model is based on the simple gas-regulator

model introduced by (91) coupled with the empirical quenching rules of (83; 85).

Having worked on the connection between galaxies and halos, we then turned to study sub-

galactic scales using strong gravitational lensing. For this purpose, we developed a strong

lensing modeling technique based on versatile basis sets for the lens and source planes. The

method uses high performance Monte Carlo algorithms, allows for an adaptive build up of

complexity and bridges the gap between parametric and pixel based reconstruction methods.

The source reconstruction technique is explicitly source scale dependent, numerically stable

and computationally fast compared with pixelized source grid reconstruction techniques.

Furthermore, this thesis presents a simple method to accurately infer line-of-sight (LOS) inte-

grated lensing effects for galaxy scale strong lens systems through image reconstruction. The

approach is able to separate weak lensing LOS effects from the main strong lens deflector. We

performed a halo rendering based on a mass-to-light description to predict the LOS integrated
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Chapter 7. Conclusions

weak lensing effect on strong lens systems. We demonstrated the merit of combining a halo

rendering approach with strong lens image reconstruction in gaining further insights in the

galaxy-halo connection and the non-negligible impact of the LOS structure on the inference

from strong lens modeling. Joint constraints of multiple strong lens systems may add valuable

information to the galaxy-halo connection and may allow independent weak lensing shear

measurement calibrations.

To probe the late time expansion of the universe and the nature of dark energy, we consistently

incorporated known lensing degeneracies in the lens reconstruction modeling and propagated

the uncertainty to time-delay cosmographic inferences. The method is based on assigning

priors on the physical size of the source galaxy and does not crucially rely on lens model

assumptions. A specific strong lens source reconstruction technique applied on a specific

strong lens system may preferentially reconstruct certain source sizes better than others and

can therefore indirectly bias the results of the lens mass inference. Control over source size is

crucial to avoid biasing. The method presented in this thesis allows for full control over the

source size.

To probe the small scale structure formation and the nature of dark matter, we analyzed the

substructure content of strong lenses in a statistical manner, relying on extensive forward

modeling and the use of Approximate Bayesian Computing. To create simulations with realistic

lensing substructure content, we extended semi-analytic methods to predict the small scale

substructure content for different dark matter particle models. This framework allows us to

predict the expected substructure content in number, spacial location and internal structure

for different dark matter thermal relict masses.

Matching the source resolution and intermediate scales in the lens model of simulation and

data is of crucial importance. Any artefact arising from either non-resolved source surface

brightness variations or larger scale misfittings in the lens model can give rise to relative

residuals in the substructure quantification and can be misinterpreted as an overestimation

of the substructure content. To overcome this problem, specific enhancement of the source

resolution at the position where lensing substructure is explored is conducted.

Applying our developments to current data, in particular from high resolution HST images,
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led to the following main results: (1) We showed that a simple phenomenological model can

be build to incorporate the baryonic processes important for galaxy evolution in a hierarchical

growth scenario of dark matter structure. (2) For the strong lens system RXJ1131-1231, we

reconstructed a reliable high resolution image of the source in two bands with resolved small

scale features. (3) We model the lens COSMOS0038+4133 through image reconstruction and

its LOS with halo rendering and measure the LOS integrated shear to a precision of ±0.003.

(4) The Hubble parameter H0 estimate of the lens system RXJ1131-1231 is highly dependent

on the dynamical model and the source scale prior and is consistent with current cosmic

microwave background experiments. (5) The substructure content in the strong lens RXJ1131-

1231 is consistent with a cold dark matter particle scenario. Bounds on the free streaming

mass of a possible dark matter particle can be set to 2keV.

The precision gain by these new techniques and results shed new light on the distribution of

dark matter, its physical nature and its relation to visible matter. Moreover, the number of

strong lensing systems being discovered is growing rapidly and the quality of the observations

which will be significantly improved by the next generations of instruments. Together, these

developments offer great prospects for the high-precision study of dark matter and other

sectors of the standard cosmological model with strong gravitational lensing.
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