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ulation of the deflection of light remains still a problem.
This method will not replace the ray-tracing techniques
to model the lensed surface brightness profiles.

VI. CONCLUSION

In this paper we introduced a strong lens modeling
framework which is based on a parameterized basis for

the surface brightness and lens model. We identified the
following key aspects of our framework:

1. Its modular design allows for a step-by-step in-
crease in complexity. We are able to explore which
part of the modeling needs more complexity to re-
produce a lens system.

2. Automated or semi-automated fitting procedure.
Fitting strong lens systems on the image level is and
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Fig. 4.— Illustration of a combined PSO and MCMC chain in a 9 dimensional non-linear parameter space. The blue lines connect the
best fit particle during the PSO process. The red lines mark the true input parameter. Dark (light) gray contours mark the 1-sigma
(2-sigma) confidence interval estimated from the MCMC process.

from equation (5) with covariance matrix M ⇠ from equa-
tion (6). With a second order Taylor expansion around
b⇠, equation (9) can be written as
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In principle equation (10) is the cost function to use
when doing image comparison. The information about

the image position is imprinted in this cost function. The
problem with this cost function: Convergence to a rea-
sonable model can be very hard. The use of additional
or derived informations, such as the explicit image posi-
tions, can help for convergence. The relative weighting of
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or another way one uses certain information with more
weight than others. The aim is to end up with only one
cost function, equation 10. To get there, there is no lim-
itation in using any other cost function or a combination
of those, as long as they provide some information about
the system. The PSO process we make use of does not
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Source reconstruction technique (linear)4 Birrer et al.

speed when modeling the PSF down to the very
tails. For the extended surface brightness a nu-
merical convolution has to be made. This can be
done either at the pixel or sub-pixel level. This
step is the computationally most expensive process.
The process scales roughly linear with the number
of pixel/sub-pixel in the convolution kernel. We
are using Fast-Fourier-Transforms implemented in
a scipy routine in python.

4. MODEL FITTING

From a model prospective, we have three questions to
answer:

1. What is the best fit configuration of the model to
match data of a specific lens system? (find minima)

2. What level of complexity is needed to fit the data
to a certain level? (reduced �2 value of minima for
a certain parameterization)

3. How well is the model solution determined by the
data? (likelihood contours)

All in all, dozens of choices have to be made in the
lens modeling. More than 10 parameters in the lens
model with highly non-linear behavior in deflection angel
and/or magnification have to be specified. For a realistic
surface brightness description the shapelet order n can be
higher than 20 which already corresponds to 154 basis’
and their corresponding coe�cients. Given the amount
of complexity, even the first question on its own is very
hard to answer. Once we have a good method for an-
swering the first question, repeating the procedure with
di↵erent choices of complexity and parameterization will
provide an answer to question 2. Question 3 can then
be answered with a Bayesian inference method such as a
Markov chain Monte Carlo (MCMC) sampling. We use
the software package CosmoHammer (Akeret et al. 2013)
with is based on the emcee method of Goodman & Weare
(2010) and its implementation by Foreman-Mackey et al.
(2013) which allows for massive parallelization. In this
section we focus on question 1. We will describe in detail
the methods and procedures we apply to make the algo-
rithm converge to the best fit lens model configuration.

4.1. Source surface brightness reconstruction

In this paper we put a special emphasis on our source
surface brightness reconstruction method. We use a
weighted linear least square approach. This is a standard
procedure to minimize the quadratic distance between
data and model with weighted error measures. The esti-
mation of the covariance comes for free (see Eqn 3 - 6).
The minimization problem has to be linear. Let ~y be the
data vector of dimension d. In our system it contains all
the pixel values of the image in the area of interest for a
surface brightness reconstruction. Let W be the weight
matrix of dimension d⇥d. In a likelihood interpretation,
W is the inverse covariance matrix of the data, i.e. errors
in the data. Assuming the pixel errors are uncorrelated
W is a diagonal matrix. Let ~⇠ be the parameter vector of
dimension m. The number of shapelet basis functions m
depends on the shapelet order n as described in section
3.1. Let X be the linear response matrix of the shapelet

Fig. 1.— An illustration of how the modeling of the source surface
brightness with three di↵erent shapelet basis functions works. Left
panel: Shapelet basis function in the source plane. Middle panel:
Mapped shapelets into the image plane with a SIS lens via ray-
tracing. Right panel: Convolved image. From top to bottom:
Shapelets with (n1, n2) = (1, 0), (2, 1), (3, 5).

parameters on the pixel values in the image plane of di-
mension d⇥m. The product X~⇠ describes a lensed and
convolved surface brightness on the image plane. X can
be computed by mapping all m shapelet basis functions
from the source to the image plane, convolve and resize
them separately on the pixel scale. The computational
cost of this procedure is linear in the number of basis
functions involved and dominates the process for low m.
Figure 1 illustrates visually how the shapelet basis func-
tions are mapped. The problem of finding the best source
configuration b⇠ given the data ~y and the weights W can
be posed as a weighted linear least square problem:

b⇠ = arg min⇠kW 1/2(~y �X~⇠)k (3)

This equation can be written as

(X>WX)b⇠ = X>W~y (4)

whose solution is given by

b⇠ = (X>WX)�1X>W~y. (5)

The covariance matrix of ~⇠, M ⇠ is therefor given by

M ⇠ = (X>WX)�1. (6)

M ⇠ becomes important when marginalizing the proba-
bility distribution over ~⇠.
The procedure involves a matrix inversion of dimen-

sion m ⇥m. The computational cost and memory allo-
cation of this inversion becomes more and more signif-
icant with larger m. The matrix (X>WX) has to be
invertible. If not, this method fails to find a solution and
regularization is needed. A grid based regularization was
introduced by Suyu et al. (2006). One strength of our

Shapelets: Refregier 2003
Method: Birrer+ 2015

Basis set:
Shapelets

STRIDES meeting, Lausanne 30.4.2015Simon Birrer



Source reconstruction technique (linear)4 Birrer et al.

speed when modeling the PSF down to the very
tails. For the extended surface brightness a nu-
merical convolution has to be made. This can be
done either at the pixel or sub-pixel level. This
step is the computationally most expensive process.
The process scales roughly linear with the number
of pixel/sub-pixel in the convolution kernel. We
are using Fast-Fourier-Transforms implemented in
a scipy routine in python.

4. MODEL FITTING

From a model prospective, we have three questions to
answer:

1. What is the best fit configuration of the model to
match data of a specific lens system? (find minima)

2. What level of complexity is needed to fit the data
to a certain level? (reduced �2 value of minima for
a certain parameterization)

3. How well is the model solution determined by the
data? (likelihood contours)

All in all, dozens of choices have to be made in the
lens modeling. More than 10 parameters in the lens
model with highly non-linear behavior in deflection angel
and/or magnification have to be specified. For a realistic
surface brightness description the shapelet order n can be
higher than 20 which already corresponds to 154 basis’
and their corresponding coe�cients. Given the amount
of complexity, even the first question on its own is very
hard to answer. Once we have a good method for an-
swering the first question, repeating the procedure with
di↵erent choices of complexity and parameterization will
provide an answer to question 2. Question 3 can then
be answered with a Bayesian inference method such as a
Markov chain Monte Carlo (MCMC) sampling. We use
the software package CosmoHammer (Akeret et al. 2013)
with is based on the emcee method of Goodman & Weare
(2010) and its implementation by Foreman-Mackey et al.
(2013) which allows for massive parallelization. In this
section we focus on question 1. We will describe in detail
the methods and procedures we apply to make the algo-
rithm converge to the best fit lens model configuration.

4.1. Source surface brightness reconstruction

In this paper we put a special emphasis on our source
surface brightness reconstruction method. We use a
weighted linear least square approach. This is a standard
procedure to minimize the quadratic distance between
data and model with weighted error measures. The esti-
mation of the covariance comes for free (see Eqn 3 - 6).
The minimization problem has to be linear. Let ~y be the
data vector of dimension d. In our system it contains all
the pixel values of the image in the area of interest for a
surface brightness reconstruction. Let W be the weight
matrix of dimension d⇥d. In a likelihood interpretation,
W is the inverse covariance matrix of the data, i.e. errors
in the data. Assuming the pixel errors are uncorrelated
W is a diagonal matrix. Let ~⇠ be the parameter vector of
dimension m. The number of shapelet basis functions m
depends on the shapelet order n as described in section
3.1. Let X be the linear response matrix of the shapelet

Fig. 1.— An illustration of how the modeling of the source surface
brightness with three di↵erent shapelet basis functions works. Left
panel: Shapelet basis function in the source plane. Middle panel:
Mapped shapelets into the image plane with a SIS lens via ray-
tracing. Right panel: Convolved image. From top to bottom:
Shapelets with (n1, n2) = (1, 0), (2, 1), (3, 5).

parameters on the pixel values in the image plane of di-
mension d⇥m. The product X~⇠ describes a lensed and
convolved surface brightness on the image plane. X can
be computed by mapping all m shapelet basis functions
from the source to the image plane, convolve and resize
them separately on the pixel scale. The computational
cost of this procedure is linear in the number of basis
functions involved and dominates the process for low m.
Figure 1 illustrates visually how the shapelet basis func-
tions are mapped. The problem of finding the best source
configuration b⇠ given the data ~y and the weights W can
be posed as a weighted linear least square problem:

b⇠ = arg min⇠kW 1/2(~y �X~⇠)k (3)

This equation can be written as

(X>WX)b⇠ = X>W~y (4)

whose solution is given by

b⇠ = (X>WX)�1X>W~y. (5)

The covariance matrix of ~⇠, M ⇠ is therefor given by

M ⇠ = (X>WX)�1. (6)

M ⇠ becomes important when marginalizing the proba-
bility distribution over ~⇠.
The procedure involves a matrix inversion of dimen-

sion m ⇥m. The computational cost and memory allo-
cation of this inversion becomes more and more signif-
icant with larger m. The matrix (X>WX) has to be
invertible. If not, this method fails to find a solution and
regularization is needed. A grid based regularization was
introduced by Suyu et al. (2006). One strength of our
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ulation of the deflection of light remains still a problem.
This method will not replace the ray-tracing techniques
to model the lensed surface brightness profiles.

VI. CONCLUSION

In this paper we introduced a strong lens modeling
framework which is based on a parameterized basis for

the surface brightness and lens model. We identified the
following key aspects of our framework:

1. Its modular design allows for a step-by-step in-
crease in complexity. We are able to explore which
part of the modeling needs more complexity to re-
produce a lens system.

2. Automated or semi-automated fitting procedure.
Fitting strong lens systems on the image level is and
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speed when modeling the PSF down to the very
tails. For the extended surface brightness a nu-
merical convolution has to be made. This can be
done either at the pixel or sub-pixel level. This
step is the computationally most expensive process.
The process scales roughly linear with the number
of pixel/sub-pixel in the convolution kernel. We
are using Fast-Fourier-Transforms implemented in
a scipy routine in python.

4. MODEL FITTING

From a model prospective, we have three questions to
answer:

1. What is the best fit configuration of the model to
match data of a specific lens system? (find minima)

2. What level of complexity is needed to fit the data
to a certain level? (reduced �2 value of minima for
a certain parameterization)

3. How well is the model solution determined by the
data? (likelihood contours)

All in all, dozens of choices have to be made in the
lens modeling. More than 10 parameters in the lens
model with highly non-linear behavior in deflection angel
and/or magnification have to be specified. For a realistic
surface brightness description the shapelet order n can be
higher than 20 which already corresponds to 154 basis’
and their corresponding coe�cients. Given the amount
of complexity, even the first question on its own is very
hard to answer. Once we have a good method for an-
swering the first question, repeating the procedure with
di↵erent choices of complexity and parameterization will
provide an answer to question 2. Question 3 can then
be answered with a Bayesian inference method such as a
Markov chain Monte Carlo (MCMC) sampling. We use
the software package CosmoHammer (Akeret et al. 2013)
with is based on the emcee method of Goodman & Weare
(2010) and its implementation by Foreman-Mackey et al.
(2013) which allows for massive parallelization. In this
section we focus on question 1. We will describe in detail
the methods and procedures we apply to make the algo-
rithm converge to the best fit lens model configuration.

4.1. Source surface brightness reconstruction

In this paper we put a special emphasis on our source
surface brightness reconstruction method. We use a
weighted linear least square approach. This is a standard
procedure to minimize the quadratic distance between
data and model with weighted error measures. The esti-
mation of the covariance comes for free (see Eqn 3 - 6).
The minimization problem has to be linear. Let ~y be the
data vector of dimension d. In our system it contains all
the pixel values of the image in the area of interest for a
surface brightness reconstruction. Let W be the weight
matrix of dimension d⇥d. In a likelihood interpretation,
W is the inverse covariance matrix of the data, i.e. errors
in the data. Assuming the pixel errors are uncorrelated
W is a diagonal matrix. Let ~⇠ be the parameter vector of
dimension m. The number of shapelet basis functions m
depends on the shapelet order n as described in section
3.1. Let X be the linear response matrix of the shapelet

Fig. 1.— An illustration of how the modeling of the source surface
brightness with three di↵erent shapelet basis functions works. Left
panel: Shapelet basis function in the source plane. Middle panel:
Mapped shapelets into the image plane with a SIS lens via ray-
tracing. Right panel: Convolved image. From top to bottom:
Shapelets with (n1, n2) = (1, 0), (2, 1), (3, 5).
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mension d⇥m. The product X~⇠ describes a lensed and
convolved surface brightness on the image plane. X can
be computed by mapping all m shapelet basis functions
from the source to the image plane, convolve and resize
them separately on the pixel scale. The computational
cost of this procedure is linear in the number of basis
functions involved and dominates the process for low m.
Figure 1 illustrates visually how the shapelet basis func-
tions are mapped. The problem of finding the best source
configuration b⇠ given the data ~y and the weights W can
be posed as a weighted linear least square problem:

b⇠ = arg min⇠kW 1/2(~y �X~⇠)k (3)

This equation can be written as

(X>WX)b⇠ = X>W~y (4)

whose solution is given by

b⇠ = (X>WX)�1X>W~y. (5)

The covariance matrix of ~⇠, M ⇠ is therefor given by

M ⇠ = (X>WX)�1. (6)

M ⇠ becomes important when marginalizing the proba-
bility distribution over ~⇠.
The procedure involves a matrix inversion of dimen-

sion m ⇥m. The computational cost and memory allo-
cation of this inversion becomes more and more signif-
icant with larger m. The matrix (X>WX) has to be
invertible. If not, this method fails to find a solution and
regularization is needed. A grid based regularization was
introduced by Suyu et al. (2006). One strength of our
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ulation of the deflection of light remains still a problem.
This method will not replace the ray-tracing techniques
to model the lensed surface brightness profiles.

VI. CONCLUSION

In this paper we introduced a strong lens modeling
framework which is based on a parameterized basis for

the surface brightness and lens model. We identified the
following key aspects of our framework:

1. Its modular design allows for a step-by-step in-
crease in complexity. We are able to explore which
part of the modeling needs more complexity to re-
produce a lens system.

2. Automated or semi-automated fitting procedure.
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Fig. 5.— Chart on how human interaction is involved in the frame work. Green fields corresponds to tasks which rely on the humans.
Blue fields corresponds to decisions which have to be made by humans and black boxes correspond to tasks without human interactions
(being treated as black boxes). The core of this framework is the clear splitting of the choices and pre-processing from the actual fitting
with a convergence algorithm.

Fig. 6.— Modeling of RXJ1131-1231 HST ACS F814W image. Upper left: Observed image. Upper middle: Best fit prediction. Upper
right: normalised residuals of the fit. Lower left: Reconstructed source with 1326 shapelet coe�cients (up to order 50). Lower middle:
Convergence model. Lower right: Magnification model.

One of our main focuses for the model we present is
to find and quantify substructure within a lens. In this
section, we want to discuss the following issues:

1. To what extend are our model basis functions and
description able to reproduce the true image?

2. In case of a perfect modeling: Are we able to re-
cover the true parameter configuration in a huge
parameter space?

3. In case of an imperfect modeling: How does this af-
fect the sensitivity limit, finding and quantification
of substructures?

To answer our first question, we refer to our data ex-
ample of RXJ1131-1231 in Section 4.3 of Figure 6. Even
thought the observed and predicted images can hardly
be distinguish by eye, the residual map indicates room
for improvements in our modeling. Nevertheless the fact
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Source reconstruction technique: example

Performance for1333 basis functions:10s on 1 CPU

6 Birrer et al.

Fig. 2.— Demonstration of the source surface brightness reconstruction. Upper panels: Image plane. Lower panel: Source plane. From
left to right: Initial mock image (source), reconstructed image (source), relative residuals, 1D correlation function of residuals. The image
is almost perfectly reproduced even without significant residual correlations. The features of the source surface brightness profile is very
well reproduced. The relative intensities of input vs. output is 10% or below. The spacial correlation of the relative di↵erence is enhanced.
This feature reflects the properties of the shapelet basis functions involved and the minimal and maximal scales of those.

Fig. 3.— The distribution of the reduced �2 values of 1000 real-
izations of the image reconstruction process (see Figure 2) is plot-
ted. Each realization di↵er in the Gaussian and Poisson noise re-
alization. The mean value of the distribution is �2

red = 1.0015 and
the spread is � = 0.009.

as a marginalization over the linear parameters ⇠, the
source surface brightness parameters:
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and P (⇠) the prior distribution of the shapelet coe�-
cients. We assume a uniform prior distribution which is
independent of the lens model. The integral in equation
(9) can be computed around the maximum ⇠0 coming
from equation (5) with covariance matrix M ⇠ from equa-
tion (6). With a second order Taylor expansion around
⇠0, equation (9) can be written as
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Integrating equation (12) over �⇠ results in
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In principle, equation (10) is the cost function to use
when doing image comparison. The information about
the image positions is included in this cost function. The
problem with this cost function is that convergence to a
reasonable model can be di�cult. The use of additional
or derived informations, such as the explicit image posi-
tions, can facilitate convergence.

4.2.4. Steps towards convergence

Having presented our model parameterization in Sec-
tion 3 and discussed certain aspects of model fitting and
convergence in the previous paragraphs, we describe our
steps which allows us to find a reasonable fit to the data.
Figure 5 illustrates the framework. Prior to the conver-
gence algorithm, the image data has to be analyzed, the
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is almost perfectly reproduced even without significant residual correlations. The features of the source surface brightness profile is very
well reproduced. The relative intensities of input vs. output is 10% or below. The spacial correlation of the relative di↵erence is enhanced.
This feature reflects the properties of the shapelet basis functions involved and the minimal and maximal scales of those.
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when doing image comparison. The information about
the image positions is included in this cost function. The
problem with this cost function is that convergence to a
reasonable model can be di�cult. The use of additional
or derived informations, such as the explicit image posi-
tions, can facilitate convergence.
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Having presented our model parameterization in Sec-
tion 3 and discussed certain aspects of model fitting and
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steps which allows us to find a reasonable fit to the data.
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Lens model parameters (non-linear)

- SIS, SPEP, SPEMD, NFW profiles
- sub-clumps (yet another profile)
- External Shear
- Smooth perturbations
- …

Non-linear parameters are expensive!

What is the minimal number of parameters
and the functional form to match the data?

image from ViaLactea
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Lens model perturbations (smooth component)Gravitational lens modeling with basis sets 15

Fig. 8.— The shapelet functions in potential space are plotted in the first raw. From top to bottom: (0,0), (1,0), (0,1), (0,1) + (3,0).
The second and third raw show the deflection angles ↵1 and ↵2. The last raw shows the corresponding convergence .

Fig. 9.— Illustration of the PSO process in 20 dimensions with 160 particles and 200 iterations. Left panel: Evolution of the log likelihood
of the best fit particle. Middle panel: The di↵erence of the parameter values of the best fit particle at each iteration relative to the end
point of the PSO process. Right panel: Velocity of the best fit particle at each iteration. Di↵erent colors meaning di↵erent parameter. In
this illustration we see the interplay between goodness of fit and the particle velocities. The particle velocities only decrease when they all
end up in the same potential depth. The same process (but only in 9 dimensions) is also illustrated in Figure 4 including the likelihood
contours.

Analytic relations
Shapelets: Refregier 2003
Method: Birrer+ 2015
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Convergence technique:
Particle Swarm Optimization (PSO)

Gravitational lens modeling with basis sets 15

Fig. 8.— The shapelet functions in potential space are plotted in the first raw. From top to bottom: (0,0), (1,0), (0,1), (0,1) + (3,0).
The second and third raw show the deflection angles ↵1 and ↵2. The last raw shows the corresponding convergence .

Fig. 9.— Illustration of the PSO process in 20 dimensions with 160 particles and 200 iterations. Left panel: Evolution of the log likelihood
of the best fit particle. Middle panel: The di↵erence of the parameter values of the best fit particle at each iteration relative to the end
point of the PSO process. Right panel: Velocity of the best fit particle at each iteration. Di↵erent colors meaning di↵erent parameter. In
this illustration we see the interplay between goodness of fit and the particle velocities. The particle velocities only decrease when they all
end up in the same potential depth. The same process (but only in 9 dimensions) is also illustrated in Figure 4 including the likelihood
contours.

Tricks:
- re-parameterisation along degeneracy axes
- analytic marginalisation over linear parameters
- reduce the effective number of parameters with constraints
(i.e. bright point source positions)
- Use of Particle Swarm Optimisation (PSO)

Attention: This is only about finding the minima!
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Fig. 4.— Illustration of a combined PSO and MCMC chain in a 9 dimensional non-linear parameter space. The blue lines connect the
best fit particle during the PSO process. The red lines mark the true input parameter. Dark (light) gray contours mark the 1-sigma
(2-sigma) confidence interval estimated from the MCMC process.

from equation (5) with covariance matrix M ⇠ from equa-
tion (6). With a second order Taylor expansion around
b⇠, equation (9) can be written as
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Integrating equation (12) over �⇠ results in
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In principle equation (10) is the cost function to use
when doing image comparison. The information about

the image position is imprinted in this cost function. The
problem with this cost function: Convergence to a rea-
sonable model can be very hard. The use of additional
or derived informations, such as the explicit image posi-
tions, can help for convergence. The relative weighting of
di↵erent informations is a very non-trivial issue. In one
or another way one uses certain information with more
weight than others. The aim is to end up with only one
cost function, equation 10. To get there, there is no lim-
itation in using any other cost function or a combination
of those, as long as they provide some information about
the system. The PSO process we make use of does not
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truth

Particle Swarm and MCMC combined

PSO walking
MCMC sampling

Akeret, Seehars+ 2013
Birrer+ 2015, in prep
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Chose model parameterization

Define priors and
bounds on parameters

Run PSO

Output analysis

converged?

accept
model?

Run MCMC

Draw statements

Reduce image data

Estimate reduced
image properties

Chose number of PSO it-
terations and configurations

no

no

yes

yes

re-configure PSO chain

re-think the model

data quality good enough?

Fig. 5.— Chart on how human interaction is involved in the frame work. Green fields corresponds to tasks which rely on the humans.
Blue fields corresponds to decisions which have to be made by humans and black boxes correspond to tasks without human interactions
(being treated as black boxes). The core of this framework is the clear splitting of the choices and pre-processing from the actual fitting
with a convergence algorithm.

Fig. 6.— Modeling of RXJ1131-1231 HST ACS F814W image. Upper left: Observed image. Upper middle: Best fit prediction. Upper
right: normalised residuals of the fit. Lower left: Reconstructed source with 1326 shapelet coe�cients (up to order 50). Lower middle:
Convergence model. Lower right: Magnification model.

One of our main focuses for the model we present is
to find and quantify substructure within a lens. In this
section, we want to discuss the following issues:

1. To what extend are our model basis functions and
description able to reproduce the true image?

2. In case of a perfect modeling: Are we able to re-
cover the true parameter configuration in a huge
parameter space?

3. In case of an imperfect modeling: How does this af-
fect the sensitivity limit, finding and quantification
of substructures?

To answer our first question, we refer to our data ex-
ample of RXJ1131-1231 in Section 4.3 of Figure 6. Even
thought the observed and predicted images can hardly
be distinguish by eye, the residual map indicates room
for improvements in our modeling. Nevertheless the fact

- minimise human wall time per lens system
- split convergence and inference
- transparent setting
- focus on software design (@ ETH Software Lab)
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(2-sigma) confidence interval estimated from the MCMC process.

from equation (5) with covariance matrix M ⇠ from equa-
tion (6). With a second order Taylor expansion around
b⇠, equation (9) can be written as

P (d
data

|✓, b⇠ +�⇠) ⇡ P (d
data

|✓, b⇠) · e� 1
2�⇠T

(M⇠

)

�1�⇠.
(12)

Integrating equation (12) over �⇠ results in

P (d
data

|✓) = P (d
data

|✓, b⇠)
⇥
(2⇡)ndet(M�)

⇤ 1
2 (13)
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Techniques:
- Software: CosmoHammer, Ufig, Hope,...
- Hardware: Clusters (Monch, Brutus)
- Algorithms:

- MCMC
- Particle Swarm Optimization
- Lagrange multiplier/ optimal control
- Generalized Least Square methods
- FFT
- …

- Software design, Python with speed-up

Akeret, Seehars+ 2013
Bergé+, 2013
Akeret, Gamper+, 2014
Birrer+ 2015, submitted
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ulation of the deflection of light remains still a problem.
This method will not replace the ray-tracing techniques
to model the lensed surface brightness profiles.

VI. CONCLUSION

In this paper we introduced a strong lens modeling
framework which is based on a parameterized basis for

the surface brightness and lens model. We identified the
following key aspects of our framework:

1. Its modular design allows for a step-by-step in-
crease in complexity. We are able to explore which
part of the modeling needs more complexity to re-
produce a lens system.

2. Automated or semi-automated fitting procedure.
Fitting strong lens systems on the image level is and

(@ ETH Software Lab)
Software
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FIG. 2. Demonstration of the source surface brightness inversion. Upper panel: Image level comparison. Lower panel: Source
surface brightness comparison. From left to right: Initial mock image (source), reconstructed image (source), relative residuals,
1D correlation function of residuals. The image is almost perfectly reproduced even without significant residual correlations.
The features of the source surface brightness profile is very well reproduced. The relative intensities of input vs. output is 10%
or below. The spacial correlation of the relative di↵erence is enhanced. This feature reflects the properties of the shapelet basis
functions involved and the minimal and maximal scales of those.

it except it knows exactly the behavior in real space.
In our model, this is the case for the parameter of the
semi-major axis angle of the elliptical lens potential ✓

0

which is defined in the range [0, 2⇡). Mapping ✓
0

and
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This new parameterization links a continuous change in
the lensing potential into a continuous change in param-
eter space. If this is not the case, convergence algorithm
might get stuck in an in-continuity in parameter space,
even thought it reflexes no in-continuity in the model
configuration. When having parameters which are bound
one-sided (e.g. the normalization of the lensing potential
Ep), sampling in log(Ep + lower bound) does not require
constraints or bounds in the parameter space.

In general, the particular choice of the parameteriza-
tion can be crucial. The smoother a change in parameter
space reflects a small change in the model output, the
better a convergence algorithm can deal with the system.
The fewer constraints and in-continuities there are in the
parameter space volume, the more general convergence
algorithm can deal with the problem.

2. Walking with additional constraints

The image position of bright point sources can be very
well constraint just by the data to sub-pixel precision.
Any proposed lens model which predicts the image po-
sition with a small displacement will be excluded. In
the picture of the PSO, many proposed new positions
in the parameter space will simply be excluded because
the image positions are wrong even when other param-
eters are moved into the right direction. This leads to
ine�ciencies and may even lead to proposals which are
further away from the absolute minimum. When having
N bright point source images, there are 2N constraints
to the system. This reduces the e↵ective dimensionality
of the parameter space by 2N . In general, we can use
any parameterization ✓i of a originally M -dimensional
parameter space of dimension n = M � 2N if there ex-
ists a bijective transformation to the original parameter
space given the constraints.

3. Cost functions

The pure likelihood calculation with image comparison
only is the product of the likelihoods of each pixel [see
e.g. 16, for a similar approach]. We estimate the variance
on the intensity at pixel i as

�2

pixel,i

= �2

bkgd,i

+ fd
model,i

(8)
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STRIDES meeting, Lausanne 30.4.2015Simon Birrer



Gravitational lens modeling with basis sets 9

Fig. 6.— Modeling of RXJ1131-1231 HST ACS F814W image. Upper left: Observed image. Upper middle: Best fit preconstruction.
Upper right: normalised residuals of the reconstruction. Lower left: Reconstructed source with 1326 shapelet coe�cients (up to order 50).
Lower middle: Convergence model of the lens. Lower right: Magnification model of the lens.

2. In case of a perfect modeling: Are we able to re-
cover the true parameter configuration in a huge
parameter space?

3. In case of an imperfect modeling: How does this af-
fect the sensitivity limit, finding and quantification
of substructures?

To answer our first question, we refer to our data ex-
ample of RXJ1131-1231 in Section 4.3 of Figure 6. Even
though the observed and predicted images can hardly
be distinguish by eye, the residual map indicates room
for improvements in our modeling. Nevertheless the fact
that our mass-to-light prior-free lens model provides us
with a rather realistic solution might indicate that we are
not completely o↵ from reality. The validity of the source
surface brightness reconstruction is further discussed in
Section 6.1. A prioir, We do not know whether the so-
lution found in Section 4.3 is the global minimum of the
parameter space chosen and therefore the best reachable
solution within the choices and parameters made. We
will investigate on whether the finder algorithm is able
to recover the true input parameters when fitting mock
images in the next section.

5.1. Substructure finding

To approach question 2 (see section previous section
5) we take a mock image which is highly inspired by
RXJ1131-1231 of section 4.3. We keep the image quality
fixed (i.e. noise levels, pixel size and PSF) but change
the lens model such that we have one big SPEP profile
and a minor sub-clump, a spherical power law potential
(SPP). Ideally, we do not want to set any prior on the
position, mass, shape and number of substructures. If
we were interested in luminous sub-structure we could
add mass-to-light priors. As we want to use our method

to potentially detect dark sub-structure, we are not al-
lowed to give any mass-to-light prior. Therefore we want
to check whether our algorithm finds the preferential pa-
rameter space in the model. The main focus is on the
position of the sub-clump. In practice, we have to give
the maximal number of substructures, the areas where
they might occur and some functional form as an input.
Knowing the sensitivity limits, we can restrict our search
on regions in the parameter space where the data is sen-
sitive to.
To elaborate the capability to find a sub-clump we gen-

erate mock data with a sub-clump in the lens model at a
random position. We add Poisson and Gaussian noise on
the mock image. We then run the convergence method
on that image with the same weak prior information as
done for the real image in section 4.3. We repeat this
procedure 10 times. Our result is:

• Success rate in position: 100%. For our setting
with a random sampling of the prior parameter
space, all the runs ended around the right solution
(PSO).

• Detectability down to 10�4 level of the total lens
mass in the arc of the Einstein ring (MCMC).

• Time for convergence: About 105 evaluations of a
model configuration needed. One evaluation takes
few seconds.

For one realization of the input-output process the com-
parison is shown in Figure 7 in terms of convergence and
magnification and their residuals. We clearly see that
the position of the sub-clump could be well recovered
and the appearance of the critical line do match very
well. This means that there is no other degenerate solu-
tion within the parameter space which can reproduce a

e.g modelled by Suyu+ 2013
discovered by Sluse+ 2003

Application to data: RXJ1131-1231
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Fig. 6.— Modeling of RXJ1131-1231 HST ACS F814W image. Upper left: Observed image. Upper middle: Best fit preconstruction.
Upper right: normalised residuals of the reconstruction. Lower left: Reconstructed source with 1326 shapelet coe�cients (up to order 50).
Lower middle: Convergence model of the lens. Lower right: Magnification model of the lens.

2. In case of a perfect modeling: Are we able to re-
cover the true parameter configuration in a huge
parameter space?

3. In case of an imperfect modeling: How does this af-
fect the sensitivity limit, finding and quantification
of substructures?

To answer our first question, we refer to our data ex-
ample of RXJ1131-1231 in Section 4.3 of Figure 6. Even
though the observed and predicted images can hardly
be distinguish by eye, the residual map indicates room
for improvements in our modeling. Nevertheless the fact
that our mass-to-light prior-free lens model provides us
with a rather realistic solution might indicate that we are
not completely o↵ from reality. The validity of the source
surface brightness reconstruction is further discussed in
Section 6.1. A prioir, We do not know whether the so-
lution found in Section 4.3 is the global minimum of the
parameter space chosen and therefore the best reachable
solution within the choices and parameters made. We
will investigate on whether the finder algorithm is able
to recover the true input parameters when fitting mock
images in the next section.

5.1. Substructure finding

To approach question 2 (see section previous section
5) we take a mock image which is highly inspired by
RXJ1131-1231 of section 4.3. We keep the image quality
fixed (i.e. noise levels, pixel size and PSF) but change
the lens model such that we have one big SPEP profile
and a minor sub-clump, a spherical power law potential
(SPP). Ideally, we do not want to set any prior on the
position, mass, shape and number of substructures. If
we were interested in luminous sub-structure we could
add mass-to-light priors. As we want to use our method

to potentially detect dark sub-structure, we are not al-
lowed to give any mass-to-light prior. Therefore we want
to check whether our algorithm finds the preferential pa-
rameter space in the model. The main focus is on the
position of the sub-clump. In practice, we have to give
the maximal number of substructures, the areas where
they might occur and some functional form as an input.
Knowing the sensitivity limits, we can restrict our search
on regions in the parameter space where the data is sen-
sitive to.
To elaborate the capability to find a sub-clump we gen-

erate mock data with a sub-clump in the lens model at a
random position. We add Poisson and Gaussian noise on
the mock image. We then run the convergence method
on that image with the same weak prior information as
done for the real image in section 4.3. We repeat this
procedure 10 times. Our result is:

• Success rate in position: 100%. For our setting
with a random sampling of the prior parameter
space, all the runs ended around the right solution
(PSO).

• Detectability down to 10�4 level of the total lens
mass in the arc of the Einstein ring (MCMC).

• Time for convergence: About 105 evaluations of a
model configuration needed. One evaluation takes
few seconds.

For one realization of the input-output process the com-
parison is shown in Figure 7 in terms of convergence and
magnification and their residuals. We clearly see that
the position of the sub-clump could be well recovered
and the appearance of the critical line do match very
well. This means that there is no other degenerate solu-
tion within the parameter space which can reproduce a

No M-L prior!

e.g modelled by Suyu+ 2013
discovered by Sluse+ 2003

Application to data: RXJ1131-1231

STRIDES meeting, Lausanne 30.4.2015Simon Birrer



9

FIG. 6.

FIG. 7.

ulation of the deflection of light remains still a problem.
This method will not replace the ray-tracing techniques
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VI. CONCLUSION

In this paper we introduced a strong lens modeling
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the surface brightness and lens model. We identified the
following key aspects of our framework:
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crease in complexity. We are able to explore which
part of the modeling needs more complexity to re-
produce a lens system.
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Summary

- Multipurpose framework
- Fast modelling of many lens systems
- We want to contribute to DES/STRIDES/…
- Birrer+ 2015, submitted (today on the arXiv)
- Happy to collaborate with you!
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Fig. 4.— Illustration of a combined PSO and MCMC chain in a 9 dimensional non-linear parameter space. The blue lines connect the
best fit particle during the PSO process. The red lines mark the true input parameter. Dark (light) gray contours mark the 1-sigma
(2-sigma) confidence interval estimated from the MCMC process.
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Supplementary material:
Example of other systems
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2�⇠T

(M⇠

)

�1�⇠.
(12)

Integrating equation (12) over �⇠ results in

P (d
data

|✓) = P (d
data

|✓, b⇠)
⇥
(2⇡)ndet(M�)

⇤ 1
2 (13)

In principle equation (10) is the cost function to use
when doing image comparison. The information about

the image position is imprinted in this cost function. The
problem with this cost function: Convergence to a rea-
sonable model can be very hard. The use of additional
or derived informations, such as the explicit image posi-
tions, can help for convergence. The relative weighting of
di↵erent informations is a very non-trivial issue. In one
or another way one uses certain information with more
weight than others. The aim is to end up with only one
cost function, equation 10. To get there, there is no lim-
itation in using any other cost function or a combination
of those, as long as they provide some information about
the system. The PSO process we make use of does not

Credit: Kevin Fusshoeller, semester project (about two days per system)
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