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Coherent nonlinear transport in quantum rings
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Abstract

While equilibrium properties of mesoscopic systems are well understood, many questions are still debated concerning the non-
equilibrium properties, which govern nonlinear transport. Nonlinear transport measurements have been performed on two-terminal
semiconductor quantum rings in the open regime, where the rings are used as electron interferometers and show the Aharonov–Bohm
effect. We observe a magnetic field asymmetry of the nonlinear conductance, compatible with the non-validity of the Onsager–Casimir
relations out-of-equilibrium. In particular, the voltage-antisymmetric part of the nonlinear conductance of these two-terminal devices is
not phase rigid, as it is the case for the linear conductance. We show that this asymmetry is directly related to the electronic phase
accumulated by the electrons along the arms of the ring and can be tuned using an electrostatic gate.
r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since the discovery of the Aharonov–Bohm (AB) effect,
ring structures have played a major role in the development
of mesoscopic physics. Transport experiments have been
done in the open regime, where the ring is used as an
electron interferometer, as well as on nearly isolated small
rings, showing Coulomb blockade and the Kondo effect.
The equilibrium properties of these systems have been
studied extensively both theoretically and experimentally,
and are generally understood. However, several questions
have arisen recently about the non-equilibrium properties
of these systems.

Many experiments have proven the coherent nature of
transport in a semiconductor quantum ring. In the open
regime, when the conductance through the ring is larger
than e2/h, the AB effect leads to oscillations of the
conductance as a function of a magnetic flux enclosed by
the ring, due to the successive constructive and destructive
interference between both electron paths going around the

ring [1]. In the closed regime, semiconductor quantum rings
have shown effects of quantum confinement in the
Coulomb blockade regime [2]. One of the best proofs of
coherent transport through a closed quantum ring is the
observation of the Kondo effect [3,4], where correlations
between electrons in the leads and in the ring produce an
enhanced density of states aligned with the chemical
potential of the leads. Nonlinear transport measurements
in a three-terminal ring in the Kondo regime have been
used to probe the out-of-equilibrium Kondo density of
states [14].
Recently it has been shown that nonlinear transport in a

mesoscopic system can lead to intriguing effects [5–13]. In
particular, properties usually known in the linear regime,
such as Onsager–Casimir relations for the transport, are
not valid any more. For a two-terminal system, this will
induce a magnetic field asymmetry of the nonlinear
conductance, as it has been demonstrated theoretically
[5–8], and reported recently in various mesoscopic systems
[9–13]. In the following we will show that an AB ring can
show such an asymmetry, and that the asymmetry can be
tuned by changing the electrostatic potential around the
ring, suggesting the importance of the electronic phase in
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both the origin of the nonlinear transport and the magnetic
field asymmetry.

2. The samples

The samples are fabricated from a GaAs/AlGaAs
heterostructure containing a two-dimensional electron gas
34 nm below the surface. The surface of the heterostructure
is locally oxidized using an atomic force microscope,
thereby defining depleted lines in the 2DEG underneath the
oxide lines [15,16]. The results presented here were
obtained on two samples. Both are rings, connected to
three terminals in case of the sample shown in Fig. 1(a) and
labeled ring A, and to two terminals for the one shown in
Fig. 1(b) and labeled ring B. From the period of AB
oscillations, we determine the effective diameter of ring A
to be 260 nm, and that of ring B to be 460 nm. Both values
are compatible with the lithographic characteristics. Addi-
tional in-plane gates allow to tune the couplings of the
leads to the ring or the Fermi energy in the ring.

In the following, the gate voltages are chosen in order to
tune both rings in the open regime, with a conductance of
the order of e2/h. For the case of ring A, the third contact is
closed by applying a negative voltage on the gate LG3,
which leads to an effective two-terminal measurement. This
is confirmed by checking that the current through lead 3 is
always zero within measurement accuracy (see Fig. 2). The
d.c. I–V characteristics are measured by applying a bias
voltage between leads 1 and 2, i.e., þV=2 on lead 1 and
!V=2 on lead 2, while the current is measured. The
experiment has been done in a pumped 4He cryostat with a
base temperature of 1.7K.

3. Magnetic field symmetries of the nonlinear conductance

A typical I–V trace is shown in Fig. 2 for the case of ring
A. It is already clear from this measurement that
nonlinearities occur above a bias voltage of around
100mV, as seen when comparing the experimental curve

(solid line) with a linear fit of the low-voltage part of the
curve (dashed line). The nonlinear conductance, gðV ;BÞ ¼
dIðV ;BÞ=dV , is extracted from the d.c. I–V curves by
numerical differentiation. The voltage-symmetric part,
gsðV ;BÞ ¼ 1

2 ½gðV ;BÞ þ gð!V ;BÞ', and voltage-antisym-
metric part, gaðV ;BÞ ¼ 1

2 ½gðV ;BÞ ! gð!V ;BÞ', are plotted
in Fig. 3. A clear difference is found between both plots.
The voltage-symmetric part is symmetric in magnetic field,
clearly shows h/2e oscillations around zero magnetic field,
and is strongly suppressed at high bias voltage. The
voltage-antisymmetric part is asymmetric in magnetic field,
shows mainly h/e oscillations, almost no h/2e oscillations,
and its magnitude is preserved at large bias voltage.
The magnetic field asymmetry of the nonlinear con-

ductance can be seen more clearly when expanding the
nonlinear conductance in powers of the applied voltage.
We have fitted the I–V curves with a polynomial:

IðV ;BÞ ¼
XN

n¼1

GfngðBÞðV ! V0Þ. (1)

The order of the polynomial, N ¼ 5 or 7, has been chosen
in order to obtain the best fit of the curve. We have checked
that changing this order does not change significantly the
low-order coefficients, in which we are interested.
The coefficients of the Taylor expansion are shown in

Fig. 4 as a function of magnetic field. We clearly see in this
representation that the odd coefficients, which represent
the Taylor expansion of gs, are symmetric in magnetic field
within experimental accuracy. On the contrary, the even
coefficients are not symmetric in magnetic field, and show
oscillations with a phase shift intermediate between 0 and
p. The strong suppression of h/2e oscillations in the even
coefficients compared to the odd ones is also remarkable.
These features of the nonlinear conductance have been

obtained in a particular configuration of gate voltages, i.e.,
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Fig. 1. Topographic images of the two samples, taken with an AFM just
after the oxidation process: (a) ring A, which is initially connected to three
terminals, but in the following the lead 3 is kept closed; (b) ring B,
connected to two terminals. The gates labelled LG1, LG2 and LG3 are
used to tune the openings of the rings, while the gates labelled PG1, PG2
and PG3 tune the Fermi energy in the ring.
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Fig. 2. Current–voltage characteristics measured on ring A at a magnetic
field B ¼ 57mT (solid line). The dashed line shows a linear dependence
with a slope corresponding to the linear conductance. The horizontal line
at zero current is the measured current through lead 3.
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particular values of the conductance at the quantum point
contacts at the input and the output and particular
electrostatic potential around the ring. We are unfortu-
nately not able to characterize in detail this configuration,
but the measurements obtained in ring A have been
reproduced in ring B as shown in the next part, which
proves the universality of this effect.

4. Modulation of the phase using a lateral electrostatic gate

To further check the origin of both the nonlinear
conductance and the magnetic field asymmetry of the
nonlinear conductance, we have varied the gate voltage
PG1 on ring B, and measured I–V traces as a function of
the magnetic field for each gate voltage. The gate is
expected to modify the Fermi energy in one of the arms of
the ring, thereby modifying the phase accumulated by the
electron passing through this arm [17–21].

The results for Gf1g and Gf2g are shown in Fig. 5. The
linear conductance shows clear phase jumps from 0 to p
when the gate voltage is changed, as already observed for
other two-terminal AB rings [19,21]. This plot shows that
the electronic phase changes by more that 2p within the full
gate voltage range.

The behavior observed in Gf2g is much more surprising.
The phase of the oscillations varies linearly with the gate
voltage, as clearly seen for negative voltages (see white
solid lines in Fig. 5(b)), and compatible with the results
already reported in ring A [13]. This suggests that the
rectifying part of the conductance can be controlled by
changing the electronic phase accumulated along the arms
of the ring. In addition, we show here that the nonlinear
conductance is not phase rigid, as it is the case for the linear
conductance. In particular, the linear change of the phase
with gate voltage is very similar to the measurement done
with open AB interferometers [20,22,23], where it has been
shown that the phase of the AB oscillations is a direct
measurement of the phase difference between the two
electron paths around the ring.
In addition to the strong oscillations in Gf2g, one can see

also weaker oscillations with a phase varying exactly in the
opposite direction compared to the strong oscillations (see
black dashed lines in Fig. 5(b)). These additional lines are
stronger around zero gate voltage.

5. Discussion

Here we would like to discuss the main results that have
been presented above. These are the nonlinear transport, in
particular the even coefficients of the conductance expan-
sion, the magnetic field asymmetries of these coefficients,
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Fig. 3. Parts of the conductance which are (a) symmetric in bias voltage,
gs, and (b) antisymmetric in bias voltage, ga, measured on ring A with lead
3 closed, and plotted as a function of the magnetic field and the bias
voltage.
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Fig. 4. Magnetic field dependence of the nonlinear conductance coeffi-
cients measured on ring A, and corresponding to the same measurement as
in Fig. 3. Only the four first coefficients are shown here, while the I–V
curves have been fitted with a fifth order polynomial. On the four upper
curves, the solid line is the original set of data, while the dashed line is the
same data set inverted with respect to B ¼ 0. The bottom curve is the
offset voltage, V0, also deduced from the fit with Eq. (1).
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which can be tuned with an electrostatic gate, and the
strong suppression of h/2e oscillations in the even
coefficients.

Basic effects, such as electron heating or voltage induced
decoherence, could explain nonlinear transport in meso-
scopic systems. These effects are, however, expected to be
independent of the sign of the current. They could
therefore explain the voltage-symmetric part of the
conductance, gs, shown in Fig. 3(a). In particular, the
suppression of the AB oscillations in gs at high bias is
indeed compatible with a decoherence mechanism or
energy averaging, which could be induced either directly
by the bias voltage, or by an increase of the temperature.

However, these effects are not expected to contribute to
ga, which involves only effects antisymmetric in the voltage
direction. Nonlinearities could originate from the quantum
point contacts (QPCs) at the input or output of the ring, or
from non-ideal contacts. We have checked on a separate
QPC made on the same wafer that nonlinearities originat-
ing from the contacts or the QPCs depend only weakly on
the magnetic flux, on the scale of the flux quantum through

the ring. Finally, the fact that both the voltage-symmetric
and voltage-antisymmetric parts of the conductance have
different magnetic field symmetries excludes spurious
circuit-induced nonlinear effect to explain the voltage-
antisymmetric part of the conductance: a change of the
conductance at large bias due to self-gating effect would
produce a nonlinear conductance with the same magnetic
field symmetry as for the linear conductance.
A rectifying behavior has already been observed

experimentally in mesoscopic systems [24–27], and was
explained in terms of the scattering theory with a bias
voltage dependent transmission [28–30]. Such nonlinear
behavior is expected for a bias voltage larger than ET=e,
where ET is the Thouless energy. In ring A, one can
estimate the Thouless energy from the ‘‘Thouless number’’
g ¼ Gf1g=ðe2=hÞ ¼ ET=D [31], where D ( 200meV is the
mean level spacing, determined from measurements in the
Coulomb blockade regime. This estimate gives
ET ( 100meV, which is of the order of the applied voltage.
We are therefore in the right regime for such nonlinearities
to occur.
In these models, even coefficients in the nonlinear

conductance are expected if the system is asymmetrically
coupled to the reservoirs, via scattering or capacitive
coupling. This is very likely to be the case in our system,
where the openings to the leads can be independently
tuned. It is interesting to note that such nonlinear
conductance has been observed only for particular values
of the gate voltages.
These models were developed for independent electrons,

and only effects symmetric in magnetic field were predicted.
A nonlinear conductance asymmetric in magnetic field has
been suggested only very recently [5–8], and reported in a
couple of experiments [9–12]. The asymmetry comes from
the screening response of the system [5–8], which is in
general not symmetric in magnetic field, and is a direct
demonstration of strong electron–electron interactions in
these systems. Such an asymmetry has not been reported
for previous experiments on rings [26,27], in particular due
to the multi-terminal nature of these experiments. It is not
clear in our system what the importance of electron–
electron interactions is. In particular, the low number of
modes in the ring would suggest a weak screening regime,
and a microscopic model would be necessary to understand
the origin of the nonlinear transport in our system.
Another effect of the applied bias voltage could be the

electrostatic AB effect: the applied bias voltage creates an
electric field along the arms of the ring, which changes the
electronic phase [32,33]. Both screening effect and electro-
static AB effect could be present in our system, but we were
not able to distinguish between them.
The lack of h/2e oscillations in the even coefficients is a

surprising result, which cannot directly be understood
with the scattering theory for nonlinear mesoscopic
transport [5,13]. h/2e oscillations in the linear conduc-
tance have been attributed to interference between two
time-reversed paths enclosing once the magnetic flux, the
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Fig. 5. (a) Oscillating part of the linear conductance, DGf1g ¼ Gf1g!
hGf1gi, and (b) quadratic conductance, Gf2g, measured on ring B as a
function of the magnetic field and the voltage applied on PG1. The AB
oscillations observed in Gf2g for large negative gate voltage are clearly
asymmetric in magnetic field, and the phase of these oscillations vary
linearly as a function of the gate voltage (see plain lines). In addition,
weaker oscillations with an exactly opposite phase can be seen (see dashed
lines).
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so-called Altshuler–Aronov–Spivak (AAS) oscillations
[34]. Another possible origin is the standard AB effect
between paths enclosing twice the magnetic flux. Interest-
ingly, AAS oscillations are not sensitive to local variations
of the electronic phase along the ring, since both time-
reversed paths will feel the same phase. Our results would
suggest that AAS oscillations are also not sensitive to the
bias voltage, at least for the voltage-antisymmetric non-
linear conductance. Unfortunately we were not able to
check the origin of h/2e oscillations in these devices, and
this question remains to be investigated.

Finally it is interesting to discuss the offset voltage V0.
A constant offset voltage is expected from the amplifiers
and thermal voltages. However, we see in the lower panel
of Fig. 4 a strong oscillatory contribution. Since this
oscillatory part has the same asymmetry than the
coefficient Gf2g, it could come from the rectification of an
a.c. noise signal by the voltage-antisymmetric part of the
conductance.

6. Conclusion

In conclusion, we have made nonlinear transport measure-
ments in two-terminal rings. The nonlinear conductance shows
AB oscillations as a function of the magnetic field, and can be
decomposed into a voltage-symmetric and a voltage-antisym-
metric part. The voltage-symmetric part is also symmetric in
magnetic field, and can be possibly attributed to heating,
energy averaging, or voltage-induced decoherence. The
voltage-antisymmetric part of the conductance is asymmetric
in magnetic field, and this asymmetry can be controlled
directly by changing the electronic phase along the arms of the
ring. It shows that the voltage-antisymmetric part of the
nonlinear conductance is not phase-rigid. The main symme-
tries observed can be understood within the scattering theory
for nonlinear mesoscopic transport. However, the microscopic
origin of the nonlinear transport, as well as the strong
suppression of h/2e oscillations of the voltage-antisymmetric
part of the nonlinear conductance are still a puzzle.
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[8] M. Büttiker, D. Sánchez, Int. J. Quantum Chem. 105 (2005) 906.
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