
Chapter 3

Physics of electromagnetic waves

3.1 Introduction: Basic optical concepts

This chapter reminds some basic principles of electrodynamics which are relevant for
the geometric optics and wave optics of astronomical telescopes and instruments. The
following treatment is mainly based on the classical textbook of Born and Wolf, “Principles
of Optics” where a comprehensive description of the theory can be found.

3.1.1 Geometric optics

Geometric optics is a simplification of the wave optics which assumes that the wavelength
is much smaller than the geometric dimensions of the optical system (λ → 0). Geometric
optics is a valuable tool for the treatment of light propagation (light rays), reflection and
refraction. But geometric optics cannot describe polarization, diffraction and interference
effects.

Reflection from a flat surface. The incident (i) and reflected (r) rays and the surface
normal ~z lie in the same plane. The incident and reflected rays have equal angles (but
opposite sign) with respect to ~z:

θr = −θi . (3.1)

In general not all light is reflected from a surface. For example, dielectric surfaces like
glass reflect only a few per cent because most of the light is transmitted, or an aluminum
mirror reflects in the optical only about 90 %. The reflectivity depend also on wavelength.

Refraction and refractive index. Refraction occurs at the boundary between two
media with different refractory indices n1 6= n2. The index ni can be defined by

ni =
c

vi
, (3.2)

where vi = cn is the light travelling speed in the medium and c the speed of light in
vacuum.

Some important properties of the refractive index:

– n ≥ 1; for example n = 1.000294 for air, n = 1.33 for water, and n = 1.4 − 1.7 for
many glasses (λ = 550 nm),

– n depends on color; n = n(λ),

– n is for amorphous materials, like air, water, or amorphous glass, independent of the
direction (or isotropic)
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– many crystals are birefringent, this means that the refraction index depends on
the propagation direction (e.g. nx 6= ny 6= nz).

Snell’s law. Light falling onto an interface between two media with n1, n2 at an angle
of incidence θi to the normal ~z is refracted in the second medium at an angle θt (t for
transmitted) according to:

n2 sin θt = n1 sin θi , (3.3)

or the propagation direction is closer to the surface normal in the denser medium.

Total internal reflection. If the light is propagating from the denser medium to the
less dense medium n1 > n2, then there exists a critical maximum angle θmax

i where θt = 90◦

or sin θt = 1. This angle is given according to Eq. (3.3)

sin θmax
i = n2/n1 for n1 > n2 . (3.4)

For incidence angles θi > θmax
i all light will be reflected back into the denser medium.

This is called total internal reflection. Optical light fibers are based on this principle.

3.1.2 Wave optics

Wave optics provides a general, exact and comprehensive description of optical phenomena
based on the theory of electromagnetic waves (hereafter also simply called “light”). With
wave optics one can treat the propagation of light, interaction of light with a medium,
light polarization, diffraction, and interference effects.

Huygens’ wavefronts. Christian Huygens proposed in the 17th century basic principles
for the propagation of waves which are also valid for electromagnetic waves:

– As a wave travels, each point along its path makes the same periodic disturbance,
but later in time for points further away from the source.

– Each point can be considered as a source of a new spherical wavelet. The wavelets
are in phase on a sphere which envelopes them. The wavefront is the locus where
the wavelets have exactly the same phase of oscillation.

– The wavefronts propagate along straight (radial) lines which are called rays.

– For an opaque obstacle secondary wavelets spread round the edge (diffraction).



3.2. MAXWELL’S EQUATION 25

Interference. Wave interference is another cornerstone of wave optics. Electromagnetic
waves are harmonic waves with periodic oscillation along a ray. The oscillations of two
waves at a given point are superposed or added. An interference will happen if there are
at a given point two coherent waves (= same wavelength) with the same or comparable
amplitude a and a constant phase shift over a long time

– if the waves differ in phase by 2mπ then they are in phase and the resulting oscillation
has an amplitude of 2a,

– if the phase difference is (2m + 1)π then they are in anti-phase and the resulting
amplitude is zero,

– in general the amplitude lies between these two extreme cases.

3.2 Maxwell’s Equation

The properties of electromagnetic waves can be deduced from Maxwell’s equations. For
this we use Maxwell’s macroscopic equations which are also called Maxwell’s equations in
matter. They “factor out” the bound charges and currents so that the resulting equations
depend only on the free charges and currents. This requires that auxiliary fields must be
introduced besides the electric field ~E and the magnetic field and ~B which depend on the
medium (material).

curl ~E = −1

c

∂ ~B

∂t
, (3.5)

curl ~H =
4π

c
~j +

1

c

∂ ~D

∂t
(3.6)

div ~D = 4πρ (3.7)

div ~B = 0 . (3.8)

The used quantities are:

~E the electric field

~B the magnetic field

~D = ~E + 4π ~P the electric displacement field in a medium, which is given by the
electric field and the material dependent polarization density ~P ,

~H = ~B − 4π ~M the magnetizing field in a medium, which can be expressed by the
magnetic field and the total magnetization ~M in a material,

~j the free current density,

ρ the free charge density.

We use here the so-called Gaussian system of units:

– electrical quantities ~E, ~D, and ρ are given in electrostatic units,

– magnetic quantities ~B and ~H in electromagnetic units.

3.2.1 Material equations

A lot of complicated physics describing the interaction of an electromagnetic wave with a
medium is hidden in the equations describing the polarization density ~P and the magne-
tization of the material ~M .
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For weak fields a linear approximation can often be made for ~P and ~M . This condition is
usually fulfilled for electromagnetic radiation from astronomical objects interacting with
observing instruments:

~P ≈ χe
~E and ~M ≈ χm

~H ,

where χe and χm are the electric and magnetic susceptibilities. Introducing the electric
permittivity ǫ = 1+4πχe, and the magnetic permeability µ = 1+4πχm yields then simple
linear relations between the electric field and the displacement field as well as the magnetic
field and the magnetizing field:

~D ≈ ǫ ~E , (3.9)

~H ≈
~B

µ
. (3.10)

In additions there may be free charges which produce currents in a material. This property
is defined by the conductivity σ and Ohm’s law:

~j = σ ~E . (3.11)

Conductivity σ. We distinguish between conductors and insulators:

– σ > 0 are conductors, e.g. metals or “warm” semiconductors, but also ionic solutions
or a plasma. Electromagnetic waves in conductors σ > 0 induce moving charges
which cause dissipation due to the production of Joule heat. Therefore, conducting
materials are not transparent. However metal surfaces are good reflectors and are
widely used as mirrors in optics.

– σ ≈ 0 are insulators or dielectrics. Non-absorbing dielectrics, like glasses, are very
important materials for transmittive optics such as lenses.

Permittivity ǫ. The permittivity describes the ability of materials to transmit (or “per-
mit”) an electric field. On a microscopic scale the ~D field induces in an insulator charge
migration and electric dipole reorientations. These effects act against the ~D field, so that
the resulting electric field ~E is weakened ~E = ~D/ǫ with ǫ > 1, except for vacuum where
ǫ = 1.

For real-world materials the induced electric effects cannot be described exactly with a
simple linear law ~D = ǫ ~E but with more complicated function depending on various
parameters: Examples are:

– Dispersion in materials depend on frequency. An electromagnetic wave passing
through a material induces charge oscillations which are slightly out of phase (de-
layed) with respect to the driving electromagnetic field. The oscillating charges
reradiate a wave but with a phase delay so that the wave travels slower cn = c/

√
ǫ

and has a reduced wavelength in the medium but the wave frequency is the same.

– Absorption depends on frequency and the wave is weakened when passing through
the medium. Absorption means that the permittivity ǫ must be treated as a complex
quantity including an absorption component.

– Anisotropy, such as birefringence or dichroism can be present in some materials
which are often crystals. In this case the permittivity ǫ is described as a second-rank
tensor

Dj = ǫijEi

instead of a scalar as for an isotropic medium.
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– Bi-anisotropic materials exist for which ~D depends on the ~E and ~H fields:

~D = ǫ ~E + ξ ~H .

– Spatial inhomogeneities may be present because there are small spatial structures in
the medium. Another case is the interaction of waves with a (magneto)-hydrodynamic
medium. Also hysteresis effects may produce a heterogeneous structure in space and
time.

Permeability µ. The permeability is the ability of a material to support the formation of
a magnetic field within itself in response to an applied ~B field. In a microscopic picture such
a material rearranges the magnetic dipoles. Materials with µ > 1 are called paramagnetic
(e.g. platinum) and with µ < 1 diamagnetic (e.g. bismuth, copper). Magnetic materials
show sometimes quite complicated effects which cannot be described with a simple linear
µ-law, similar to the case of the electric permittivity. However, for most optical materials
the magnetic permeability is practically unity

µ ≈ 1 .

and we consider in this lecture only this special but quite common case.

3.3 Electromagnetic waves in a dielectric medium

We consider an isotropic, homogeneous, dielectric medium without free electric currents
~j = 0 and charges ρ = 0, with a linear permittivity ( ~D = ǫ ~E) and a magnetic permeability
µ = 1 (or ~H = ~B). With these simplifications Maxwell’s equations have the form:

curl ~H =
ǫ

c

∂ ~E

∂t
, (3.12)

curl ~E = − 1

c

∂ ~H

∂t
, (3.13)

div ~E = 0 , (3.14)

div ~H = 0 . (3.15)

For ǫ = 1 we obtain the Maxwell equations for the vacuum.

These equations can be reduced, e.g. for ~E (and equivalent for ~H)

curl curl ~E = graddiv ~E
︸ ︷︷ ︸

0

−∇2 ~E = − 1

c
curl

∂ ~H

∂t
= − 1

c

∂ curl ~H

∂t
= − ǫ

c2
∂2 ~E

∂t2
,

into separate differential wave equations for the electric field and the magnetic field:

∂2 ~E

∂t2
=

c2

ǫ
∇2 ~E , (3.16)

∂2 ~H

∂t2
=

c2

ǫ
∇2 ~H . (3.17)

The equation include the speed of light c = 299′782 km/s and the electric permittivity ǫ
(the dielectric material constant), which is the relevant optical property of “transparent”
dielectric materials. The propagation speed of the wave is given by

cn =
c√
ǫ
=

c

n
, (3.18)

where n is the refractive index.
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Simple solutions for the wave equations

As a reminder we consider simple solutions of wave equations. We start with the 1-dimensional scalar
wave equation:

∂2ξ(x, t)

∂t2
= c2n

∂2ξ(x, t)

∂x2

where cn is the propagation speed. The general solution to this equation is:

ξ(x, t) = f1(x− cnt) + f2(x+ cnt) .

Harmonic 1-dim. wave. A special, but extremely useful solution (e.g. for electromatic waves travelling
through space and non-absorbing materials) is the harmonic wave:

ξ(x, t) = a cos
(
2π

λn

(x− cnt)
)

= a cos (knx− ωt),

where λn is the wavelength, kn = 2π/λ the wave constant, and ω = 2π cn/λ = 2πν the phase velocity with
ν as wave frequency. The material properties change the wavelength of the wave but not the frequency
(or phase velocity). Thus the material property described by the refractive index n is included in the
kn-parameter, the wavelength λn or the propagation speed cn.

Harmonic plane waves. The form of the 3-dimensional, scalar wave equation is analog to the 1.-dim.
case:

∂2ξ(~r, t)

∂t2
= c2n∇2ξ(~r, t) .

A special solution of the 3-dimensional scaler wave equation is the harmonic, plane wave:

ξ(~r, t) = a cos ( ~kn · ~r − ωt) ,

where ~kn = kn ·~s (|~s| = 1) is called the wave vector which points in the direction ~s of the wave propagation.

Harmonic waves as exponential functions. Calculations with harmonic waves can be simplified using
exponential functions. A harmonic plane wave may be written as

ξ(~r, t) = R{u(~r)e−iωt} with u(~r) = a(~r) ei(
~k~r−δ) ,

where R denotes the real part and u(~r) is called the complex amplitude. One can insert this into the
3-dim, scalar wave equation

∂2ξ(~r, t)

∂t2
= (−iω)2u(~r)e−iωt = c2n∇2(u(~r)e−iωt) .

and factor out the time-component e−iωt. Thus, the complex amplitude satisfies the equation:

u(~r) = − c2n
ω2

∇2u(~r)

If the operations on ξ are linear then the symbol R can be dropped and one can operate with the complex
function. The real part of the final expression is then the resulting physical quantity.

For non-linear operation, like squaring for the calculation of the wave intensity, one must take the real
part and then operate with these alone.

Spherical harmonic waves. An interesting special case of the 3-dimensional wave equation is a spherical
wave equation for which one can use r = |~r| =

√

x2 + y2 + z2 as space variable. In this case the wave
equation can be written as:

∂2(r · ξ(r, t))
∂t2

= c2n
∂2(r · ξ(r, t))

∂r2
.

The solution for a spherical, harmonic wave with the origin at r = 0 (for t = 0) is then:

ξ(r, t) =
1

r
a cos (knr − ωt) .

One obtains the well-known result that the intensity of a spherical wave decreases proportional the square

of the distance from the origin ξ2(r, t) ∝ a2/r2.
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3.4 Description of electromagnetic waves

Important solutions for the electromatic wave equations (Eqs. 3.16, 3.17) are the vectorial,
harmonic, plane waves for the electric and magnetic fields:

~E(~r, t) = ~aE cos ( ~kn · ~r − ωt+ δE) , (3.19)

~H(~r, t) = ~aH cos ( ~kn · ~r − ωt+ δH) . (3.20)

From Maxwell’s equations follow also the relations

√
ǫ ~E = −~s× ~H and ~H = ~s×

√
ǫ ~E and ~E ~s = ~H ~s = 0

expressing that the three vectors ~E, ~H, and ~s form a right-handed orthogonal triad of
vectors. Thus we can choose the z-axis in the propagation direction ~s, so that there are
only electric and magnetic field components in the x- and y-direction The end point of
the electric and magnetic vectors is then described by:

Ex(z, t) = ax cos (knz − ωt+ δx) , (3.21)

Ey(z, t) = ay cos (knz − ωt+ δy) , (3.22)

Hx(z, t) = −
√
ǫEy(z, t) , (3.23)

Hy(z, t) =
√
ǫEx(z, t) . (3.24)

3.4.1 Polarization

An electromagnetic wave or a photon is polarized. In general a wave has an elliptical
polarization. Special cases are waves with a linear polarization or a circular polarization.
The polarization state of a wave is defined by the wave amplitudes ax and ay and the
relative phase shift δ = δy − δx) of the wave components Ex(z, t) and Ey(z, t):

linear polarization the electric wave vector ~E oscillates in one plane
– phase shift: δ = m · π with m = 0,±1,±2, ...
– orientation: (−1)m arctan(ay/ax)

circular polarization ~E rotates around the z-axis with | ~E| = constant
– phase shift: δ = (m+ 1/2)π with m = 0,±1,±2, ...
– e.g. right-handed: δ = +π/2; left-handed: δ = −π/2

elliptical polarization ~E oscillates and rotates
– phase shift: δ 6= m · π/2

Unpolarized light. A thermal source emits so-called natural or unpolarized light. Un-
polarized light stands for many electromagnetic waves with a randomly distributed polar-
ization (elliptical, linear and circular polarization).
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3.4.2 Intensity

Optical measurements usually measure the intensity of the radiation, which is the aver-
age value of the electromagnetic energy transmitted per unit time through a unit area
perpendicular to the propagation direction. This energy is given by the pointing vector:

~S =
c

4π
~E × ~H (3.25)

In the x, y, z-coordinate system the Pointing vector has only the Sz component given by:

Sz = ExHy − EyHx = (a2x + a2y)
√
ǫ cos2( ~kn~s− ωt+ δ) . (3.26)

where E2 = | ~E|2 = (a2x + a2y) = H2/ǫ. The temporal average relates the wave amplitudes
with the pointing vector:

~S =
c

4π

√
ǫE2 ~s . (3.27)

3.5 Reflection and refraction on dielectric interfaces

3.5.1 Boundary conditions

Electromagnetic waves are transmitted and reflected at a boundary between two dielectric
media characterized by n1 and n2. At the interface the incident (i), reflected (r), and
transmitted (t) electric and magnetic waves must be continuous. This defines the boundary
conditions:

~E(i)(~r, t) + ~E(r)(~r, t) = ~E(t)(~r, t) , (3.28)

~H(i)(~r, t) + ~H(r)(~r, t) = ~H(t)(~r, t) . (3.29)

The reflection and transmission depend on the polarization of the incident ray, the inci-
dence angle θi, and the refractive indices n1 and n2 (which define also the angle of the
transmitted beam θt.

Each vector ~E and ~H is resolved into x-, y-, and z-components. The x-axis is de-
fined by the dielectric interface and the reflection / transmission plane, the y-axis lies in
the interface perpendicular to the reflection plane, and the z-axis is perpendicular to the
interface. The wave vectors can be expressed by components in the x-z-plane or a perpen-
dicular component in y-direction. For the electric vector this is equivalent to the parallel
(‖ or p-component for “parallel”) and perpendicular (⊥ or s-component for “senkrecht”)
polarization components of the electromagnetic wave.

Solving the boundary conditions yields the Fresnel formulae for the parallel amplitudes
of the reflected and transmitted wave r‖ and t‖ as function of the initicence angle and
equivalent for the perpendicular amplitudes r⊥, t⊥ as function of a⊥.
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Detailed derivation: The individual components for the incident, reflected and transmitted waves are:

Incident wave:

E(i)
x = −a‖ cos θi · e−iτi H

(i)
x = −a⊥

√
ǫ1 cos θi · e−iτi

E(i)
y = a⊥ · e−iτi H

(i)
y = −a‖

√
ǫ1 · e−iτi

E(i)
z = a‖ sin θi · e−iτi H

(i)
z = a⊥

√
ǫ1 sin θi · e−iτi .

with

τi = ω

(

t− ~r ~s(i)

v1

)

= ω
(

t− x sin θi + z cos θi
v1

)

Reflected wave: Note that θr = −θi.

E(r)
x = −r‖ cos θr · e−iτr H

(r)
x = −r⊥

√
ǫ1 cos θr · e−iτr

E(r)
y = r⊥ · e−iτr H

(r)
y = −r‖

√
ǫ1 · e−iτr

E(r)
z = r‖ sin θr · e−iτr H

(r)
z = r⊥

√
ǫ1 sin θr · e−iτr .

with

τr = ω

(

t− ~r ~s(r)

v1

)

= ω
(

t− x sin θr + z cos θr
v1

)

Transmitted wave:

E(t)
x = −t‖ cos θt · e−iτt H

(t)
x = −t⊥

√
ǫ2 cos θt · e−iτt

E(t)
y = t⊥ · e−iτt H

(t)
y = −t‖

√
ǫ2 · e−iτt

E(t)
z = t‖ sin θt · e−iτt H

(t)
z = t⊥

√
ǫ2 sin θt · e−tτt .

with

τt = ω

(

t− ~r ~s(t)

v2

)

= ω
(

t− x sin θt + z cos θt
v2

)

The boundary conditions must be fulfilled for the x-, y-, and z- components of ~E and ~H:

E(i)
x +E(r)

x = E(t)
x E(i)

y + E(r)
y = E(t)

y E(i)
z + E(r)

z = E(t)
z

H(i)
x +H(r)

x = H(t)
x H(i)

y +H(r)
y = H(t)

y H(i)
z +H(r)

z = H(t)
z

Evaluating these six equation yield two identical pairs and four independent equations:

cos θi (a‖ − r‖) = cos θt t‖

a⊥ + r⊥ = t⊥√
ǫ1 cos θi (a⊥ − r⊥) =

√
ǫ2 cos θt t⊥√

ǫ1(a‖ + r‖) =
√
ǫ2t‖
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3.5.2 Fresnel formulae: reflected and transmitted amplitudes

The boundary conditions for a dielectric interface yields the Fresnel formulae which de-
scribe the reflected r and transmitted t wave amplitudes as function of the initial ampli-
tude a for the two polarization modes ‖ and ⊥ independently. There are different ways to
express the result:

r‖ =
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

a‖ =
tan (θi − θt)

tan (θi + θt)
a‖ (3.30)

r⊥ =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

a⊥ = − sin (θi − θt)

sin (θi + θt)
a⊥ (3.31)

t‖ =
2n1 cos θi

n2 cos θi + n1 cos θt
a‖ =

2 sin θt cos θi
sin (θi + θt) cos (θi − θt)

a‖ (3.32)

t⊥ =
2n1 cos θi

n1 cos θi + n2 cos θt
a⊥ =

2 sin θt cos θi
sin (θi + θt)

a⊥ (3.33)

For the discussion we consider normalized amplitudes, e.g. r̂‖ = r‖/a‖ and similar for

r̂⊥, t̂⊥, and t̂⊥. We distinguish between the incidence from the less dense to the denser
medium n1 < n2 and the other way round n1 > n2.

n1 < n2: Incidence from the less dense medium onto the denser medium. There is θt < θi,
tan(θi − θt) > 0 and sin(θi − θt) > 0. For the reflection r‖ and r⊥ there are positive and
negative amplitudes. A negative value is equivalent to a phase shift of π with respect to
the incident wave. As an illustration the reflected amplitudes for n1 = 1 and n2 = 1.6 are
given below in a Table and a Figure. Some results and special cases are:

for the amplitudes of the reflected light
r̂‖ > 0 for θi < θB , where θB is the Brewster angle (see below)

r̂‖ = 0 for θi = θB there is no reflection of the parallel component

r̂‖ < 0 for θi > θB there is a phase shift of π in this component

r̂⊥ < 0 for all θi a negative vallue = π-phase shift

for extreme incidence angles
r̂‖ = −r̂⊥ = (n1 − n2)/(n1 + n2) for θi = 0◦ or normal incidence

r̂‖ = r̂⊥ = −1 for θi = 90◦ or grazing incidence there is total reflection

for the amplitudes of the transmitted light
t̂‖ ≥ t̂⊥ ≥ 0 there is no phase change in the transmitted amplitudes

for extreme incidence angles
t̂‖ = t̂⊥ = 2n1/(n1 + n2) for θi = 0◦ or normal incidence

t̂‖ = t̂⊥ = 0 for θi = 90◦ or grazing incidence there is no transmission

n1 > n2: Incidence from the denser medium towards the less dense medium. The ampli-
tudes of the reflected and transmitted light behave very similar to the case n1 < n2. Two
important differences are:

– the valid range for the incidence angle θi is reduced to θi = 0◦− θmax
i . For θi > θmax

i

total “internal” reflection takes place and the Fresnel formulae do not apply.

– the signs for r‖ and r⊥ are reversed indicating switched phase shifts (0 ↔ π) when
compared to the n1 < n2 case.

Brewster angle. A special incidence angle is the polarizing angle or Brewster angle

θB = arctan

(
n2

n1

)

. (3.34)
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where r‖(θB) = 0. For this case the reflected and transmitted rays are perpendicular to
each other θi+ θt = π/2 or tan(θi+ θt) = ∞. The reflected light is fully polarized linearly
in perpendicular orientation.

Total internal reflection. If the light is propagating from the denser medium to the
less dense medium n1 > n2, then there exists a critical maximum angle imax

1 where i2 = 90◦

or sin i2 = 1. This angle is given by (see also Eq. (3.4)

sin θmax
i = n2/n1 for n1 > n2 .

The angle θt is not defined for θi > θmax
i and the formulae for the transmission amplitudes

t‖ and t‖ are not valid. Total internal reflection occurs and all light is reflected back into
the denser medium.

Example: reflection from a glass surface. As an example we illustrate the case of
the transmission and reflection from a glass plate. We use n1 = 1.0 for air and n2 = 1.6
for glass. The Brewster angle for this case is θB = 58◦.

Reflected amplitudes and intensities as function of the incidence angle for n1 = 1 and a
glass plate with n2 = 1.6. δ‖ − δ⊥ is the relative phase shift between r‖ and r⊥.

θi θt r‖/a‖ r⊥/a⊥ R‖ R⊥ δ‖ − δ⊥

0◦ 0◦ +0.231 −0.231 0.053 0.053 π
15◦ 9.3◦ +0.221 −0.241 0.049 0.058 π
30◦ 18.2◦ +0.187 −0.274 0.035 0.075 π
45◦ 26.2◦ +0.116 −0.340 0.013 0.115 π
60◦ 32.8◦ −0.025 −0.458 0.001 0.210 0
75◦ 37.1◦ −0.316 −0.662 0.100 0.439 0
90◦ 38.7◦ −1.0 −1.0 1.0 1.0 0

Figure 3.1: Reflected amplitudes for the parallel and perpendicular polarization r‖ and r⊥
directions as function of incidence angle for an air / glass (n = 1.6) interface.
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3.5.3 Reflected and transmitted intensities.

The reflected R‖, R⊥ and transmitted T‖, T⊥ intensity fractions of the initial intensities
I‖ and I⊥ are then obtained from the squares of the amplitudes. The parallel and per-
pendicular wave components can be treated independently. For the reflectivity we obtain:

R⊥ =

(
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

)2

=

(
tan(θi − θt)

tan(θi − θt)

)2

(3.35)

R‖ =

(
n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

)2

=

(
sin(θi − θt)

sin(θi − θt)

)2

(3.36)

Since there is no energy lost at a dielectric boundary the transmittivity follows from the
energy conservation:

T = 1−R, or T⊥ = 1−R⊥ and T‖ = 1−R‖ . (3.37)

Figure 3.2: Reflected and transmitted intensities for the parallel and perpendicular polar-
ization directions R‖ and R⊥ as function of incidence angle for an air / glass (n = 1.6)
interface.

3.5.4 Special case: normal incidence.

For normal incidence ii = 0◦ the reflectivity R and transmittivity T are

R =
(n2 − n1)

2

(n2 + n1)2
and T =

4n1n2

(n2 + n1)2
(3.38)

This equation shows that the reflection is larger for strong jumps in the refractive indices.
For n1 → n2 the reflection goes towards zero R → 0.

Example: The reflected intensity increases rapidly for an interface between air (n1 = 1)
and glass n2 with increasing refraction index n2, e.g. R(n2 = 1.5) = 0.040, R(n2 = 2.0) =
0.111, R(n2 = 2.5) = 0.184.
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3.5.5 Transmission and ghosts from dielectric components

Transmitting, dielectric components are frequently used in astronomical instruments. Typ-
ical components are:

– lenses,

– broad and narrow band filters,

– beam splitter plates or beam splitter cubes,

– prisms,

– masks on substrates (e.g. coronagraphic masks).

Transmitting components produce reflections at the entrance and the exit surfaces. Often
the components themselves are made up of two or more sub-components with eventually
optical glue layers between them. Each interface can cause reflections which reduces the
overall transmission of the instrument. More harmful are often back-and-forth reflections
(or retro-reflections) between two interfaces which may produce ghost images or enhance
the diffuse light in the instrument. One can distinguish between:

– internal reflections: two interfaces in a transmitting component reflect light back
into the beam. This produces often ghost images, because the optical path difference
between the direct image and the retro-reflected are small.

– external reflections: surfaces from one component reflect light backwards which
might be retro-reflected by the surface of another component in the system. Some-
times external reflections produce also ghost images. However, often the ghost image
is strongly defocussed or deflected because the path difference of the retro-reflected
light is significant. In any case external reflections can add harmful diffuse light.

The reduction of diffuse light and ghosts is an important part of an instrument design.
There are many tricks to reduce diffuse light and to avoid ghost images. Ghosts from
internal reflections can be deflected by using wedge shaped components while external
reflections and diffuse light can be reduced by tilting plane surfaces. A most important
way to enhance the transmission and to reduce reflections are anti-reflection coatings,
which are discussed in the next section.

Transmission and ghosts from one component. We consider a transmitting com-
ponent or sub-component which has an entrance and exit interface characterized by the
refractive indices n1-n2 and n2-n3, respectively. For each interface the formulas for the re-
flection R and transmission T as given in Eqs. (3.37), (3.35), and (3.36) apply. For the dis-
cussion here we assume that the reflections are quite small R12 ,R23 < 0.1, T12, T23 > 0.9
and we do not consider explicitly the dependence on incidence angle and polarization.

If also interference effects are neglected then the reflected and transmitted intensities can
be expressed as series which consider the direct reflection or transmission through the
interfaces and the higher order terms which describe one or more back-and-forth reflection
in layer n2.
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The reflected intensity is

R = R12 + T12R23T21(1 +R21R23 + (R21R23)
2 + . . .) ≈ R12 +R23 (T12T21) (3.39)

Because of R21R23 < 0.01 higher order terms in the series can be neglected for a first
approximation.

The transmitted intensity, including the back and forth reflected light is given by:

T = T12T23(1 +R23R21 + (R23R21)
2 + . . .) . (3.40)

The directly transmitted intensity is

T = T12T23

which is the value to be used for the calculation of the component transmission for the
instrument sensitivity. For a multi-component system the final transmission is the product
of all transmissions at all interfaces.

The ghost intensity from this single layer is then as first approximation (T12T23 ≈ 1) at a
level of:

Sghost ≈ R12R23 . (3.41)

Transmission and ghosts of a multi-layer components. For a multi-layer com-
ponent the transmission through each interface must be considered. As an example we
consider a component made of two different dielectric materials A and B bonded with an
optical glue. Examples for such components are doublet lenses or polarimetric retarder
plates. This yields three-layers with 4 interfaces:

– interface 1: air – component A: n1 = 1.0 and n2 = nA,

– interface 2: component A – glue: n2 = nA and n3 = nglue,

– interface 3: glue – component B: n3 = nglue and n4 = nB,

– interface 4: component B – air: n4 = nB and n5 = 1.0.

Transmission: The total transmission is just the product from all interfaces:

T = T12 T23 T34 T45

The transmission can be enhanced by minimizing the jumps in the refractive index at the
interfaces. For this reason it is useful to bond two plates (lenses) with nA = 1.5, nB ≈ 1.7
with a glue with nglue ≈ 1.6 instead of having an air gap with n3 = 1.0. The glue enhances
the transmission by about 10 % when compared to a component with air gap.

Ghosts: For the ghosts the retro-reflection from each interface pair must be considered.
The following combination of back-and-forth scatterings are possible:

– retro-reflections RxyR12 from the first interface: R45R12, R34R12, R23R12,

– retro-reflections RxyR23 from the second interface: R45R23, R34R23,

– retro-reflections RxyR34 from the third interface: R45R34.

The total ghost intensity is the sum of all these contributions:

Sghost = R45R12 +R34R12 +R23R12 +R45R23 +R34R23 +R45R34
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Only some ghosts are really strong, those involving interfaces with large jumps in the
refractive indices. For nA = 1.5, nglue = 1.6, and nB ≈ 1.7 the retro-reflection from the
external surfaces dominate

Sghost ≈ R45R12 ≈ 0.040 · 0.067 = 0.0027

If the components A and B are separated by an air gap instead of a glue layer then all six
retro-reflections are more or less equally strong and the ghost and diffuse stray-light level
is enhanced by a factor of about 6 and the final value is of the order Sghost ≈ 0.015. This
illustrates that strong jumps in refractive indices at dielectric interfaces can be harmful
sources for ghosts and straylight.

3.6 Dielectric films

Reflected light from thin films, i.e. surfaces which are close together, can produce inter-
ference effects. The light reflected by one surface may be reinforced by the second or if
the phase difference is π + n 2π then partial cancellation can occur. The effect of thin
dielectric films are used in many optics applications:

– anti-reflection coatings,

– high reflectivity coatings,

– beam splitters, filters, polarizers.

Evaporation techniques allow the production of films with very accurate thickness and
consisting of many layers.

We consider again a geometry with three layers n1, n2, n3 and two interfaces like in Section
3.5.5. But his time the intermediate layer is a thin film with a thickness d of the same
order as the wavelength d ≈ λ. Such a thin layer can be applied onto a flat plate or a
curved surface of a lens.

Ray geometry. If the incident angle θ1 and the refractive indices n1, n2, and n3 are
known then the angles θ2 and θ3 can be determined from Snell’s law:

sin θ3 =
n2

n3
sin θ2 =

n2

n3

n1

n2
sin θ1 =

n1

n3
sin θ1 (3.42)

This indicates that the refraction angle and the light path geometry (geometric optics of
the system) of an interface 1 − 3 remains unchanged if a thin intermediate layer “2” is
added.

3.6.1 Transmission and reflection from an interface with coating

The amplitudes and intensities of the reflected and transmitted waves from a thin film has
two contributions:

– the reflections and transmissions from the two interfaces like for a plate,

– the interference term which depends on the phase difference between the reflected
light from the first interface 1− 2 and the second interface 2− 3.

The phase difference depends for a given wavelength on the light path difference ∆x and
the differential phase change δ introduced by the reflection on the first and second interface.
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The light path difference is given by the film refractive index n2 = nfilm, the film thickness
d, and the angle θ2 (a function of n1, nfilm and θ1):

∆x = 2nfilmd cos θ2 . (3.43)

A phase difference ∆φ due to the extra light path ∆x includes in addition the wavelength
of the light

∆φ =
2π

λ
∆x =

2π

λ
2nfilmd cos θ2 (3.44)

Not included is the differential phase difference which may be introduced by the two
reflections at interface 1− 2 and 2− 3.

Reflected and transmitted intensity. The intensities reflected from the interfaces
of the thin layer follows from the normalized, reflected amplitudes r̂12 and r̂23 (Fresnel
forumlae). The result which is not derived here explicitly is:

R =
r̂212 + r̂223 + 2r̂12r̂23 cos∆φ

1 + r̂212r̂
2
23 + 2r̂12r̂23 cos∆φ

(3.45)

This expression includes in the nominator the reflection from the two surfaces R12 = r̂212,
R23 = r̂223 and the interference term 2r̂12r̂23 cos∆φ. The denominator accounts for the
corrections due to the non-perfect transmission T12 < 1 and T23 < 1. This equation holds
for both polarization directions R‖ and R⊥ independently.
Energy conservation requires that the transmitted intensity is

T = 1−R .

For R12, R23 < 0.1 we can use the approximation (error less than 1 %):

R ≈ r̂212 + r̂223 + 2r̂12r̂23 cos∆φ .

Maximum and minimum reflectivity. For a given thin film there are maxima and
minima for the reflected intensities which are equivalent to the maxima and minima of
the interference term. Maxima and minima occur for the path length phase difference
∆φ = n 2π or ∆φ = π + n 2π. Which of these two cases applies for a maximum or
minimum reflectivity depends on the sign of the product r̂12r̂23 which depends on the
refraction index jumps at the interfaces. Two cases must be distinguished. In case 1 the
thin film has an intermediate refraction index and the differential phase shift is δ = 0 and
r̂12r̂23 > 0. In case 2 nfilm is larger or smaller than index of the two media and δ = π or
r̂12r̂23 < 0.

Case 1: a thin film with an intermediate index: n1 < nfilm < n3 or n1 > nfilm > n3.
The same phase shift is introduce by the reflections at the first and second interface because
the refractive indices change in the same way at both interfaces.

The maximum reflectivity is obtained for cos∆φ = 1

Rmax =
r̂212 + r̂223 + 2r̂12r̂23

1 + r̂212r̂
2
23 + 2r̂12R̂23

=

(
r̂12 + r̂23
1 + r̂12r̂23

)2

. (3.46)

The minimum reflectivity is obtained for cos∆φ = −1

Rmin =
r̂212 + r̂223 − 2r̂12r̂23
1 + r̂212r̂

2
23 − 2r̂12r̂23

=

(
r̂12 − r̂23
1− r̂12r̂23

)2

. (3.47)
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Case 2: a thin film with an refraction index which is larger or smaller than the two
dielectric media n1 < nfilm > n3 or n1 > nfilm < n3. A phase shift difference of π is
introduced between the first and second interface (or r̂12r̂23 < 0) because there is one
transition from a higher n to a lower n and one opposite transition. In case 2 the formulas
for Rmax and Rmin are exchanged when compared to case 1.

The maximum reflectivity is obtained for cos∆φ = −1:

Rmax =
r̂212 + r̂223 − 2r̂12r̂23
1 + r̂212r̂

2
23 − 2r̂12r̂23

=

(
r̂12 − r̂23
1− r̂12r̂23

)2

. (3.48)

The minimum reflectivity is obtained for cos∆φ = +1:

Rmin =
r̂212 + r̂223 + 2r̂12r̂23

1 + r̂212r̂
2
23 + 2r̂12R̂23

=

(
r̂12 + r̂23
1 + r̂12r̂23

)2

. (3.49)

3.6.2 Special case: normal incidence

For normal incidence θi = 0 the expressions for the maximum and minimum reflectivity
Rmax and Rmin are particularly simple and the results are polarization independent. The
reflectivity can be expressed with the refractive indices n1, n2 = nfilm, and n3:

Case 1: a thin film with an intermediate index: n1 < nfilm < n3 or n1 > nfilm > n3.

The maximum reflectivity is obtained for path differences ∆x = λ+nλ and the reflectivity
maximum is:

Rmax =

(
n1 − n3

n1 + n3

)2

. (3.50)

This is equivalent to the case of a single interface where the intermediate layer “2” would
just be absent.

The minimim reflectivity is obtained for path differences ∆x = λ/2+nλ and the minimum
reflectivity is

Rmin =

(

n1n3 − n2
2

n1n3 + n2
2

)2

. (3.51)

Complete cancelation of the reflected light can be achieved if the thin film has a refractive
index of n2 =

√
n1n3 which would be in the range n2 ≈ 1.25− 1.30 for typical glasses. In

the “real world” there exists the problem that there is no “ideal” anti-reflection coating
with nfilm ≈ 1.25 available. The most frequently used low refraction coating is MgF2 with
n = 1.37

Case 2: a thin film with refractive index larger or smaller than the two dielectric media
n1 < nfilm > n3 or n1 > nfilm < n3.

The maximum reflectivity is obtained for an integer phase shift ∆φ = n · 2π composed of
a light path difference ∆x = λ/2 + nλ and a differential phase shift of λ/2 from the two
reflections. The maximum reflectivity is:

Rmax =

(

n1n3 − n2
2

n1n3 + n2
2

)2

. (3.52)

The minimum reflectivity is obtained for a path difference ∆x = nλ plus a differential
phase shift λ/2 and the minimum reflectivity is:

Rmin =

(
n1 − n3

n1 + n3

)2

. (3.53)
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Illustration off different examples for the normal incidence reflectivity R(θi = 0◦) as func-
tion of the optical path difference of an interface between air n1 = 1 and glass n3 = 1.6
with a thin film with refractive index n2 = nfilm.

– for nfilm = 1.0 or nfilm = 1.6 the refractive indices of the film layer is equal to n1 or
n3 respectively and this is equivalent to the single interface case with R = 0.053.

– for n1 <film< n3 the thin film decreases the reflectivity when compared to a bare
glass surface with maxima for ∆x = nλ (same reflectivity as bare glass) and minima
for ∆x = (n+1/2)λ. The minimum reflectivity is obtained for nfilm =

√
n1n3 = 1.26.

– for n1 <film> n3 the thin, high refraction film, enhances the reflectivity of the glass
plate. In this case a differential phase shift δ = π is introduced between the reflections
from interface 1 − 2 and 2 − 3. Therefore the minimum reflectivity with R like for
a bare glass plate occurs for a path difference of ∆x = nλ while the maximum
reflectivity is at ∆x = (n + 1/2)λ. The reflectivity increases rapidely for high
density coatings

3.6.3 Colour dependence of a thin film

We consider the reflection for normal incidence of a glass plate n3 = 1.6 with a film MgF2-
coating nfilm = 1.37 with a thickness nfilmd = 125 nm. This film produces a phase shift
of ∆φ = π/2 for a wavelengths of λ = 500 nm, an almost perfect case for a broad-band
anti-reflex coating. For an 8 times thicker film with nfilmd = 1 µm the reflectivity of
only certain wavelengths are suppressed while other wavelengths are reflected like for an
uncoated surfaces. Low reflections occurs e.g. for wavelengths 444 nm (9λ/2), 571 nm
(7λ/2), or 800 nm (5λ/2), with high reflectivity wavelengths in between.
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3.7 Electromagnetic waves in metals

An electromagnetic wave interacting with a conducting metal surface will produce mov-
ing charges and Joule heat. This destroys electromagnetic energy (attenuates the wave)
and therefore metals are opaque. Metals are important in optics because of their high
reflectivity so that metallic surfaces are used as mirrors.
Maxwell’s equation for conducting, isotropic media with µ = 1 have the form:

curl ~E = −1

c

∂ ~H

∂t
, (3.54)

curl ~H =
4π

c
σ ~E +

ǫ

c

∂ ~E

∂t
, (3.55)

div ~E = 0 (3.56)

div ~H = 0 . (3.57)

For these formulas the following changes were made with respect to general form of
Maxwell’s equations (Sect. 3.2): Ohm’s law σ ~E = ~j, ǫ ~E = ~D, and µ ~H = ~B were used
to get only a set of formulae for the electric field ~E and the magnetic field ~H. There is
div ~E = 0 because there are no charged areas (high conductivity) in a metal which could
produce sources for a static electric field.

These Maxwell equations are identical to the case for a dielectric medium except for the
diffusion term

4π

c
σ ~E

in Eq. (3.55) which descibes the production of currents and absorption via the production
of Joule heat.
A general solution for these equations has the form

~E = ~E0e
−i(~k~s−ωt) , (3.58)

~H = ~H0e
−i(~k~s−ωt) . (3.59)

with the temporal derivatives ∂ ~E/∂t = −iω ~E and ∂ ~H/∂t = −iω ~H. In this case Eq. (3.55)
can be rewritten as

curl ~H =
1

c

(

ǫ+ i
4πσ

ω

)
∂ ~E

∂t
=

ǭ

c

∂ ~E

∂t
(3.60)

This equation is formally identical with the corresponding equation for non-conducting,
dielectric media, if the permittivity ǫ is replaced by a complex permittivity

ǭ = ǫ+ i
4πσ

ω
. (3.61)

The differential wave equations have then the same form like for the dielectric case

∂2 ~E

∂t2
=

c2

ǭ
∇2 ~E , (3.62)

∂2 ~H

∂t2
=

c2

ǭ
∇2 ~H . (3.63)

Because of the complex ǭ we also get a complex refraction index n̄ and a complex propa-
gation speed c̄n = c/n̄:

n̄ = n(1 + iκ) =
√
ǭ and n̄2 = n2(1− κ2) = ǭ ,

where n is the real part of the refraction index and nκ the complex part or the attenuation
index. These two quantities are often used to characterize metals.
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3.7.1 Reflection from a metal surface

We consider the reflection of a wave from an interface between a dielectric medium with
n1 and a metal with n̄2. For this case Snell’s law for refraction can be generalized:

sin θ̄t =
n1

n̄2
sin θi . (3.64)

Because the refractive index n̄2 for metals is a complex quantity also the transmission
angle θ̄t is a complex quantity.

Fresnel formulas for metals: For the calculation of the wave reflected from a metal
surface the same boundary conditions as for a pure dielectric interface given in Eqs. (3.28,
3.29) must be fulfilled. Therefore we get also the same form of the Fresnel formula for
the reflected amplitudes. However the refractive index n̄2 and refraction angle θ̄t are now
complex quantities so that also the reflected amplitudes have a complex component eiδ‖

and eiδ⊥ describing a phase retardation introduced by the interaction with a conductor:

r‖e
iδ‖ =

n̄2 cos θi − n1 cos θ̄t
n̄2 cos θi + n1 cos θ̄t

a‖ =
tan (θi − θ̄t)

tan (θi + θ̄t)
a‖ (3.65)

r⊥e
iδ⊥ =

n1 cos θi − n̄2 cos θ̄t
n1 cos θi + n̄2 cos θ̄t

a⊥ = −sin (θi − θ̄t)

sin (θi + θ̄t)
a‖ (3.66)

These equations illustrate that metal surfaces introduce:

– a differential attenuation of the r‖ and r⊥ wave amplitude, introducing a linear
polarization like dielectric interfaces,

– a differential phase shift δ = δ‖ − δ⊥ or retardation between the two polarization
components. This introduces a cross-talk (a partial conversion) between the linearly
and circularly polarized wave modes.

The optical constants for metals can be derived by the measurement of the reflection ratios
r‖/r⊥ and the differential retardation δ = δ‖ − δ⊥ with a so-called ellipsometer.

Reflectivity of different metals. Frequently used metals for mirrors are aluminum,
silver, and gold. These materials can be evaporated as a thin layer on polished glass
surfaces. Some properties of these three metal coatings are:

Al: Aluminum is the most common coating for telescope mirrors. It provides a reflec-
tivity of about 92 % from about 200nm to 1 µm with a distinct minimum (∼ 86 %)
around 800 nm. The reflectivity is > 95 % in the near-IR and mid-IR up and beyond
20 µm.

Ar: Silver has a higher reflectivity > 95 % than aluminum in the optical but a short-
wavelength reflectivity cutoff below 400 nm. Reflectivities of up to 99 % are reached
with high-reflectivity coatings on silver mirrors. However, the production of such
mirrors is more delicate and sometimes caused problems for large telescope mirrors.

Au: Gold is a high reflectivity metal R > 98 % but only for wavelengths λ > 600 nm
(hence its yellow colour). Therefore it is an ideal coating for infrared instruments
and telescopes.


