INPP FS24
\[ \newcommand{\nue}{\nu_{e}} \newcommand{\num}{\nu_{\mu}} \newcommand{\nut}{\nu_{\tau}} \]
Pauli predicts the neutrino (but calls it neutron!)
Chadwick discovered the actual neutron in the meantime
P Reactor, Savannah River Plant, Aiken, SC, USA
\(\approx \pu{8 au}\) of liquid argon (or even more water)
would be required to reliably detect a single \(\nu\).
Key requirements:
Nuclear reactors were needed first.
Large-scale detectors took even longer.
\[ \sigma \propto \left|\mathcal{M}_{f,i}\right| ^ 2 \propto \frac{g_{W} ^ 2}{q ^ 2 - m_{W} ^ 2} \]
But finds a deficiency in the solar \(\nue\) flux
Homestake Gold Mine, Lead, SD, USA
For 30 years, people thought that
this experiment had been flawed!
\(\pu{50 kt}\) of water and 11146 PMTs of \(\pu{0.5 m}\) diameter
\(\pu{1 kt}\) of heavy water (\(\ce{^{2}H_{2}O}\))—See script for more details on detection scheme
Total \(\nu\) flux (neutral current)
\(\nue\) flux (charged current)
6 nuclear reactors and 6 \(\pu{20 t}\) liquid scintillator detectors—Detection scheme of Cowan and Reines
Tokai to Kamioka: J-PARC accelerator to Super-Kamiokande detector
\(\num\) beam production
\(\nu\) mixing and oscillation
\(s_{ij} = \sin\theta_{ij} \quad c_{ij} = \cos\theta_{ij}\)
\[ \begin{pmatrix} \nue \\ \num \\ \nut \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13} e ^ {-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e ^ {i \delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} = U_{\text{PMNS}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \]
Production/Detection: Flavour eigenstates—Propagation: Mass eigenstates
Assumptions
\[ \begin{pmatrix} \nue \\ \num \end{pmatrix} = \begin{bmatrix} \cos\theta_{12} & \sin\theta_{12} \\ -\sin\theta_{12} & \cos\theta_{12} \end{bmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} \]
Plane wave approximation
\[ \begin{aligned} \ket{\nu_{k}(t)} &= \exp\left(-\frac{i}{\hbar} H t\right) \ket{\nu_{k}(0)} \\ H \ket{\nu_{k}(0)} &= E_{k} \ket{\nu_{k}(0)} \quad \hbar = 1 \\ \ket{\nu_{k}(t)} &= \exp\left(-i E_{k} t\right) \ket{\nu_{k}(0)} \\ \ket{\nue(t)} &= \cos\theta_{12} \ket{\nu_{1}(t)} + \sin\theta_{12} \ket{\nu_{2}(t)} \\ &= \cos\theta_{12} e ^ {-i E_{1} t} \ket{\nu_{1}} + \sin\theta_{12} e ^ {-i E_{2} t} \ket{\nu_{2}} \end{aligned} \]
Example: Solar \(\nue\) (see script for intermediate steps)
\[ \begin{aligned} \begin{pmatrix} \nue(0) \\ \num(0) \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ P \left(\nue \rightarrow \nue, t\right) &= \left|\braket{\nue(t) | \nue(0)}\right| ^ 2 \\ P \left(\nue \rightarrow \nue, t\right) &= 1 - \sin ^ 2 \left(2 \theta_{12}\right) \sin ^ 2 \left(\frac{\left(E_{1} - E_{2}\right) t}{2}\right) \\ \left|\vec{p}\right| &= c \left|\vec{p}\right| \approx E \quad t = c t \approx L \\ \left(E_{1} - E_{2}\right) t &= \frac{m_{1} ^ 2 - m_{2} ^ 2}{2 \left|\vec{p}\right|} t = \frac{\Delta m_{12} ^ 2}{2 E} L \\ P \left(\nue \rightarrow \nue, L\right) &= 1 - \sin ^ 2 \left(2 \theta_{12}\right) \sin ^ 2 \left(\frac{\Delta m_{12} ^ 2}{4 E} L\right) \leq 1 \end{aligned} \]
\(\pu{4 MeV}\) reactor \(\bar{\nue}\)
\(P \left(\nue \rightarrow \nue, L\right) = 1 - \sin ^ 2 \left(2 \theta_{12}\right) \sin ^ 2 \left(\frac{\Delta m_{12} ^ 2}{4 E} L\right) \leq 1\)
Oscillation properties
Real world: Packetised instead of plane wave
What does KATRIN measure exactly?
An extremely challenging measurement
Comparing \(\num\) to \(\bar{\num}\) oscillation using \(\pu{40 kt}\) of liquid \(\ce{Ar}\)
\[ \begin{pmatrix} \nue \\ \num \\ \nut \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13} e ^ {-i {\color{red} \delta}} \\ 0 & 1 & 0 \\ -s_{13} e ^ {i {\color{red} \delta}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} = U_{\text{PMNS}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \]
Liquid \(\ce{Ar}\) time projection chambers allow full reconstruction of event topology and energy
Title image adapted from https://commons.wikimedia.org/wiki/File:FirstNeutrinoEventAnnotated.jpg
Adapted from https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles_dark.svg
Adapted from https://commons.wikimedia.org/wiki/File:RaE1.jpg
Adapted from https://doi.org/10.1103/RevModPhys.84.1307
Adapted from https://www-sk.icrr.u-tokyo.ac.jp/en/sk/about/detector/ and https://www-sk.icrr.u-tokyo.ac.jp/en/sk/experience/gallery/
https://en.wikipedia.org/wiki/File:Sudbury_Neutrino_Observatory.detector_outside.jpg
https://commons.wikimedia.org/wiki/File:The_Daya_Bay_Antineutrino_Detector_(8056998030).jpg
Adapted from https://doi.org/10.1088/1367-2630/16/7/075015
Adapted from https://www-sk.icrr.u-tokyo.ac.jp/en/sk/neutrino/kajita/vibration/
https://commons.wikimedia.org/wiki/File:Top_of_Atmosphere.jpg
https://commons.wikimedia.org/wiki/File:Akw_goesgenmai2010.JPG
https://commons.wikimedia.org/wiki/File:Giant_prominence_on_the_sun_erupted.jpg
Adapted from https://commons.wikimedia.org/wiki/File:41467_2015_Article_BFncomms7935_Fig1_HTML-en.svg
Adapted from https://doi.org/10.1016/j.ppnp.2017.01.003
Adapted from https://commons.wikimedia.org/wiki/File:KATRIN_Spectrum.svg
Adapted from https://commons.wikimedia.org/wiki/File:NeutrinoMassTimeline2022.webp
Adapted from https://doi.org/10.3390/instruments3020028
Adapted from https://doi.org/10.48550/arXiv.2403.03212
Adapted from https://doi.org/10.1103/RevModPhys.84.1307