

the missing link of the Standard Model

Vittorio Del Duca INFN LNF Frascati

Physics for large and small scale

Nhatrang 5 January 2007

$$\mathcal{L}_{SM} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + i\bar{\psi}D\psi$$
$$+ \psi_i \lambda_{ij} \psi_j H + h.c.$$
$$+ |D_\mu H|^2 - V(H)$$
$$+ N_i M_{ij} N_j$$

gauge sector flavour sector EWSB sector (Majorana) V-mass sector

$$\mathcal{L}_{SM} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\psi}D\psi$$
 gauge sector
 $+ \psi_i \lambda_{ij} \psi_j H + h.c.$ flavour sector
 $+ |D_{\mu}H|^2 - V(H)$ EVVSB sector
 $+ N_i M_{ij} N_j$ (Majorana) V-mass sector

are there elementary scalars in the SM ?
Higgs boson ???

$$\mathcal{L}_{SM} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\psi}D\psi$$
 gauge sector
 $+ \psi_i \lambda_{ij} \psi_j H + h.c.$ flavour sector
 $+ |D_{\mu}H|^2 - V(H)$ EVVSB sector
 $+ N_i M_{ij} N_j$ (Majorana) V-mass sector

- are there elementary scalars in the SM ?
 Higgs boson ???
- do they cause spontaneous symmetry breaking ?
 fermion and gauge boson masses

$$\mathcal{L}_{SM} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\psi}D\psi$$
 gauge sector
 $+ \psi_i \lambda_{ij} \psi_j H + h.c.$ flavour sector
 $+ |D_{\mu}H|^2 - V(H)$ EVVSB sector
 $+ N_i M_{ij} N_j$ (Majorana) V-mass sector

are there elementary scalars in the SM ?
Higgs boson ???

☞ do they cause spontaneous symmetry breaking ?
 → fermion and gauge boson masses

Search for the Standard Model Higgs Boson at LEP

ALEPH, DELPHI, L3 and OPAL Collaborations The LEP Working Group for Higgs Boson Searches¹

histograms are MC predictions; in loose and tight selections, cuts are adjusted so as to obtain, for $m_H = 115$ GeV, approximately 0.5 and 2 times more expected signal than background events

Search for the Standard Model Higgs Boson at LEP

ALEPH, DELPHI, L3 and OPAL Collaborations The LEP Working Group for Higgs Boson Searches¹

histograms are MC predictions; in loose and tight selections, cuts are adjusted so as to obtain, for $m_H = 115$ GeV, approximately 0.5 and 2 times more expected signal than background events

Lower bound: $m_H = 114.4 \text{ GeV}$ at 95% CL

Theoretical bounds on the SM Higgs mass

Theoretical bounds on the SM Higgs mass

Higgs potential (lower bound on m_H)classic $V[\phi] = -\mu^2 \phi^2 + \lambda \phi^4$ $\mu^2 > 0, \lambda > 0$

Higgs potential (lower bound on m_H)classic $V[\phi] = -\mu^2 \phi^2 + \lambda \phi^4$ $\mu^2 > 0, \quad \lambda > 0$ expand about the vev $\phi \rightarrow v + \frac{H}{\sqrt{2}}$ $v = \frac{\mu^2}{2\lambda} = \frac{m_{\rm H}^2}{4\lambda}$

Higgs potential (lower bound on m_H) classic $V[\phi] = -\mu^2 \phi^2 + \lambda \phi^4$ $\mu^2 > 0, \quad \lambda > 0$ expand about the vev $\phi \rightarrow v + \frac{H}{\sqrt{2}}$ \longrightarrow $v = \frac{\mu^2}{2\lambda} = \frac{m_{\rm H}^2}{4\lambda}$ renormalization group improved PT quantum corr. $\lambda \phi^4 \to \lambda \phi^4 \left(1 + \gamma \ln \frac{\phi^2}{\Lambda^2} + \ldots\right) \xrightarrow{\text{RG}} \lambda(\Lambda) \phi'^4(\Lambda)$ $\phi' = \left(\exp\int dt\gamma(t)\right)\phi \qquad t = \frac{\ln(\Lambda)}{v}$

Higgs potential (lower bound on $m_{\rm H}$) classic $V[\phi] = -\mu^2 \phi^2 + \lambda \phi^4$ $\mu^2 > 0, \ \lambda > 0$ expand about the vev $\phi \rightarrow v + \frac{H}{\sqrt{2}}$ \longrightarrow $v = \frac{\mu^2}{2\lambda} = \frac{m_{\rm H}^2}{4\lambda}$ renormalization group improved P1 quantum corr. $\lambda \phi^4 \rightarrow \lambda \phi^4 \left(1 + \gamma \ln \frac{\phi^2}{\Lambda^2} + ...\right) \xrightarrow{\text{RG}} \lambda(\Lambda) \phi'^4(\Lambda)$ $\phi' = \left(\exp\int dt\gamma(t)\right)\phi \qquad t = \frac{\ln(\Lambda)}{v}$ Running coupling

 $\frac{d\lambda(t)}{dt} = \beta_{\lambda}(t) \propto \left(\lambda^{2} + 3\lambda h_{t}^{2} - 9h_{t}^{4} + \ldots\right) \qquad h_{t} \text{ top Yukawa coupling}$ initial conditions (at $\Lambda = v$) $\lambda_{0} = \frac{m_{H}^{2}}{4v^{2}} \quad h_{0t} = \frac{m_{t}}{v}$

Higgs potential (lower bound on m_H) classic $V[\phi] = -\mu^2 \phi^2 + \lambda \phi^4$ $\mu^2 > 0, \ \lambda > 0$ expand about the vev $\phi \rightarrow v + \frac{H}{\sqrt{2}}$ \longrightarrow $v = \frac{\mu^2}{2\lambda} = \frac{m_{\rm H}^2}{4\lambda}$ renormalization group improved i quantum corr. $\lambda \phi^4 \to \lambda \phi^4 \left(1 + \gamma \ln \frac{\phi^2}{\Lambda^2} + \dots \right) \xrightarrow{\text{KG}} \lambda(\Lambda) \phi'^4(\Lambda)$ renormalization group improved PT $\phi' = \left(\exp\int dt\gamma(t)\right)\phi \qquad t = \frac{\ln(\Lambda)}{dt}$ Running coupling $\frac{d\lambda(t)}{dt} = \beta_{\lambda}(t) \propto \left(\lambda^2 + 3\lambda h_t^2 - 9h_t^4 + \ldots\right)$ h_t top Yukawa coupling initial conditions (at $\Lambda = v$) $\lambda_0 = \frac{m_H^2}{4v^2}$ $h_{0t} = \frac{m_t}{v}$

if m_H is too small, h_t dominates $\rightarrow \lambda(t)$ decreases For the vacuum to be stable, $\lambda(t)$ must be > 0 below $\Lambda \rightarrow$ lower bound on m_H $m_H > 129.5 + 2.1 (m_t - 171.4) - 4.5 \frac{\alpha_s(m_Z) - 0.118}{0.006}$ m_H \geq 130 GeV at $\Lambda = M_{GUT}$

Higgs potential

Upper bound on m_H

Running coupling

$$\frac{d\lambda(t)}{dt} = \beta_{\lambda}(t) \propto \left(\lambda^{2} + 3\lambda h_{t}^{2} - 9h_{t}^{4} + \ldots\right) \qquad h_{t} \text{ top Yukawa coupling}$$

$$\inf_{\mathbf{const} = \mathbf{b}} \qquad \inf_{\mathbf{t} = \mathbf{b}} \text{ initial conditions (at } \mathbf{A} = \mathbf{v}) \qquad \lambda_{0} = \frac{m_{H}^{2}}{4v^{2}} \quad h_{0t} = \frac{m_{t}}{v}$$

Upper bound on m_H

Running coupling

$$\frac{d\lambda(t)}{dt} = \beta_{\lambda}(t) \propto \left(\lambda^{2} + 3\lambda h_{t}^{2} - 9h_{t}^{4} + \ldots\right) \qquad h_{t} \text{ top Yukawa coupling}$$

$$\text{const} = b \qquad \text{initial conditions (at } \Lambda = v) \qquad \lambda_{0} = \frac{m_{H}^{2}}{4v^{2}} \quad h_{0t} = \frac{m_{t}}{v}$$

if m_H is too large, λ^2 dominates $\rightarrow \lambda(t)$ increases

 $\lambda(t) \sim rac{\lambda_0}{1 - b\lambda_0 t}$ Landau pole (signals PT breakdown)

Upper bound on m_H

Running coupling

 $\frac{d\lambda(t)}{dt} = \beta_{\lambda}(t) \propto \left(\lambda^{2} + 3\lambda h_{t}^{2} - 9h_{t}^{4} + \ldots\right) \qquad h_{t} \text{ top Yukawa coupling}$ $\text{const} = b \qquad \text{initial conditions (at } \Lambda = \mathbf{v}) \qquad \lambda_{0} = \frac{m_{H}^{2}}{4v^{2}} \quad h_{0t} = \frac{m_{t}}{v}$

if m_H is too large, λ^2 dominates $\rightarrow \lambda(t)$ increases

 $\lambda(t) \sim \frac{\lambda_0}{1 - b\lambda_0 t}$ Landau pole (signals PT breakdown)

The upper bound on m_H is obtained by requiring that no Landau pole occurs below Λ

 $m_{H} \leq 180 \text{ GeV} \text{ if } \Lambda \sim M_{GUT}$ $600 \div 800 \text{ GeV} \text{ if } \Lambda \sim O(\text{TeV})$

Symmetry principles protect against power-like divergences

Symmetry principles protect against power-like divergences

photon self-energy $\delta m_{\gamma}^2 \propto \chi^2 + m_{\gamma}^2 \ln \Lambda$ gauge symmetry protects against quadratic divergence

Symmetry principles protect against power-like divergences

photon self-energy $\delta m_\gamma^2 \propto \chi^2 + m_\gamma^2 \ln \Lambda$ gauge symmetry protects against quadratic divergence

electron self-energy $\delta m_e \propto \chi + m_e \ln \Lambda$

chiral symmetry protects against linear divergence

Symmetry principles protect against power-like divergences

photon self-energy $\delta m_{\gamma}^2 \propto \chi^2 + m_{\gamma}^2 \ln \Lambda$ gauge symmetry protects against quadratic divergence

chiral symmetry protects against linear divergence

no symmetry protects against quadratic divergences

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

implies that

$$m_H^2(Q_0^2) - \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) Q_0^2 = const. = \mathcal{O}(\mathbf{v}^2)$$

because for $Q_0^2 = \mathcal{O}(\mathbf{v}^2)$ the Higgs mass is in the range of the EW data $m_H^2(Q_0^2) = \mathcal{O}(\mathbf{v}^2)$

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

implies that

$$m_H^2(Q_0^2) - \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) Q_0^2 = const. = \mathcal{O}(\mathbf{v}^2)$$

because for $Q_0^2 = \mathcal{O}(\mathrm{v}^2)$ the Higgs mass is in the range of the EW data $m_H^2(Q_0^2) = \mathcal{O}(\mathrm{v}^2)$

but for $Q_0^2 = \mathcal{O}(M_{Pl}^2)$ one must fine tune $m_H^2(M_{Pl}^2)$ to the level of $v^2/M_{Pl}^2 \sim 10^{-33}$ for the cancellation to yield a figure of $\mathcal{O}(v^2)$ \longrightarrow unnatural

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

implies that

$$m_H^2(Q_0^2) - \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) Q_0^2 = const. = \mathcal{O}(\mathbf{v}^2)$$

because for $Q_0^2 = \mathcal{O}(\mathrm{v}^2)$ the Higgs mass is in the range of the EW data $m_H^2(Q_0^2) = \mathcal{O}(\mathrm{v}^2)$

but for $Q_0^2 = \mathcal{O}(M_{Pl}^2)$ one must fine tune $m_H^2(M_{Pl}^2)$ to the level of $v^2/M_{Pl}^2 \sim 10^{-33}$ for the cancellation to yield a figure of $\mathcal{O}(v^2)$ \longrightarrow unnatural

A natural solution to hierarchy: supersymmetry

postulate a new symmetry principle, which yields new particles that cancel the quadratic divergences of the Higgs self-energy, such that $\delta m_H^2 \sim \mathcal{O}(m_H^2) \ln \Lambda$

Higgs search - Tevatron reach

Tevatron has collected so far about 2 fb⁻¹

Although it cannot collect enough integrated luminosity to claim discovery above the LEP exclusion limit (114.4 GeV), it could collect enough to hint at some evidence for a signal

Higgs search - Tevatron reach

Tevatron has collected so far about 2 fb⁻¹

Although it cannot collect enough integrated luminosity to claim discovery above the LEP exclusion limit (114.4 GeV), it could collect enough to hint at some evidence for a signal

Sensitivity in the mass region above LEP limit (114 GeV) starts at ~2 fb⁻¹ With 8 fb⁻¹: exclusion 115-135 GeV & 145-180 GeV, 5 - 3 sigma discovery/evidence @ 115 – 130 GeV

Higgs production at Tevatron Run-II

- gluon fusion cross section is $\sim 0.2 2 \text{ pb}$
- WH, ZH yield cross sections of ~ 10 300 fb
 - WBF cross section is $\sim 20 100 \text{ fb}$

ATLAS & CMS

Overall weight (tons)	700
Diameter	22 n
ength	46 m
Solenoid field	2 7

<u>ATLAS</u>	<u>CMS</u>
7000	12500
22 m	15 m
46 m	22 m
2 T	4 T

CMS

ATLAS

LHC kinematic reach

LHC opens up a new kinematic range

Feynman x's for the production of a particle of mass M

$$x_{1,2} = \frac{M}{14 \,\mathrm{TeV}} \,e^{\pm y}$$

Х

LHC is a QCD machine

SM processes are background to New Physics signals

1 fb⁻¹ (per exp)	Events on tape
$W \rightarrow \mu \nu$	7 × 10 ⁶
$Z \rightarrow \mu \mu$	1.1×10^{6}
tt →W b W b → μ ν + X	8 × 104
QCD jets p _T >150	~ 106
Minimum bias	~ 106

HIGGS PRODUCTION AT LHC

- gluon fusion cross section is $~\sim 20-60~{
 m pb}$
-) WBF cross section is $\sim 3-5~{
 m pb}$
 - $WH, ZH, tar{t}H$ yield cross sections of $\sim 0.2-3~{
 m pb}$

HIGGS PRODUCTION MODES AT LHC

In proton collisions at 14 TeV, and for $M_H>100~{\rm GeV}$ the Higgs is produced mostly via

- gluon fusion $gg \to H$
 - largest rate for all $\,M_{H}$
 - proportional to the top Yukawa coupling y_t
 - weak-boson fusion (WBF) qq
 ightarrow qqH
 - second largest rate (mostly u d initial state)
 - proportional to the WWH coupling
 - Higgs-strahlung $q\bar{q}
 ightarrow W(Z)H$
 - third largest rate
 - same coupling as in WBF
 - $t\bar{t}(b\bar{b})H$ associated production
 - same initial state as in gluon fusion, but higher x range
 - proportional to the heavy-quark Yukawa coupling y_Q

HIGGS DECAY MODES AT LHC

HIGGS DECAY AT LHC

total width

branching fractions

- Search for a narrow $\gamma\gamma$ invariant mass peak, with $m_H < 150~{
 m GeV}$
- Background is smooth: extrapolate it into the signal region from the sidebands

INCLUSIVE SEARCHES: $H \rightarrow ZZ \rightarrow l^+ l^- l^+ l^-$

Gold-plated mode: cleanest mode for $2m_Z < m_H < 600 \text{ GeV}$

- Smooth, irreducible background from $pp \rightarrow ZZ$
- Small BR: $BR(H \rightarrow ZZ)$ is a few % at threshold

INCLUSIVE SEARCHES: $H \rightarrow ZZ \rightarrow l^+ l^- l^+ l^-$

Silver-plated mode $H \rightarrow ZZ \rightarrow l^+ l^- \nu \bar{\nu}$ useful for $m_H \approx 0.8 - 1 \text{ TeV}$

INCLUSIVE SEARCHES: $H \rightarrow WW \rightarrow l^+ \nu l^- \bar{\nu}$

- Exploit l⁺l⁻ angular correlations
- Signal and background have similar shapes: must know background normalisation well

 $m_H = 170 \text{ GeV}$ integrated luminosity: 20 fb⁻¹

Associated production: $Ht\bar{t} \rightarrow t\bar{t}bb$

Measure $h_t^2 \operatorname{BR}(H \to b\overline{b})$ with $h_t = H t \overline{t}$ Yukawa coupling

must know background normalisation well

WEAK BOSON FUSION: $qq \rightarrow qqH$

WBF can be measured with good statistical accuracy: $\sigma \times BR \approx \mathcal{O}(10\%)$

A WBF event

WBF features

- energetic jets in the forward and backward directions
- Higgs decay products between the tagging jets
- sparse gluon radiation in the central-rapidity region, due to colourless W/Z exchange
- NLO corrections increase the WBF production rate by about 10%, and thus are small and under control

Campbell, Ellis; Figy, Oleari, Zeppenfeld 2003

SIGNAL SIGNIFICANCE AND (STAT + SYST) ERROR

HIGGS COUPLINGS AND QUANTUM NUMBERS

The properties of the Higgs-like resonance are its

- couplings: gauge, Yukawa, self-couplings
- quantum numbers: charge, colour, spin, CP

Duehrssen et al.'s analysis hep-ph/0406323 use narrow-width approx for Γ (fine for $m_H < 200$ GeV) production rate with H decaying to final state xx is $\sigma(H) \times \mathrm{BR}(H \to xx) = \frac{\sigma(H)^{\mathrm{SM}}}{\Gamma_p^{\mathrm{SM}}} \frac{\Gamma_p \Gamma_x}{\Gamma}$ branching ratio for the decay is $BR(H \rightarrow xx) = \frac{\Gamma_x}{\Gamma}$ observed rate determines $\frac{\Gamma_p \Gamma_x}{\Gamma}$

direct observation of H yields lower bound on Γ assume $\Gamma_V \leq \Gamma_V^{\text{SM}} \qquad V = W, Z$ (true in any model with arbitrary # of Higgs doublets \Rightarrow true in MSSM) combine $\Gamma_V \leq \Gamma_V^{\text{SM}}$ with measure of Γ_V^2/Γ from $H \rightarrow VV$ obtain upper bound on Γ

CONCLUSIONS

- The Higgs is the missing link of the Standard Model
- If a Standard Model Higgs is there, LHC will see it with 5 fb⁻¹
- LHC will begin operations in about a year
- It is going to be the most complex scientific undertaking ever