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Abstract

The title of this paper is perhaps an overclaim. Of course, the process of creating
and optimizing a learned model inevitably involves multiple training runs which
potentially feature different architectural designs, input and output encodings, and
losses. However, our method, You Only Train Once (YOTO), indeed contributes
to limiting training to one shot for the latter aspect of losses selection and weight-
ing. We achieve this by automatically optimizing loss weight hyperparameters of
learned models in one shot via standard gradient-based optimization, treating these
hyperparameters as regular parameters of the networks and learning them. To this
end, we leverage the differentiability of the composite loss formulation which is
widely used for optimizing multiple empirical losses simultaneously and model it
as a novel layer which is parameterized with a softmax operation that satisfies the
inherent positivity constraints on loss hyperparameters while avoiding degenerate
empirical gradients. We complete our joint end-to-end optimization scheme by
defining a novel regularization loss on the learned hyperparameters, which models
a uniformity prior among the employed losses while ensuring boundedness of the
identified optima. We evidence the efficacy of YOTO in jointly optimizing loss
hyperparameters and regular model parameters in one shot by comparing it to the
commonly used brute-force grid search across state-of-the-art networks solving two
key problems in computer vision, i.e. 3D estimation and semantic segmentation,
and showing that it consistently outperforms the best grid-search model on unseen
test data. Code will be made publicly available.

1 Introduction

Artificial intelligence has been revived in recent years via very large hierarchical parametric models
in the form of neural networks, whose success is largely due to the invention of effective and efficient
algorithms for optimizing them [62]. The most widely used class of such algorithms is based
on gradient descent (GD), because gradients of the minimization objective with respect to model
parameters can be computed fast and thus afford numerous rapid iterations of the algorithm, which
helps to quickly improve the objective even with stochastic updates that use very small fractions of
the dataset [7, 45] and to converge to fair local optima.

While optimizing a given instance of a neural network architecture on a given data-based objective,
i.e. a given empirical loss, is thus by now well-understood and solvable, (i) selecting an optimal
architecture itself as well as (ii) optimally selecting and weighting empirical losses themselves still
poses fundamental challenges to the community. The first of these two points has given rise to the
relatively new research area of neural architecture search (NAS) [50, 78]. Moreover, both (i) and (ii)
involve the optimization of hyperparameters (HPs), i.e. parameters which are of a different, potentially
non-differentiable or even non-continuous nature than regular parameters of neural network layers.
Hyperparameter optimization (HPO) [4, 55, 56, 59] consists precisely in optimizing such higher-level
parameters of either the architecture or the losses. However, the crux of both NAS and HPO in
practice is that they typically require multiple complete training runs in order to first compute the
performance of the network at inference before making a single iteration in the architecture space or
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the HP space. Each outer iteration of this meta-optimization is thus extremely inefficient compared to
inner, gradient-based iterations in the parameter space.

In this work, we focus on point (ii), i.e. on the selection and weighting of losses, starting with the
observation that a large portion of HPO experiments in practice lies in the optimization of HPs
which weigh empirical losses in the common case of the presence of multiple distinct such objectives
and typically appear as weights of a linear combination of losses. A piece of evidence for the
ubiquity of this setting comes from randomly examining the 20 papers which appear at the top of the
online list of the CVPR 2024 proceedings [1]: 10 out of the 20 optimize such a linear combination
of distinct empirical losses. More broadly, notable vision models that fall in this setting include
Gaussian Splatting [41], pix2pix [35], the R-CNN series [29, 32, 61], and DETR [10], and respective
language models include PaLM [12], Switch Transformers [23], and DistilBERT [65]. Because
of the moderate dimensionality of this HP space and the aforementioned typical inefficiency and
intensity of sophisticated HPO techniques, practitioners in learning areas such as vision or language
commonly resort to simple yet computationally intensive brute-force approaches, such as grid search
in this space [23], to optimize these loss HPs. However, such approaches suffer from the curse of
dimensionality, which makes them cumbersome even for optimizing two HPs when a suitable range
of values is not known a priori. Can we instead directly optimize loss weight HPs simultaneously and
jointly with regular model parameters in one shot building on standard gradient-based methods?

We present a novel optimization algorithm, named You Only Train Once (YOTO), and experimental
validation of it to answer positively to this question. YOTO hinges on the linearity of the above
composite empirical loss to the involved loss weight HPs, which allows us to express this loss as
the ultimate, differentiable layer of the overall end-to-end model. In turn, gradients with respect
to the loss HPs can be computed and backpropagated in order to update the latter together with
the regular parameters of the network, i.e. to apply standard gradient-based learning on them. We
bake the inherent positivity of loss weights in our novel loss layer by operating in a logarithmic
space, and decouple the loss scale from the learning rate via a softmax parameterization which
ensures normalization. Akin to weight decay [54] used for regular network weights which reside
in a Euclidean space, we complete YOTO with a novel hyperparameter decay for regularization,
which uses the gradient of a negated entropy term and a softplus term that promote uniformity and
upper-boundedness, respectively. We surprisingly evidence through experiments on the key learning
field of vision using two central tasks how letting the loss HPs of neural networks be jointly optimized
with the regular model parameters via normal gradient-based optimization delivers overall models
that not only match but exceed the generalization capability of gradient-based optimization applied
only to the regular parameters, in which loss HPs are “segregated” from the former weights, kept
fixed in each optimization run, and optimized by brute-force or meta-learning-based approaches
that are still computationally far more intensive and slow. Last but not least, YOTO exhibits fair
robustness to stochasticity and initialization.

2 Background and Related Work

HPO is as old as machine learning itself [2, 8], as it arises from the ubiquitous empirical need for
an optimal experimental design and thus plays a critical role in the field. HPs not only determine
the generalization capabilities of trained models, but may actually decide which method constitutes
the state of the art. The distinction between standard optimization of parametric models and HPO
has been invariably based on the nested nature of the latter [26]. Formally, let f(λ) denote a
learned mapping configured by the HP vector λ and consider a function M that evaluates the
performance of f on a learning task. The composition h(λ) = M ◦ f(λ) is referred to as the
response function. In this setting, HPO is invariably viewed as optimizing h with respect to λ in
the literature [4, 42, 52, 55, 66]. Under this regime, a diverse set of methods have been proposed
for HPO, ranging from (i) gradient-based methods which compute approximate “hypergradients” of
h w.r.t. λ [4, 24–26, 30, 44, 49, 55, 56], to (ii) model-based methods [5, 22, 34, 42, 66], which are
intrinsically characterized by a sequential operation in exploring the HP space, and to (iii) population-
based methods [31, 37, 52, 53, 71], which are by contrast parallel but require the computationally
intensive maintenance of a multitude of concurrent HP estimates. Across all these classes of HPO
as well as HPO methods that combine them [22, 71], one needs to run an entire optimization of the
mapping f w.r.t. its regular parameters w on a standard empirical loss to fit f to the available data,
e.g. a full training run for a neural network, in order to evaluate the response function h at a single
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point λ in the HP space and optimize the outer objective, in what is known as bi-level optimization.
Multi-fidelity HPO [6, 22, 38, 39, 42, 47, 48, 69, 70] attempts to mitigate the fundamental inefficiency
of bi-level optimization by tuning the regular parameters w in the main optimization faster via early
stopping or training on partial data, but does not cancel the fact that a single update in the HP space is
orders of magnitude slower than an update of regular parameters, e.g. via GD.

The standard argument for justifying the disjoint, bi-level optimization of regular parameters and
HPs is that the analytical form of h is typically either unknown or impractical to handle. Yet these
problems also exist for the regular parameters w which the learned mapping f needs to optimize
for and they have been largely solved for complex differentiable models by backpropagation-based
GD. While the training objectives of mappings f cannot be differentiated with respect to all their
HPs, we recognize that this possibility does exist for the weights λ ∈ RK+1 of the widely used
composite empirical loss in (1) below. Moreover, the regular parameters w are typically also not
tuned directly on the performance functionM, but rather on the original optimization objective or
loss. Thus, there is no fundamental reason preventing us from rethinking HPO, treating these loss
weight HPs λ as regular parameters of f and optimizing them regularly on the same empirical loss as
regular parameters rather than onM.

Particularly related to our optimization of a composite loss function with multiple independent
components is multi-objective HPO [3, 21, 33, 40, 43, 76]. A key difference is that these works
focus rather on multiple performance or validation-level objectives than on multiple training-level
objectives, i.e. empirical losses. Also related is constrained HPO [27, 28, 46, 57], which typically
expresses constraints in terms of the value of the validation-level objective and thereby indirectly
constrains the feasible set of HPs, whereas our optimized loss HPs have direct intrinsic constraints on
their values per se, as they need to be positive. Finally, our work is related to NAS [15–17, 20, 36,
60, 73, 74, 77, 78] in the wide sense and shares analogies with methods from that area proposing a
differentiable formulation [50, 75], but we solely focus on continuous HPs involved in the optimized
loss rather than on discrete or categorical parameters involved in the models’ modules.

3 Loss Hyperparameter Optimization via Standard Gradient-Based Learning

3.1 Preliminaries

In the design of parametric learned mappings f which are optimized by minimizing a basic empirical
loss l0 with respect to the parameters w of f , practitioners often introduce additional loss terms
in the overall empirical loss li, i ∈ {1, . . . ,K}, which typically play an auxiliary role and help
obtain mappings that generalize better to unseen data during inference. The overall empirical loss Le

becomes

Le(f(w)|λ) =
K∑
i=0

λili(f(w)), (1)

where λi > 0, i ∈ {0, . . . ,K}, are positive HPs which serve as weights of the respective loss terms
and which also need to be optimized besides the regular parameters w of the mapping. We term the
empirical loss Le of (1) as composite empirical loss. However, the standard practice is to optimize
λ on the validation set, based on the final performance metrics of f(w) having been optimized on
the training set, e.g. through GD. The former optimization of λ typically involves a non-end-to-end,
inefficient search over several fixed values of λ, which suffers from the curse of dimensionality w.r.t.
the number K + 1 of HPs.

3.2 Composite Loss Layer

First, we recognize that the common formulation of the composite empirical loss in (1) is essentially
a linear parametric mapping of the K + 1 inputs li(f(w)) to the output Le, parameterized by λ.
Thus, we can extend the typical end-to-end formulation of parametric mappings from the commonly
defined end of predictions f(w) to the ultimate end of Le itself as

Le = g(λ) ◦ l ◦ f(w) = g(l(f(w)),λ) = λT l(f(w)), (2)

where l(f(w)) = (l0(f(w)), . . . , lK(f(w))
T . We term g the composite loss layer. Since g is linear,

it is differentiable, hence amenable to standard gradient-descent-based methods and backpropagation
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for optimization. That is, we can optimize the HPs λ of g as regular parameters at each iteration of
gradient-based optimization, together with the regular parameters w of f . This paradigm shift leaves
the computation of the gradients of the regular parameters w w.r.t. Le unchanged, as

∂Le

∂w
=

∂
(
λT l(f(w))

)
∂w

= λT ∂l(f(w))

∂w
=

K∑
i=0

λi
∂li(f(w))

∂w
. (3)

However, because of the positivity constraints λi > 0, i ∈ {0, . . . ,K}, we cannot directly apply
standard unconstrained gradient optimization on λ ∈ RK+1 merely with the formulation of (2).

3.3 Softmax Parameterization

Instead of directly learning the weights λi themselves, one can learn the exponents
µi = log(λi) ∈ R, i ∈ {0, . . . , K}, (4)

which are amenable to unconstrained gradient-based optimization. This ensures that the weights,
which now become exponentials λi = exp(µi), are positive by definition.

Nonetheless, this exponential trick alone makes the gradients w.r.t. the HPs degenerate, in particular
positive. More formally, if we substitute (4) into (1) and differentiate w.r.t. µi, we obtain ∂Le

∂µi
=

exp(µi)li(f(w)) > 0, which implies that all gradient-based updates will reduce the exponents µi

and hence the weights λi. Intuitively, there is the incentive to reduce the weight of each term of the
composite loss, so that the overall loss Le is reduced too.

We circumvent this degeneracy by introducing a softmax parameterization of the composite loss
layer. This parameterization adopts the exponential trick above, but also additionally introduces a
normalization factor, which creates competition between different HPs and loss terms. More formally,
we formulate the composite loss layer as

Le =

K∑
i=0

exp(µi)li(f(w))

/
K∑
j=0

exp(µj) = (Softmax(µ))T l(f(w)). (5)

For the weights λ = Softmax(µ), besides the preservation of the positivity constraints, we also
have

∑K
i=0 λi = 1, implying that the composite loss Le now becomes a convex combination of the

individual loss terms li. With the softmax parameterization of (5), the HP gradients become

∂Le

∂µi
= exp(µi)

 K∑
j=0
j ̸=i

(li(f(w))− lj(f(w))) exp(µj)


/ K∑

j=0

exp(µj)

2

. (6)

The proof of (6) is in Appendix A. Because of the differences li(f(w))− lj(f(w)) which appear in
the numerator on the RHS of (6), the HP gradients can be either positive or negative, thus solving the
above degeneracy. As what is important to learn in the formulation of (5) for the composite loss layer
are the relative values of the exponents µi, the associated degrees of freedom are actually K. Thus,
we freeze the exponent µ0 corresponding to the basic loss l0 to 0 throughout the optimization and
only learn µi for i ∈ {1, . . . , K}, i.e. for the auxiliary losses, using the gradients from (6).

Another important attribute of the softmax parameterization is that it preserves the scale of the
composite loss to the same level as that of the basic loss l0. The basic loss l0 is typically the starting
point in the design of a mapping which may subsequently include auxiliary losses li, i ≥ 1. The
scale of l0 affects the optimal scale of the learning rate η, because (i) the gradient is a linear operator
and directly inherits a change of scale in the loss, and (ii) the learning rate acts as a multiplier of the
loss gradient, so a change of scale in the loss effectively acts as a change of scale in the learning
rate. By merely modifying l0 to a composite loss Le via (1) without constraining λi, one would
change the scale of the overall loss by a factor of

∑K
i=0 λi ̸= 1, effectively changing the learning rate.

By contrast, our softmax parameterization preserves the original scale of the learning rate thanks
to its convex combination character. This point is important in conducting comparisons including
our approach on existing methods which originally do not apply this normalization and alter the
effective learning rate when introducing auxiliary losses by setting

∑K
i=0 λi ̸= 1. Being able to also

automatically optimize the learning rate is an exciting related possibility, which we do not address
here but leave for future work.
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Algorithm 1 YOTO with SGDW with momentum
1: given initial learning rate α ∈ R, momentum factor β1 ∈ R, weight decay λ > 0, hyperparameter decay

ρ > 0, initialization parameter 0 < ϵ≪ 1
2: initialize time step t ← 0, parameter vector wt=0 ∈ Rn, loss HP exponent vector µt=0 ←

(0, log(ϵ), . . . , log(ϵ)) ∈ RK+1, first moment vector for parameters mt=0 ← 0, first moment vector for
HPs nt=0 ← 0, schedule multiplier ηt=0 ∈ R

3: repeat
4: t← t+ 1
5: ∇Le,t(wt−1),∇Le,t(µt−1)← SelectBatch(wt−1,µt−1) ▷ compute empirical gradient, using i.a. (6)
6: gt ← ∇Le,t(wt−1)
7: ht ← ∇Le,t(µt−1)
8: ηt ← SetScheduleMultiplier(t)
9: mt ← β1mt−1 + ηtαgt

10: nt ← β1nt−1 + ηtαht

11: wt ← wt−1 −mt − ηtαλwt−1

12: µt ← µt−1 − nt − ηtαρ∇Lr,t(µt−1) ▷ include gradient of regularizer in update using (8)
13: until stopping criterion is met
14: return optimized parameters wt, optimized loss HPs µt

3.4 Regularization

Our treatment of loss HPs as regular parameters optimized based on standard gradient updates
necessitates the application of regularization to these HPs, similarly to what is standard practice for
regular parameters. However, the difference in the mathematical functionality of our HP exponents µ
and of regular parameters w of the mapping which is learned, which typically reside in a standard
Euclidean space, dictates a differentiation in their regularization. In the latter case, weights in w
typically multiply features that assume arbitrary real values, so a regularity prior consists in small
magnitudes and is typically pursued via an squared L2 penalty which is equivalent to a weight decay
towards 0 [54].

By contrast, our exponents µi are passed through a softmax to multiply positive loss values. Thus,
the resulting softmax vector can be viewed as a discrete probability distribution over the various
loss terms li, the data-related bias of which towards any individual loss can be regularized via the
negated entropy of the distribution that favors “simpler” distributions close to uniform. Moreover, to
regularize the absolute scale of the exponents µi, to which negated entropy is invariant, we include a
softplus term for each learnable µi to our regularization loss Lr, so that the latter becomes

Lr(µ) = ρ

(
K∑
i=0

exp(µi)∑K
j=0 exp(µj)

log

(
exp(µi)∑K
j=0 exp(µj)

)
+

K∑
i=1

log (1 + exp(µi))

)
, (7)

where ρ > 0 is the single non-learnable hyperparameter decay which our method introduces. In
particular, ρ is shared by all loss HPs, akin to the standard weight decay λ [54] which serves as a
single non-learnable HP shared by all weights w of the model. In this way, we substitute the selection
of multiple loss-specific HPs µi with a single generic HP decay ρ having a range of values that is
common across multiple diverse learned models and needing minimal tuning, similar to the standard
treatment of weight decay of regular parameters in neural networks. Moreover, we keep the same
weight decay or other regularization for w as the original optimization algorithm on which YOTO is
implemented in each case, as (7) only pertains to µ.

For the gradients of our regularizer w.r.t. the HPs, ∂Lr/∂µi, we prove in Appendix B that

1

ρ

∂Lr

∂µi
=

exp(µi)
(∑K

j=0 exp(µj)(µi − µj)
)

(∑K
j=0 exp(µj)

)2 +
exp(µi)

1 + exp(µi)
, i ∈ {1, . . . , K}. (8)

3.5 Initialization and Overall YOTO Algorithm

While Sec. 3.3 and 3.4 detail the gradients for updating loss HPs within a given iteration of gradient-
based optimization, how to initialize the exponents µi, i ∈ {1, . . . , K}, is also of central importance.
The strategy that we follow in practice in our experiments is to initialize these µi, which correspond to
auxiliary empirical loss terms, uniformly with the same value µi,0 ← log(ϵ), where ϵ≪ 1 is a small
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Table 1: Comparison of YOTO vs. grid search for optimizing UniDepth [58] and its two independent
loss HPs for monocular metric depth and 3D estimation. “Grid”: loss HP values are set in the context
of a grid search over two dimensions. Final performance metrics and HPs after convergence are
reported for all models.

Method (exp(µ1), exp(µ2)) (λ0, λ1, λ2)
nuScenes [9] SUN-RGBD [67] Mean

δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑ δ1 ↑ SIlog ↓ FA ↑
Grid (0.01, 0.01) (0.9804, 0.0098, 0.0098) 43.8 25.32 41.1 91.5 8.24 75.7 67.7 16.78 58.4
Grid (0.01, 0.1) (0.9009, 0.0090, 0.0901) 45.9 25.25 42.1 92.1 8.17 76.1 69.0 16.71 59.1
Grid (0.01, 1) (0.4975, 0.0050, 0.4975) 44.8 25.86 41.5 92.8 8.20 76.3 68.8 17.03 58.9
Grid (0.25, 0.01) (0.7937, 0.1984, 0.0079) 45.5 25.23 41.1 92.0 8.12 76.1 68.8 16.68 58.6
Grid (0.25, 0.1) [58] (0.7407, 0.1852, 0.0741) 48.5 25.19 43.1 92.2 8.15 76.4 70.4 16.67 59.8
Grid (0.25, 1) (0.4444, 0.1111, 0.4444) 45.9 25.82 42.2 92.2 8.17 76.2 69.1 17.00 59.2
Grid (1, 0.01) (0.4975, 0.4975, 0.0050) 44.4 25.36 40.7 92.6 8.09 76.6 68.5 16.73 58.7
Grid (1, 0.1) (0.4762, 0.4762, 0.0476) 45.1 25.27 41.6 92.5 8.08 76.9 68.8 16.68 59.3
Grid (1, 1) (0.3333, 0.3333, 0.3333) 48.4 25.51 43.4 92.3 8.17 76.5 70.4 16.84 60.0

YOTO (0.04680, 0.04677) (0.91444, 0.04280, 0.04276) 49.9 25.07 43.8 92.3 8.08 76.7 71.1 16.58 60.3

positive number. Combined with the fact that µ0,t = 0 for the basic empirical loss l0, this implies
that we start optimization with weak overall contributions λi,0li for the auxiliary empirical losses,
i.e. for i ∈ {1, . . . , K}, and let the model potentially increase these contributions automatically in
the case where such an increase is also beneficial for optimizing the more heavily weighted basic
loss contribution, λ0l0, or keep the former contributions at a low value throughout the optimization.
In both cases, the model selects automatically which losses are useful for optimization and to what
degree. As we evidence in Sec. 4, the optimal µ and λ values after convergence of a certain network
are rather stable across a wide range of initializations, hinting on the insensitivity of YOTO to the
particular initialization. A full instance of our YOTO algorithm combined with SGD with decoupled
decay (SGDW) [54] is presented in Algorithm 1.

4 Experiments

From the wide range of areas using models learned with gradient-based loss optimization, which
are all relevant to YOTO, we select the key area of computer vision for experimentation with and
validation of our method, in particular two of its central tasks in 3D and segmentation, i.e. monocular
3D/depth estimation and semantic segmentation. The total used compute is ≈1,150 RTX4090 days.

4.1 3D Estimation

We first apply YOTO to the state-of-the-art monocular metric 3D/depth estimation method of
UniDepth [58] for optimizing its loss HPs. In particular, UniDepth originally optimizes a com-
posite empirical loss Le based on its metric dense 3D predictions (Zlog,Θ,Φ) and the respective
ground-truth maps (Z∗

log,Θ
∗,Φ∗), computed as

Le = λ0SILog(Zlog,Z
∗
log) + λ1MSE ((Θ,Φ), (Θ∗,Φ∗)) + λ2lcon, (9)

where SILog is the standard “scale-invariant” loss in logarithmic space used in depth estimation [19],
MSE is the standard mean-squared-error loss introduced in UniDepth for estimation of dense camera
intrinsics, and lcon is the geometric invariance loss utilized in UniDepth for consistency of internal
geometric network features to geometric augmentations. The official implementation of UniDepth
sets λ0 = 1, λ1 = 0.25, and λ2 = 0.1. Moreover, the initial learning rate is α = 10−4. The AdamW
optimizer [54] is employed by UniDepth, with β1 = 0.9, β2 = 0.999, and weight decay λ = 0.1.

We recognize that this loss formulation involves one basic empirical loss term, i.e. SILog, and two
auxiliary terms, i.e. MSE and lcon. Furthermore, we observe that normalization of the loss scale to
1 is not applied, with the effective initial learning rate being α(eff) =

(∑2
i=0 λi

)
α = 1.35× α =

1.35× 10−4. Thus, throughout our experimentation with YOTO on UniDepth, we keep the learning
rate at its original effective scale α(eff) to preserve the original loss scale.

We compare in Table 1: (i) a 3 × 3 grid search through normalized, non-learnable loss HPs
(λ0, λ1, λ2) = (exp(µ0), exp(µ1), exp(µ2))/

∑2
i=0 exp(µi), where (exp(µ0), exp(µ1), exp(µ2)) ∈

{1} × {0.01, 0.25, 1} × {0.01, 0.1, 1}, i.e. the search includes the original loss HP combination of
UniDepth, and (ii) the YOTO optimization of the loss HPs combined with AdamW, analogously to
Algorithm 1, setting ρ = 20 and ϵ = 0.1 and otherwise following the original optimization settings for
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Figure 1: Comparison of optimization dynamics of YOTO vs. grid search models for UniDepth [58].
Top row: composite empirical loss Le, camera loss MSE, and geometric invariance loss lcon, middle
row: SILog loss, µ1 for YOTO, and µ2 for YOTO, bottom row: λ0, λ1, and λ2 for YOTO. Grid
search models are referred in the legends by their respective constant (exp(µ1), exp(µ2)) values.
Best viewed on a screen at full zoom.

regular network parameters which were used in UniDepth [58] as mentioned above. Moreover, across
all runs, the training set is composed of ScanNet [14], Argoverse2 [72], and Waymo [68]–which were
all originally used in [58] too—for a total of ca. 700K images, and we train the same ViT-L [18]
backbone as in [58] on mini-batches of size 64 for 300K iterations, which takes 20 RTX4090 days.
Despite the relatively smaller number of training images and iterations compared to the original 3M
and 1M of [58] respectively, the performance of the model from the grid search that uses the original
HPs on the two zero-shot evaluation datasets we use following [58], i.e. the outdoor nuScenes [9]
with 36,114 images and the indoor SUN-RGBD [67] with 4,396 images, largely matches that of the
originally trained model in [58], even exceeding it for the key 3D metric of FA on SUN-RGBD.

What is more, the YOTO model for UniDepth converges to a set of loss HPs and regular parameters
which consistently outperforms the best of the 9 grid-search models across the two benchmarks and
the three metrics. This fact is not constrained on the SIlog metric which is identical with the basic
empirical training loss, but it extends into the key depth measure of δ1 and 3D measure of FA which
are only employed for testing, implying that our novel approach of optimizing HPs on the training set
crucially improves inference performance. Note that we minimally experimented with tuning ρ and ϵ
for YOTO in this comparison, trying only ρ ∈ {2, 20} and ϵ ∈ {0.01, 0.1}, even though our entire
optimization algorithm is new and no suitable parameter ranges were previously known. Thus, by
only training once, we get a better 3D estimation model than any one found by brute force among an
order of magnitude more models, with a significant margin of 0.7% in δ1 and 0.5% in FA.

We illustrate the detailed optimization dynamics for the above YOTO model for UniDepth against
those of the compared models from the 3× 3 grid search in Figure 1. We first observe that the YOTO
model (in blue) exhibits the same dynamics w.r.t. the basic empirical loss, i.e. SILog, as the grid
search models, for which λ0 is fixed. Different models exhibit different dynamics in their auxiliary
camera and invariance losses, which are generally inversely proportionally high to the corresponding
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Figure 2: Analysis of sensitivity of YOTO to initialization, performed for training UniDepth [58].
We vary the initialization parameter ϵ for different YOTO models while keeping hyperparameter
decay fixed at ρ = 2, and plot the evolution of HPs throughout optimization. Different models are
referred in the legends by their respective (ϵ, ϵ) values which initialize (exp(µ1), exp(µ2)). Top row:
µ1(t), µ2(t), and µ1(t) vs. µ2(t) with final points as dots, bottom row: λ1(t), λ2(t), and λ0(t). Best
viewed on a screen at full zoom.

weight λi. YOTO automatically discovers a favorable tuple for its adjustable HPs in the initial stage
of the optimization and stabilizes at it for the subsequent, longer stage of the optimization.

The importance of initialization of our algorithm motivates us to conduct a sensitivity analysis of this
aspect of it in Figure 2. In particular, we train 5 different YOTO models for UniDepth, by varying
the initialization parameter ϵ linearly in log space from 10−3 to 10 while keeping hyperparameter
decay fixed at ρ = 2. We observe that for these initializations, each of the 5 models converges to one
of two points in the HP space, despite their potentially different initialization, which evidences that
YOTO is relatively insensitive to initialization. Models with sufficiently high ϵ converge to a point
which is still close to the µ1 = µ2 line, ca. at (−0.18,−0.18), with both auxiliary losses contributing
non-negligibly at convergence. On the other hand, models with lower ϵ converge to a point away from
the µ1 = µ2 line on which they are initialized, for which exp(µ2) ≈ 0. In essence, the latter models
have automatically selected only the camera loss as a helpful auxiliary loss, and have “rejected” the
invariance loss, the contribution of which is negligible to them at convergence. Between the two
sets of models, we have observed that performance of either is better on one of the two zero-shot
evaluation sets and worse on the other, implying that the two convergence points represent different
optima both in the HP and in the regular parameter space.

4.2 Semantic Segmentation

The second key vision task we examine is semantic segmentation, using the state-of-the-art domain-
generalizing method of CISS [64]. In particular, we use the simpler yet highly performing
DeepLabv2 [11] version of CISS and its basic formulation with losses computed only from the
source domain, referred to as CISS-source. In particular, CISS-source originally optimizes a com-
posite empirical loss Le for an encoder-decoder segmentation network f = ω ◦ ϕ, where ϕ is the
encoder and ω the decoder. Based on (i) a pair of internal feature tensors that the network produces
using a pair of images Is and It, i.e. ϕ(Is) and ϕ(g(Is, It)) where g is a non-learned mapping, (ii)
the softmax output f(Is) for the first image Is, and (iii) the respective ground truth Ys, we compute

Le = λ0lCE(f(Is), Ys) + λ1linv(ϕ(Is), ϕ(g(Is, It))), (10)
where lCE is the standard cross-entropy loss which is used in semantic segmentation [51] and linv is a
feature invariance loss that penalizes differences between corresponding elements of the two internal
feature tensors. The original implementation of CISS sets λ0 = 1, λ1 = 10, and the (constant)
learning rate to α = 2.5×10−4, and uses the SGDW optimizer [54], with β1 = 0.9 and weight decay
λ = 2. The formulation of (10) includes one basic empirical loss term, i.e. lCE, and one auxiliary
term, i.e. linv. Again here, the loss scale is originally not normalized to 1, as λ0 + λ1 = 11. In this set
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of experiments, we first re-train the orig-
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in Figure 3: (i) a grid search through
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grid is in the space of the log ratio of
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includes the original log10 ratio of 1 as
mentioned above, and (ii) the YOTO op-
timization of the loss HPs combined with
SGDW based on Algorithm 1, setting
ρ = 200 and ϵ = exp(−4) and other-
wise keeping the original optimization
settings of DeepLabv2-based CISS de-
tailed above. We train 3 models for ev-
ery point of the grid search and 3 models
for YOTO, using in each case a different
random seed for each of the 3 runs. The
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Figure 3: Comparison of YOTO vs. grid search models
for optimizing CISS-source [64] and its loss HPs for
domain-generalizing semantic segmentation. Means and
standard deviations (1-σ) of performance (y-axis) are
plotted for each examined configuration. The mean and
standard deviation of the log ratio of optimized HPs with
YOTO (x-axis) is also plotted, but the latter standard
deviation is too small, hence imperceptible in the plot.

training set comprises the standard domain generalization benchmark of Cityscapes→ACDC [13, 63]
for normal-to-adverse domain generalization, where only Cityscapes labels are used. We train with
mini-batches of size 2, i.e. one image Is from Cityscapes and one image It from ACDC in each
mini-batch, for 148,750 iterations, which takes ca. 2 RTX4090 days. Validation is performed on
the held-out validation set of ACDC using standard mean Intersection over Union (IoU) [13, 51].
YOTO outperforms all models from grid search, even the best one for which log10(λ1/λ0) =
0 ⇒ λ0 = λ1 = 0.5. Moreover, YOTO exhibits far better robustness to stochasticity, as both its
performance variation across runs is much lower than that of grid-search models with fixed HPs
and it reliably converges to the same point in HP space with negligible variance, which is at ca.
(λ0, λ1) = (0.04, 0.96). The optimization trajectories of the free HP µ1(t) for the 3 runs, shown in
Appendix C, are also virtually identical. These findings further hint on the stability of our proposed
algorithm. To corroborate the generalization improvement in semantic segmentation with one-shot
training via YOTO against fixed-HP models, we have submitted for online evaluation the predictions
on the properly withheld test set of ACDC [63] of the above best grid-search model using the weights
with the median validation performance of the 3 runs as well as the YOTO model with the worst
validation performance of the 3 runs, i.e. favoring the former. Indeed, YOTO scores a mIoU of
45.29% and outperforms the conventional model, which scores 44.52%, confirming the strength of
our joint optimization of regular parameters and HPs in generalization.

Discussion and Limitations. While YOTO bypasses the need to manually tune loss HPs, in doing
so it introduces two new HPs: (i) the hyperparameter decay ρ which weighs the regularization loss
for all µi, and (ii) the initialization parameter ϵ. Resp. (ii), we argue that most of the existing HPO
methods, including model-based, population-based and gradient-based ones, also require some sort of
initialization, so this is not a new burden only for YOTO, and we have evidenced that our algorithm
is fairly robust to the precise choice of ϵ. Resp. (i), we argue that ρ is shared across µ, in the same
way that weight decay λ is shared across w, incurring increasing returns with dimensionality.

5 Conclusion

We have presented YOTO, an automatic, gradient-based optimization algorithm that tunes loss weight
HPs of learned models jointly with regular parameters of the latter in one shot via standard GD. The
joint optimization in YOTO allows the model to explore a richer parametric space than with existing
HPO approaches, leading to consistent gains in final performance at inference besides the obvious
gains in efficiency due to the one-shot regime. We view YOTO as a first yet firm step in the direction
of directly optimizing HPs on empirical losses, which both has wide beneficial implications on the
practical experimental optimization of the majority of learned parametric models and opens new
avenues for effective and efficient optimization of other types of HPs through standard GD.
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A Derivation of Composite Empirical Loss Gradients

We derive the expression which is provided in (6) for the gradients of our composite empirical loss
Le with respect to the hyperparameters µi.

Proof. Starting from (5), we apply the quotient rule to get

∂Le

∂µi
=

∂

∂µi

 K∑
j=0

exp(µj)lj(f(w))

 K∑
j=0

exp(µj)−

 K∑
j=0

exp(µj)lj(f(w))

 ∂

∂µi

 K∑
j=0

exp(µj)


 K∑

j=0

exp(µj)

2 .

(11)

By comparison of (11) with (6), we observe that the denominators of the RHSs are identical. Thus,
we simply proceed to show the equality of the respective numerators. In particular, we expand the
derivatives in the numerator on the RHS of (11) as

exp(µi)li(f(w))

 K∑
j=0

exp(µj)

− exp(µi)

 K∑
j=0

exp(µj)lj(f(w))

 . (12)

Next, we factorize (12) as

exp(µi)

 K∑
j=0

((li(f(w))− lj(f(w))) exp(µj))

 . (13)

Finally, the proof is completed by eliminating the zero term in the sum of (13) for j = i as

exp(µi)

 K∑
j=0
j ̸=i

((li(f(w))− lj(f(w))) exp(µj))

 . (14)

B Derivation of Regularization Loss Gradients

We derive the expression which is provided in (8) for the gradients of our regularization loss Lr with
respect to the hyperparameters µi.

Proof. Starting from (7), we first note that the gradient of the second, softplus term of the RHS is
trivial to obtain via the chain rule, so we need to prove that the gradient of the first, negated entropy
term on the RHS of (7) is equal to the first term on the RHS of (8). We leverage the linearity of the
gradient operator to exchange it with the outer sum of the negated entropy term of (7), as well as the
product rule over each term of that sum to obtain the following gradient:

K∑
j=0


∂

∂µi


exp(µj)

K∑
k=0

exp(µk)

 log


exp(µj)

K∑
k=0

exp(µk)

+
exp(µj)

K∑
k=0

exp(µk)

∂

∂µi

log


exp(µj)

K∑
k=0

exp(µk)






(15)
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We then break the sum into its i-th term and the rest K terms for which j ̸= i. By calculating away
the gradients in (15) and performing eliminations, the i-th term of the sum becomes

exp(µi)

(
K∑

k=0

exp(µk)− exp(µi)

)
(

K∑
k=0

exp(µk)

)2

(
1 + log

(
exp(µi)∑K

k=0 exp(µk)

))
. (16)

The rest of the terms of the aforementioned sum from (15), after respective calculations of the
gradients and eliminations, become

K∑
j=0
j ̸=i

(
− exp(µi) exp(µj)

(
1 + log

(
exp(µj)∑K
k=0 exp(µk)

)))
(

K∑
k=0

exp(µk)

)2 . (17)

We observe that the denominators of both addends in (16) and (17) are identical to that of the first
term on the RHS of (8). Thus, we are left to prove that the sum of the numerators of the two
aforementioned addends is equal to the numerator of the first term on the RHS of (8). With proper
renaming of indices and grouping of sums, these two numerators sum to

exp(µi)

 K∑
j=0

exp(µj)

− K∑
j=0

exp(µi) exp(µj)− exp(µi)

K∑
j=0
j ̸=i

exp(µj) log

(
exp(µj)∑K
k=0 exp(µk)

)

+ exp(µi)

 K∑
j=0

exp(µj)− exp(µi)

 log

(
exp(µi)∑K

k=0 exp(µk)

)

= exp(µi)

 K∑
j=0

exp(µj)

(
log

(
exp(µi)∑K

k=0 exp(µk)

)
− log

(
exp(µj)∑K
k=0 exp(µk)

))
= exp(µi)

 K∑
j=0

exp(µj)(µi − µj)

 . (18)

C Stability of Optimization Trajectories of Hyperparameters Against
Stochasticity in Training

We further evidence the robustness of YOTO to stochasticity, complementing the results of Figure 3
which pertain to training CISS [64] with our method. In particular, beyond the latter results show-
casing the stable performance and hyperparameter convergence across 3 runs with different random
seeds used for training, we show in Figure 4 the 3 optimization trajectories of the free hyperparameter,
µ1(t), for these 3 different runs. All 3 trajectories are virtually identical with each other, with a very
minor variation between them in the “transition” phase between 20,000 and 40,000 steps of gradient
descent, where µ1 grows faster. This further corroborates the insensitivity of YOTO to stochasticity
in training, not only with regard to the converged models, but also with regard to the intrinsic training
dynamics.
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Figure 4: Analysis of sensitivity of YOTO to stochasticity in training, performed for training
CISS [64]. The trajectory µ1(t) of the hyperparameter µ1 over training steps t is plotted for 3
different training runs. The 3 training runs are the same as those used to generate the results of
Figure 3. Across these 3 runs, we vary the random seed in the set {0, 1, 2}. Different models are
referred in the legend by their respective seed values. All three trajectories are virtually identical and
can only be distinguished by zooming in at the interval between 20k and 40k training steps. Best
viewed on a screen at full zoom.
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