
Preprint, under review

TT-NF: TENSOR TRAIN NEURAL FIELDS

Anton Obukhov, Mikhail Usvyatsov, Christos Sakaridis, Konrad Schindler, Luc Van Gool†
ETH Zürich, †KU Leuven

ABSTRACT

Learning neural fields has been an active topic in deep learning research, focusing,
among other issues, on finding more compact and easy-to-fit representations. In
this paper, we introduce a novel low-rank representation termed Tensor Train
Neural Fields (TT-NF) for learning neural fields on dense regular grids and efficient
methods for sampling from them. Our representation is a TT parameterization of
the neural field, trained with backpropagation to minimize a non-convex objective.
We analyze the effect of low-rank compression on the downstream task quality
metrics in two settings. First, we demonstrate the efficiency of our method in
a sandbox task of tensor denoising, which admits comparison with SVD-based
schemes designed to minimize reconstruction error. Furthermore, we apply the
proposed approach to Neural Radiance Fields, where the low-rank structure of the
field corresponding to the best quality can be discovered only through learning.
Project website: obukhov.ai/ttnf.

1 INTRODUCTION

Following the growing interest in deep neural networks, learning neural fields has become a promising
research direction in areas concerned with structured representations. However, precision is usually
at odds with the computational complexity of these representations, which makes training them and
sampling from them a challenge. In this paper, we investigate interpretable low-rank neural fields
defined on dense regular grids and efficient methods for learning them. Since, in extreme cases, the
dimensionality of such fields can exceed the memory size of a typical computer by several orders of
magnitude, we look at the problem of learning such fields from the angle of stochastic methods.

Tensor decompositions have become a ubiquitous tool for dealing with structured sparsity of in-
tractable volumes of data. We focus on the Tensor Train (TT) (Oseledets, 2011), also known as the
Matrix Product State in physics. TT is notable for its high-capacity representation, efficient algebraic
operations in the low-rank space, and support of SVD-based algorithms for data approximation.
As such, we consider TT-SVD (Oseledets, 2011) and TT-cross (Oseledets & Tyrtyshnikov, 2010)
methods for obtaining a low-rank representation of the full tensor. While TT-SVD requires access to
the full tensor at once (which might already be problematic in specific scenarios), TT-cross requires
access to data through a black-box function, computing (or looking up) elements by their coordinates
on demand. Both methods operate under the assumption of noise-free data and are not guaranteed to
output sufficiently good approximations in the presence of noise.

While noise in observations is challenging for SVD-based schemes and requires devising tailored
approaches to different noise types and magnitude (Zhou et al., 2022), exploiting the low-rank
structure of the field driven by data is even more challenging (Novikov et al., 2014; Boyko et al.,
2020) and typically resorts to the paradigm of data updates through algebraic operations on TT.

In this work, we take a step back and leverage the modern deep learning paradigm to parameterize
neural fields as TT, coined TT-NF. Through deep learning tooling with support for automatic differen-
tiation and our novel sampling methods, we obtain mini-batches of samples from the parameterized
neural field and perform optimization of a non-convex objective defined by a downstream task. The
optimization comprises the computation of parameter gradients with backpropagation and parameter
updates with any suitable technique, such as SGD.

We analyze TT-NF and several sampling techniques on a range of problem sizes and provide reference
charts for choosing a sampling method based on memory and computational constraints. Next, we
define a synthetic task of low-rank tensor denoising and demonstrate the superiority of the proposed

1

ar
X

iv
:2

20
9.

15
52

9v
1 

 [
cs

.L
G

] 
 3

0 
Se

p 
20

22

https://www.obukhov.ai/ttnf


Preprint, under review

optimization scheme over several SVD-based schemes. Finally, we consider the formulation of Neural
Radiance Fields (NeRF) introduced in Mildenhall et al. (2020), and propose a simple modification to
TT-NF, termed QTT-NF, for dealing with hierarchical spaces.

Our contributions in this paper:

1. TT-NF – compressed low-rank neural field representation defined on a dense grid;
2. QTT-NF – a modification of TT-NF for learning neural fields defined on hierarchical spaces,

such as 3D voxel grids seen in neural rendering;
3. Efficient algorithms for sampling from (Q)TT-NF and learning it from samples, designed

for deep learning tooling.

The rest of the paper is organized as follows: Sec. 2 discusses the related work; Sec. 3 introduces
notations from the relevant domains; Sec. 4 presents the proposed contributions; Sec. 5 demonstrates
the practical use of the proposed methods; Sec. 6 concludes the paper. Many relevant details pertaining
to our method, experiments, and extra discussion can be found in Appendix sections A, B, and C.

2 RELATED WORK

Tensor Decompositions Higher-order tensor decompositions have been found helpful for several
data-based problems, as detailed by Kolda & Bader (2009). Oseledets (2011) introduced the Tensor
Train (TT) decomposition, which offers a compressed low-rank tensor approximation that is stable and
fast. The TT decomposition has also been used to approximate tensors with linear complexity in their
dimensionality via the TT-cross approximation (Oseledets & Tyrtyshnikov, 2010). With the rise of
deep learning, tensor-based methods have been integrated into neural networks, e.g., Usvyatsov et al.
(2021) explored the use of TT-cross approximation for gradient selection in learning representations.
We review tensor-based methods for network compression in the next paragraph and refer the reader
to Panagakis et al. (2021) for a detailed overview of similar works. On the software side, along with
general deep learning frameworks (Paszke et al., 2019; Abadi et al., 2015), several tensor-centric
frameworks have emerged (Kossaifi et al., 2019b; Usvyatsov et al., 2022; Novikov et al., 2020).

Neural Network Compression with Tensors Low-rank bases were utilized by Jaderberg et al.
(2014) to approximate convolutional filters and drastically speed up inference via separating filter
depth from spatial dimensions. Lebedev et al. (2014) applied a low-rank decomposition on all 4
dimensions of the standard convolutional kernel tensors. Subsequent works employed more general
tensor decompositions, notably the TT decomposition, to massively compress fully connected layers
(Novikov et al., 2015) or both fully connected and convolutional layers (Garipov et al., 2016), with
minor accuracy losses. Other decompositions such as tensor rings were also explored in the same
context (Wang et al., 2018). Kossaifi et al. (2019a) applied the higher-order tensor factorization
to the entire network instead of separately to individual layers. In a similar vein, Li et al. (2019);
Obukhov et al. (2020); Kanakis et al. (2020) propose to learn a basis and coefficients of each layer,
thus enabling disentangled compression and multitask learning. While most of the aforementioned
methods examine general convolutional networks, we focus specifically on compressing neural fields.

Tensor Decompositions in 3D Representations A review of compact representations and sam-
pling techniques for compressed volume rendering is made by Balsa Rodrı́guez et al. (2014). Ballester-
Ripoll et al. (2015) analyzed multiple tensor approximation models regarding volume visualization.
More recently, compression of 3D volumes over regular grids was addressed with a general higher-
order singular value decomposition by Ballester-Ripoll et al. (2019). The TT decomposition has also
been used by Boyko et al. (2020) to compress 3D scenes that are represented by volumetric distance
functions. We review neural-field-based methods separately in the next paragraph.

Neural Fields as implicit scene representations for geometry and radiance have recently attracted
intense research activity, especially in the context of 3D. The application of neural fields to image
compression is studied by Strümpler et al. (2021), who employ meta-learned representations that
increase efficiency in training. The usual volumetric type of representation is replaced by a surface-
based one by Zhang et al. (2021a), who learned bidirectional reflectance distribution functions that
enable novel view synthesis for unconstrained real-world scenes, and Zhang et al. (2021b), who

2



Preprint, under review

1 R1

M1

C(1)
R2

M2

C(2)
· · ·

MD

RD91
C(D)

RD

Figure 1: Tensor diagram of the (Block) Tensor
Train decomposition (Dolgov et al., 2014). The
low-rank tensor of shape M1 × ...×MD ×RD
is represented as a product of D TT-cores C(i),
each being a tensor of shape Ri−1 ×Mi × Ri.
The TT-rank (1, R1, ..., RD) defines the degree
of approximation. The case of RD = 1 corre-
sponds to TT decomposition Oseledets (2011).

1 R1

X1Y1 Z1

C(1)
R2

X2Y2 Z2

C(2)
· · ·

YDXD ZD

RD91
C(D)

RD

Figure 2: Tensor diagram of a Quantized Ten-
sor Train decomposition (Khoromskij, 2009) of
a 3D voxel grid of shape X × Y × Z and RD
values in each voxel. All three dimensions ad-
mit factorization into D levels of hierarchy (e.g.,
X = X1X2 · · ·XD). We group factors by levels
into tuples (Xi, Yi, Zi), and introduce the low-
rank bonds between the levels of the hierarchy.

designed a signed distance field to model the scene geometry. For a comprehensive overview of
neural fields in visual computing, we refer the reader to Xie et al. (2022).

Neural Radiance Fields The seminal paper of Mildenhall et al. (2020) introduced the concept of a
NeRF as an end-to-end implicit differentiable function that maps viewpoints to scene renderings and
showed that it could be effectively optimized. Barron et al. (2021) addressed the aliasing artifacts of
NeRF caused by single-ray sampling via a continuously-valued frustum-based rendering approach.
Cai et al. (2022) extended NeRF to jointly model multiple objects of the same class and decouple
the object’s content from its pose. The area advances quickly; we further discuss works focusing on
representation sparsity and efficiency. Yu et al. (2022) employed a sparse 3D-grid representation
based on spherical harmonics and regularization for novel view synthesis, alleviating the need for
neural components. Müller et al. (2022) improved the training efficiency by using a hash encoding
for the input feature vectors, which allows using a much smaller network. Hedman et al. (2021)
reformulated the NeRF architecture and stored the model as a sparse voxel grid to enable real-time
rendering via precomputation. Sun et al. (2022) achieved faster convergence to optimal solutions for
volumetric representations by using a post-activation interpolation and guiding the optimization via
prior knowledge of the problem. Chen et al. (2022) implemented low-rank constraints in 3D on the
voxel grid parameterization and achieved impressive results in the NeRF setting.

3 NOTATION

Tensor Diagram Notation Diagrams are an efficient visualization tool for interactions between
tensors. A tensor is drawn as a node with the number of legs matching its number of dimensions.
For example, a matrix W ∈ Rm×n is drawn as , and a vector x ∈ Rn looks as . Their product
Wx looks as a connection along the dimension being eliminated as a result of the operation: . A
diagram of nodes with their connections reflects what is called a “tensor network”.

Tensor Contraction computes a product of the entire tensor network. The result of this operation is
a single tensor with dimensions corresponding to free legs inside the tensor network.

Tensor Train Decomposition The TT format represents a D-dimensional array (tensor) A ∈
RM1×M2×···×MD with modes Mi as a product of D three-dimensional core tensors C(i) ∈
RRi−1×Mi×Ri , called TT-cores (see Fig. 1). The tuple (R0, R1, ..., RD) is called a TT-rank of
the decomposition; it defines the degree of approximation of A. By convention (Oseledets, 2011),
R0 = RD = 1. Rmax = max(R0, ..., RD) is also called the rank of the decomposition. An element
of A at indices (i1, ..., iD) can be computed as follows:

Ai1,...,iD =

R1,..,RD91∑
β1,...,βD91=1

C(1)1,i1,β1
· C(2)β1,i2,β2

··· C(D91)
βD92,iD91,βD91

· C(D)
βD91,iD,:

(1)

Dolgov et al. (2014) introduced Block TT, which attaches a “block” dimension in place of the last
rank RD. The difference between the two is subtle, as both formats can be converted to each other.

3



Preprint, under review

However, Block TT is more suitable for describing multi-valued neural fields. We thus assign a
special meaning to RD – it will signify the “payload” dimension of our neural field. We will omit the
word “block” in the remaining text and always assume Block TT. Refer to Fig. 1 for the diagram.

QTT Mode Quantization refers to the introduction of artificial dimensions into the represented
tensor. For example, a 3D tensor of function values on the lattice 16× 16× 16 can be represented as
a tensor of shape (21× 22× 23× 24)× (21× 22× 23× 24)× (21× 22× 23× 24). Here color-coded
factors denote one of the axes X , Y , and Z they explain, subscripts denote the artificially-introduced
levels of hierarchy, × delimits represented dimensions, · denotes merged (flattened) dimensions, and
parentheses are for visual convenience. This 12-dimensional cube with side 2 can then be represented
using TT as in Fig. 1. However, when the number of introduced levels of hierarchy is the same
between modes of the original tensor (four in the given example), it is often beneficial (Oseledets,
2009) to introduce low-rank structure between levels of hierarchy, rather than individual factors.
The resulting low-rank representation describes a tensor of shape 8× 8× 8× 8 with the following
factorization pattern called QTT: (21 · 21 · 21)× (22 · 22 · 22)× (23 · 23 · 23)× (24 · 24 · 24). Notably,
such permutation of dimension factors corresponds to 3D space traversal using Morton code (Morton,
1966), also known as Z-order. Connections with octrees used in rendering can also be drawn.

We define our neural field on a 3D voxel grid as shown in Fig. 2. Dimensions of the voxel grid are
chosen equal to 2D, resulting in a hierarchy of D levels. Together with the Block structure discussed
above and QTT, we arrive at the proposed representation, which has D cores with all modes equal to
eight, and the payload dimension corresponding to the number of values to store in each voxel.

Tensor Decomposition The term may refer either to the decomposition scheme (e.g., as in the
figures above) or the process of obtaining values of the decomposition (e.g., TT-cores C) from
elements of the full tensor A. While SVD-based schemes employ the latter meaning, we focus on the
former by parameterizing decomposition given its configuration, which includes modes and TT-rank.

Sampling refers to obtaining elements of the full tensor from its decomposition at a given list
of indices. This operation could be done in several ways, the simplest being Tensor Contraction
followed by subsampling at the required indices. When the contraction is undesired or intractable, an
alternative way is evaluating full tensor elements through the decomposition equation, such as Eq. 1.
While mathematically straightforward, the subtleties of the chosen sampling algorithm result in a
large variance in efficiency when used within the optimization loop due to the need for automatic
differentiation, as we discuss in Sec. 4.2.

4 METHOD

Table 1: Comparison of methods for obtaining a TT
decomposition from observations: TT-SVD (Os-
eledets, 2011), TT-Cross (Oseledets & Tyrtysh-
nikov, 2010), TT-OI (Zhou et al., 2022), TT-NF.

Method Observation
access pattern

Noise in
observations

TT-SVD Full tensor Not supported

TT-Cross
On-demand, pattern
defined by dimen-
sions and TT-rank

Not supported

TT-OI Full tensor Sub-gaussian

TT-NF
(our)

On-demand,
flexible batch size
and access pattern

Any supported by
the choice of the
loss function

We introduce TT-NF as a parameterization of
the TT decomposition discussed in Sec. 3 and
use it within a deep learning framework with au-
tomatic differentiation support. This paradigm
change differs from previous methods for ob-
taining tensor decompositions, relying on matrix
decompositions (SVD, QR, etc.) and algebraic
operations in the TT format. Each such scheme
(collectively called “SVD-based”) comes with
its own set of limitations, summarized in Tab. 1.
TT-SVD (Oseledets, 2011) assumes access to all
elements of the full tensor A in memory, which
may be intractable in specific large-scale scenar-
ios, and does not support noise in observations.
TT-Cross (Oseledets & Tyrtyshnikov, 2010) ac-
cepts a black-box function for computing ele-
ments of the full tensor on-demand, which suits
large-scale problems, but lacks the flexibility in choosing the number of samples through which
update is performed (batch size); this number is defined purely by the configuration of TT decompo-
sition (dimensions and TT-rank). Likewise, it does not support noise in observations. TT-OI (Zhou

4



Preprint, under review

et al., 2022) improves upon TT-SVD and supports zero-mean independent sub-gaussian noise in
observations but inherits scalability issues.

Our method stands out due to its flexibility of optimization parameters choice (e.g., batch size) and
resilience to various types of noise in observations, controlled through the choice of the loss function.

4.1 INITIALIZATION OF TT-NF

Given the field’s dimensions, we first choose its TT-rank. For that, we choose the value of Rmax and
set TT-rank to the maximum possible values according to Oseledets (2011), not exceeding Rmax.

Following the best practices in the deep learning literature, we initialize parameters of TT-NF from
scratch using the normal distribution with scale σ̂ computed such that the full tensor elements
computed using Eq. 1 have a pre-defined scale σ, as shown in Eq. 2:

σ̂ = exp

(
1

2D

(
2 log σ −

D∑
i=1

logRi

))
. (2)

Alternatively, in the presence of access to full tensor elements, parameters can be initialized using the
output of any of the SVD-based schemes, leading to faster convergence.

4.2 SAMPLING FROM TT-NF

Obtaining samples from TT-NF is mathematically straightforward using Eq. 1. In deep learning
frameworks, one way to obtain a batch of B samples at indices

((
i
(1)
1 ...i

(1)
D

)
, ... ,

(
i
(B)
1 ...i

(B)
D

))
amounts to using index select operation on each TT-core Ci along mode Mi to obtain batches of
core slices (matrices) of shapesB×Ri−1×Ri, and then applying bmm (batched matrix multiplication)
operation to them. This sampling method (aliased v1) leads to space complexity of O(BDR2

max) and
quickly becomes unusable as slices of parameterization are replicated in memory for each sample.
Moreover, the scaling issue gets worse as we require keeping all intermediate computations after
each bmm operation and allocating memory for gradients to enable automatic differentiation.

The prevention of model parameter replication enabled the scaling of modern neural networks with
millions of parameters, which are trained using minibatches of thousands of samples. The cornerstone
of efficient scaling is a set of specialized layers (e.g., Linear), which accept a batch of inputs and
compute mappings using only one instance of parameters. During the backward pass, gradients w.r.t.
parameters are accumulated from samples with predictable, constant space scaling.

With that in mind, we bootstrap our efficient sampling method (aliased v2) by leveraging Linear

layer functionality. Given a batch of indices as above, we start by taking
(
i
(1)
1 ...i

(1)
D

)
and produce

a batch of intermediates v of shape B × R1 (the dimension corresponding to R0 = 1 is ignored).
For each subsequent TT-core Ci, i = 2, D, we split the inputs v according to which Mi slices of Ci
will be used to perform vector-matrix multiplication of each sample. Because Linear layers require
samples in the minibatch to be packed densely, we perform a permutation π of v to align samples in
the minibatch before multiplying them with the respective weight matrices. We additionally maintain
the inverse permutation σ to restore the order of samples after processing v with the last TT-core. The
output of each step has the shape B ×Ri compatible with the input to the next step until reaching the
last step, where it is of the shape B ×RD. Alg. 1 outlines the details of the algorithm.

The resulting space complexity of v2 sampling is reduced to O(BDRmax), with the absorbed scaling
factor just 2× that of the v1 method due to permutations. The memory footprint of v2 is roughly
Rmax times smaller than v1, which enables practical use for TT-NF optimization as the rank increases.

Fig. 3 provides a reference chart for choosing an optimal sampling scheme based on an uncompressed
field size of 230, batch size, Rmax, space, and time constraints. Refer to additional charts for different
field and batch sizes in the Appendix, Figs. 7, 8. As can be seen, v2 consistently outperforms v1
in memory requirements and sampling through tensor contraction followed by indexing in both
memory and FLOPs, given the batch sizes specified in the plot. Additionally, we introduce a reduced
parameterization and an associated v3 sampling method in Sec. A.1.

5



Preprint, under review

Algorithm 1 Memory-Efficient Sampling from
TT-NF for Deep Learning Frameworks. Au-
tomatic differentiation paths are highlighted in
blue. Refer to Sec. 4.2 for more details.
Require:
D - number of tensor dimensions,
B - number of samples,
(1, R1, ..., RD) - TT-rank,
(M1, ...,MD) - TT-modes,
(C(1), ... , C(D)) - TT-cores representing A,((
i
(1)
1 ...i

(1)
D

)
, ... ,

(
i
(B)
1 ...i

(B)
D

))
- indices.

Ensure:
v =

(
A
i
(1)
1 ,...,i

(1)
D

, ...,A
i
(B)
1 ,...,i

(B)
D

)
- samples

without computing the whole A.
1: π ← (1, ..., B) . forward permutation
2: σ ← (1, ..., B) . inverse permutation
3: v ← C(1)1,i1,:

.B ×R1

4: for k ← 2 to D do
5: ik ← π(ik) . align mode indices
6: v, πk ← BIMVP(C(k), ik, v) .B ×Rk
7: σk ← π−1k . invert kth permutation
8: π ← πk(π) . update forward perm.
9: σ ← σ(σk) . update inverse perm.

10: end for
11: v ← σ(v) . recover samples order
12: return v .B ×RD

Algorithm 2 Batched-Indexed Matrix-Vector
Permuted Product (BIMVP) for Deep Learning
Frameworks, referenced in Alg. 1. Automatic
differentiation paths are highlighted in blue.

Require:
C - TT-core of shape Rl ×M ×Rr,
i - B indices in [1,M ],
v - batch of vectors of shape B ×Rl.

Ensure:
π(vi1C:,i1,:, ..., viBC:,iB ,:) - permuted output,
π - permutation.

1: π ← argsort(i) . compute permutation
2: b1, ..., bM ← unique(i) . count M unique
3: v ← π(v) . group vectors by matrices
4: v1, ..., vM ← split(v, b) . split groups
5: parfor m← 1 to M do
6: .Linear layer function without bias
7: vm ← linear(vm, C>:,m,:) . bm ×Rr
8: end parfor
9: v ← (v1, ..., vM ) . concatenate vectors

10: return v, π .B ×Rr

10k

1M

100M

10B

1T

100T

1000

10k

100k

1M

10M

100M

1B

10B

100B

100
1000
10k
100k
1M
10M
100M

1B
10B
100B

1 8K 16K 24K 32K
100k
1M
10M
100M

1B
10B
100B

1T
10T
100T

1 8K 16K 24K 32K
100k

1M

10M

100M

1B

10B

100B

1T

10T

1 8K 16K 24K 32K

10k
100k
1M
10M
100M

1B
10B
100B

1T

1 8K 16K 24K 32K

0

0.5B

1B

1.5B

2B

2.5B

3B

Sampling v1
Sampling v2
Sampling v3
Contraction
GPU RAM

rank rank rank rank

Computations (FLOPs) Training memory (floats) Inference memory (floats)

Number of parameters (floats)

B
atch size: 1024

B
atch size: 16384

Figure 3: Space-time complexity of sampling from TT-NF of size 230 with various methods, batch
sizes, and ranks. We compare three sampling schemes discussed in Sec. 4, as well as the traditional
tensor contraction scheme. As seen in the plots, v2 (Sec. 4.2) scheme requires orders of magnitude
fewer floating point operations (FLOPs) and memory than the contraction scheme and outperforms
naive v1 sampling in memory requirements. Additionally, v3 (Sec. A.1) offers extra speedup on top
of v2 without loss of representation capacity, bringing its parameterization closer to the theoretical
number of degrees of freedom of the tensor train manifold. Lower is better. Best viewed in color.

6



Preprint, under review

0
0.2
0.4
0.6
0.8
1

0

0.5

1

0 0.1 0.3 1 3 10
0

1

2

3

4

5

0 0.1 0.3 1 3 10
0

2

4

6

TT-SVD
TT-OI
TT-cross
Contraction
Sampling v2
Sampling v3

sigma b

Normal noise Laplace noise

R
ank: 16

R
ank: 128

R
M

S
E

Figure 4: The resilience of various tensor regression methods of size 220 to additive noise. We
consider zero-mean Normal and Laplace noise with varying scales added to random ground truth with
unit variance and known TT decomposition. We report root mean squared errors (RMSE) of tensors
regressed by each method. Our sampling methods (v2 and v3) outperform other methods in noisy
settings, including those specifically designed to work with noisy observations (TT-OI by Zhou et al.
(2022)) and those computing a fraction of elements at each optimization step (TT-cross by Oseledets
& Tyrtyshnikov (2010)). See discussion in Sec. 5.1. Lower is better. Best viewed in color.

5 EXPERIMENTS

5.1 TENSOR DENOISING

To compare TT-NF with SVD-based schemes, we use a synthetic task of tensor denoising: given a
noisy observation Y ∈ RM1×...×MD of a tensor X with a known TT structure as in Eq. 1, the task is
to compute X̂ = argmin

A as Eq. 1
‖X −A‖2F . For the experiments, we first choose tensor modes and TT-rank

with RD = 1, generate X as in the TT-NF initialization scheme from Sec. 4.1 with σ = 1.0, and
perform tensor contraction. To simulate noisy observations Y , we sample noise Z from independent
zero-mean Normal or Laplace distributions with a chosen scale and compute Y = X + Z .

TT-SVD (Oseledets, 2011) is a deterministic1 algorithm; it does not take any hyperparameters
and produces a TT decomposition in a single pass over data. TT-OI (Zhou et al., 2022) performs
several passes. TT-cross has several stopping settings, as it runs an iterative maximum volume
algorithm (Goreinov & Tyrtyshnikov, 2001) on each iteration of the main algorithm. We take the
defaults provided by the tntorch package (Usvyatsov et al., 2022).

On the side of the non-convex optimization family, we minimize a loss function between samples
from the observation and TT-NF. We choose a loss function best suited for the type of observation
noise: L1 for Laplace and L2 for Normal. Contraction denotes the usage of all possible elements in
the loss, whereas Sampling considers only mini-batches of samples.

Fig. 4 demonstrates the performance of all methods on the problem of size 220 under varying noise
types, scale, and TT-NF rank. Optimization lasts 1000 steps, with a batch size of 4096 elements,
Adam optimizer (Kingma & Ba, 2015) with default settings, learning rate warming up during the first
5% steps to 3e92 and decaying exponentially to 3e94. We ran all experiments 10 times and reported
plots with 1-std error bars. All runs are completed on a single GPU.

TT-SVD provides a reasonable baseline, which we use as initialization for TT-NF. TT-OI works better
than TT-SVD on a subset of Normal noise levels and ranks. TT-cross works only in a noise-free
setting. Contraction, which can be considered as full-batch gradient descent, does not improve
much upon TT-SVD. We conjecture that it gets stuck in saddle points, a recurring argument seen

1To the extent we can call SVD deterministic.

7



Preprint, under review

Table 2: Comparison of QTT-NF with NeRF by Mildenhall et al. (2020) and TensoRF by Chen et al.
(2022). In the latter, we disable grid masking and bounding box fitting for even comparison with the
other methods. We consider two techniques for obtaining view-dependent color: spherical harmonics
(SH) with 28 channels and MLP (NN). For QTT-NF, we use a grid size of 2563. QTT-NF reaches
performance competitive with the prior art. See Sec. 5.2 for more details.

Metric Method
(shading)

Chair Drums Ficus Hotdog Lego Materials Mic Ship

Avg.

PSNR ↑
NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
TensoRF (-mask) 32.19 25.01 30.81 35.28 33.54 28.81 31.72 28.90 30.78
QTT-NF (SH) 32.09 24.96 30.89 35.49 32.48 28.22 31.50 27.55 30.40
QTT-NF (NN) 32.87 25.30 31.85 35.97 33.00 28.67 33.07 27.97 31.09

SSIM ↑
NeRF 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
TensoRF (-mask) 0.960 0.922 0.968 0.971 0.969 0.932 0.975 0.868 0.946
QTT-NF (SH) 0.955 0.918 0.967 0.971 0.957 0.929 0.971 0.840 0.939
QTT-NF (NN) 0.965 0.923 0.971 0.972 0.962 0.934 0.979 0.850 0.945

LPIPS ↓
NeRF 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
TensoRF (-mask) 0.053 0.094 0.037 0.055 0.040 0.075 0.029 0.170 0.069
QTT-NF (SH) 0.062 0.095 0.039 0.060 0.066 0.093 0.039 0.203 0.082
QTT-NF (NN) 0.050 0.094 0.037 0.055 0.052 0.089 0.032 0.201 0.077

in discussions of the advantages of SGD over GD in the deep learning literature. As can be seen,
Sampling methods outperform all others in settings with the presence of noise.

5.2 NEURAL RADIANCE FIELDS

Following the fast-pacing domain, we test a QTT-NF variant of our representation (Fig. 2) in the
neural radiance fields (NeRF) setting. The task of learning voxelized radiance fields from data
assumes access to views of a single scene with known camera poses in some frame of reference. The
objective is to regress features of the voxel grid such that when passed through differentiable shading
and ray marching algorithms, the projected images would correspond to the ground-truth data, and
views from the held-out set would exhibit high PSNR. Such a data-driven problem formulation does
not permit the usage of existing SVD-based solutions and thus can only be solved through learning.

We start with the setting of Mildenhall et al. (2020) (recapped in Sec. A.2 of the Appendix) and
replace the MLP converting coordinates and viewing direction into color and density with QTT-NF.
Similar to Yu et al. (2022), we choose a voxel grid resolution of 2563 and 28 channels to store 9
spherical harmonics (SH) coefficients per RGB channel and one voxel density value.

Next, we compare QTT-NF with a recent work TensoRF (Chen et al., 2022), which likewise uses
tensor decompositions, albeit triplanar ones. This work achieves remarkable reconstruction quality
by using several state-of-the-art techniques on top of the proposed decomposition. We intentionally
avoid such recipes that lead to better performance, voxel pruning, occupancy masks, extra losses
(total variation), ray filtering, and progressive training schemes. One technique we borrow from that
pool is the usage of a tiny MLP in place of SH for transforming voxel features into view-dependent
color (NN), which retains the natural interpretability of the learned voxel grid features.

The standard testbed for neural rendering is the Blender dataset (Mildenhall et al., 2020)2. It consists
of 8 synthetic 3D scenes, each with a hundred posed images of resolution 800 × 800. The scenes
vary by complexity and include water and glossy surfaces, thus making it a challenging benchmark.

We train neural rendering experiments for 80K steps with an LR schedule similar to the one from
Sec. 5.1, but with base LR 3e93, Rmax = 256, 4096 rays per batch, and 512 uniform samples per
ray. The code of all experiments is implemented in PyTorch (Paszke et al., 2019). The observed
variance of image quality metrics over five runs is not large: std(PSNR)∼4e92, std(SSIM)∼4e94,
std(LPIPS)∼ 5e94. Results from Tab. 2 attest that QTT-NF is capable of reaching performance
competitive with the prior art.

2Distributed under different Creative Commons licenses. Per scene: “chair”, “ficus”, “hotdog”, “materials”,
“mic”: CC-0; “drums”: CC-BY; “lego”: CC-BY-NC; “ship”: CC-BY-SA.

8



Preprint, under review

64 128 192 256 320 384 448 512

29

30

31

32

33

10K 20K 40K 80K 160K

30

31

32

33

4 9 16

31.6

31.8

32

32.2

32.4

32.6

32.8

TT-rank Number of steps SH basis

PS
N

R

Figure 5: Sweeps of TT-rank, number of training steps, and spherical harmonics components per
channel when training QTT-NF on the “Lego” scene. The remaining parameters are fixed to the
baseline values (represented with a large dot in plots); see Sec. 5.2. Higher is better.

5.2.1 ABLATION STUDY

−1.5

−1

−0.5

0

0 15 30 45

−0.35
−0.3
−0.25
−0.2
−0.15
−0.1
−0.05

0
0.05
0.1

QTT-NF
TensorF

Z-axis rotation angle

Lego (axis-aligned)

Hotdog (ordinary)

PS
N

R
 d

ro
p 

(d
B
)

Figure 6: Sensitivity of QTT-NF and Ten-
soRF (Chen et al., 2022) to context-to-axes align-
ment. Scenes: top – “Lego”, bottom – “Hotdog”.
TensoRF exhibits a performance drop with all
ranks when rotating axis-aligned scenes. Pattern:
dot – 25%, dash – 50%, dashdot – 75%, solid –
100% of the rank. Higher is better.

The ablation study of TT-rank, number of training
steps, and SH basis in Fig. 5 shows that the results
can be further improved, as most hyperparameters
are not saturated. Additional studies of sampling
schemes and pretraining with TT-SVD of a full
voxel grid can be found in Sec. B of the Appendix.

The reconstruction quality of QTT-NF depends pri-
marily on the TT-rank and scene complexity. This
is contrary to TensoRF (Chen et al., 2022), which
employs triplanar decompositions (CP, VM), and
thus inevitably introduces a preference for axis-
aligned content.

To demonstrate that, we introduce rotation of the
scene around the Z-axis into the ground-truth
poses of two scenes: “Lego” and “Hotdog”. The
former scene contains many axis-aligned primi-
tives, which favorably utilize triplanar decompo-
sition rank. We ensured that no rotation angle
resulted in content out of voxel grid bounds. As
can be seen from Fig. 6 (top), rotations of the same
axis-aligned scene by 15, 30, and 45 degrees re-
sult in significant performance drops with triplanar
decomposition and all ranks, whereas the perfor-
mance of QTT-NF drops more gracefully. An
ordinary scene from Fig. 6 (bottom) demonstrates
the vanishing of this effect due to the absence of
axis alignment in any of the rotations.

The average performance of QTT-NF (with 2.16M parameters) is slightly higher than TensoRF (with
3.17M parameters). This attests to better parameter-efficiency of QTT-NF for scene representation.

6 CONCLUSION

We presented TT-NF, a novel low-rank representation for neural fields that can be learned directly
via backpropagation through samples and optimization. Our representation avoids instantiating the
full uncompressed tensor but instead learns it in a compressed form by optimizing a non-convex
objective defined by the target task. We applied TT-NF to a synthetic tensor denoising task, where we
outperformed standard SVD-based approaches and the real-world novel view synthesis problem. For
the latter, we proposed QTT-NF, a modification of TT-NF that handles hierarchical spaces, such as
3D voxel grids. Last but not least, we proposed efficient sampling algorithms for our neural fields and
showed that these algorithms increase efficiency both w.r.t. speed and memory, making (Q)TT-NF
friendly for applications such as rendering. We further direct interested readers to Sec. C of the
Appendix for extra discussion.

9



Preprint, under review

ACKNOWLEDGEMENT

This work is funded by Toyota Motor Europe via the research project TRACE-Zurich. We thank
NVIDIA, Amazon Activate, and the Euler cluster at ETH Zurich for GPUs, credits, and support.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

Rafael Ballester-Ripoll, Susanne K. Suter, and Renato Pajarola. Analysis of tensor approximation
for compression-domain volume visualization. Computers & Graphics, 47:34–47, 2015. ISSN
0097-8493.

Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. Tthresh: Tensor compression for
multidimensional visual data. IEEE transactions on visualization and computer graphics, 26(9):
2891–2903, 2019.

M. Balsa Rodrı́guez, E. Gobbetti, J.A. Iglesias Guitián, M. Makhinya, F. Marton, R. Pajarola, and
S.K. Suter. State-of-the-art in compressed gpu-based direct volume rendering. Computer Graphics
Forum, 33(6):77–100, 2014.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P. Srinivasan. Mip-NeRF: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley, James Demmel,
Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al. An updated set of basic linear
algebra subprograms (blas). ACM Transactions on Mathematical Software, 28(2):135–151, 2002.

Alexey I. Boyko, Mikhail Matrosov, I. Oseledets, Dzmitry Tsetserukou, and Gonzalo Ferrer. Tt-tsdf:
Memory-efficient tsdf with low-rank tensor train decomposition. 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 10116–10121, 2020.

Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc Van Gool. Pix2nerf: Unsupervised conditional
π-gan for single image to neural radiance fields translation. In arXiv, 2022.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields,
2022.

S. V. Dolgov, B. N. Khoromskij, and I. V. Oseledets. Fast solution of parabolic problems in the tensor
train/quantized tensor train format with initial application to the fokker–planck equation. SIAM
Journal on Scientific Computing, 34(6):A3016–A3038, 2012.

S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V. Savostyanov. Computation of extreme
eigenvalues in higher dimensions using block tensor train format. Computer Phys. Comm., 185(4):
1207–1216, 2014.

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry P. Vetrov. Ultimate tensoriza-
tion: compressing convolutional and FC layers alike. CoRR, abs/1611.03214, 2016.

Sergei A Goreinov and Eugene E Tyrtyshnikov. The maximal-volume concept in approximation by
low-rank matrices. Contemporary Mathematics, 280:47–52, 2001.

Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul Debevec. Baking
neural radiance fields for real-time view synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.

10



Preprint, under review

Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. On manifolds of tensors of fixed
tt-rank. Numerische Mathematik, 120(4):701–731, 2012.

Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo Yang, Ke Wang, Felix Baum, Max Wu,
Lirong Xu, and Luc Van Gool. Ai benchmark: All about deep learning on smartphones in 2019. In
2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3617–3635,
2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org,
2015.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In Proceedings of the British Machine Vision Conference. BMVA Press,
2014.

Menelaos Kanakis, David Bruggemann, Suman Saha, Stamatios Georgoulis, Anton Obukhov, and
Luc Van Gool. Reparameterizing convolutions for incremental multi-task learning without task
interference. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.),
Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XX, volume 12365 of Lecture Notes in Computer Science, pp. 689–707. Springer,
2020.

Vladimir Kazeev, Ivan Oseledets, Maxim Rakhuba, and Christoph Schwab. Qtt-finite-element approx-
imation for multiscale problems i: model problems in one dimension. Advances in Computational
Mathematics, 43, 04 2017.

Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. Cutlass: Fast linear algebra in cuda
c++, 12 2017.

B. Khoromskij. O(d log(n))-quantics approximation of n-d tensors in high-dimensional numerical
modeling. Constructive Approximation - CONSTR APPROX, 34, 01 2009.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):
455–500, 09 2009.

Jean Kossaifi, Adrian Bulat, Georgios Tzimiropoulos, and Maja Pantic. T-net: Parametrizing fully
convolutional nets with a single high-order tensor. In CVPR, pp. 7822–7831, 2019a.

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor learning in
python. Journal of Machine Learning Research, 20(26):1–6, 2019b.

Vadim Lebedev, Yaroslav Ganin, Maxim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding
up convolutional neural networks using fine-tuned CP-decomposition, 2014.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551,
1989.

Donghyun Lee, Dingheng Wang, Yukuan Yang, Lei Deng, Guangshe Zhao, and Guoqi Li. Qttnet:
Quantized tensor train neural networks for 3d object and video recognition. Neural Networks, 141:
420–432, 2021. ISSN 0893-6080.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for convolutional
neural network compression. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 10 2019.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

11



Preprint, under review

Guy M Morton. A computer oriented geodetic data base and a new technique in file sequencing.
Ottawa, Canada, 1966.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. arXiv:2201.05989, January 2022.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, pp. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Alexander Novikov, Anton Rodomanov, Anton Osokin, and Dmitry Vetrov. Putting mrfs on a tensor
train. In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp. 811–819,
Bejing, China, 06 2014. PMLR.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Alexander Novikov, Pavel Izmailov, Valentin Khrulkov, Michael Figurnov, and Ivan Oseledets. Tensor
train decomposition on tensorflow (t3f). Journal of Machine Learning Research, 21(30):1–7, 2020.

Anton Obukhov, Maxim Rakhuba, Stamatios Georgoulis, Menelaos Kanakis, Dengxin Dai, and Luc
Van Gool. T-basis: a compact representation for neural networks. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 7392–7404. PMLR, 07 2020.

Anton Obukhov, Maxim Rakhuba, Alexander Liniger, Zhiwu Huang, Stamatios Georgoulis, Dengxin
Dai, and Luc Van Gool. Spectral tensor train parameterization of deep learning layers. In
Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research,
pp. 3547–3555. PMLR, 04 2021.

I. V. Oseledets. Approximation of matrices with logarithmic number of parameters. Doklady
Mathematics, 80(2):653–654, October 2009. ISSN 1531-8362.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

Ivan V. Oseledets and Eugene E. Tyrtyshnikov. Tt-cross approximation for multidimensional arrays.
Linear Algebra and its Applications, 432(1):70–88, 2010. ISSN 0024-3795.

Ivan V. Oseledets and Eugene E. Tyrtyshnikov. Algebraic wavelet transform via quantics tensor train
decomposition. SIAM Journal on Scientific Computing, 33(3):1315–1328, 2011.

Yannis Panagakis, Jean Kossaifi, Grigorios G. Chrysos, James Oldfield, Mihalis A. Nicolaou, Anima
Anandkumar, and Stefanos Zafeiriou. Tensor methods in computer vision and deep learning.
Proceedings of the IEEE, 109(5):863–890, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

J.-R. Poirier, O. Coulaud, and O. Kaya. Fast bem solution for 2-d scattering problems using quantized
tensor-train format. IEEE Transactions on Magnetics, 56(3):1–4, 2020.

Alex Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like notation. In
International Conference on Learning Representations, 2022.

12



Preprint, under review

Yang Shi, U. N. Niranjan, Animashree Anandkumar, and Cris Cecka. Tensor contractions with
extended blas kernels on cpu and gpu. In 2016 IEEE 23rd International Conference on High
Performance Computing (HiPC), pp. 193–202, 2016.

Daniel G. Smith and Johnnie Gray. opt einsum - a python package for optimizing contraction order
for einsum-like expressions. Journal of Open Source Software, 3(26):753, 2018.

Micheline B. Soley, Paul Bergold, and Victor S. Batista. Iterative power algorithm for global
optimization with quantics tensor trains. Journal of Chemical Theory and Computation, 17(6):
3280–3291, 2021. PMID: 33956426.

Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit neural
representations for image compression, 2021.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In CVPR, 2022.

Mikhail Usvyatsov, Anastasia Makarova, Rafael Ballester-Ripoll, Maxim Rakhuba, Andreas Krause,
and Konrad Schindler. Cherry-picking gradients: Learning low-rank embeddings of visual data via
differentiable cross-approximation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 11426–11435, 10 2021.

Mikhail Usvyatsov, Rafael Ballester-Ripoll, and Konrad Schindler. tntorch: Tensor network learning
with PyTorch. Journal of Machine Learning Research, 23, 2022.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compression:
Tensor ring nets. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual computing
and beyond. Computer Graphics Forum, 2022. ISSN 1467-8659.

Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. NeRS: Neural reflectance
surfaces for sparse-view 3D reconstruction in the wild. In Advances in Neural Information
Processing Systems, 2021a.

Jingyang Zhang, Yao Yao, and Long Quan. Learning signed distance field for multi-view surface
reconstruction. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021b.

Yuchen Zhou, Anru R. Zhang, Lili Zheng, and Yazhen Wang. Optimal high-order tensor svd via
tensor-train orthogonal iteration. IEEE Transactions on Information Theory, pp. 1–1, 2022.

13



Preprint, under review

A METHOD

A.1 RANKS AND PARAMETERIZATIONS

TT-rank Selection We clarify the procedure of choosing a TT-rank, mentioned in Sec. 4.1. To
parameterize TT-NF, we need to know the dimensions (modes) of the tensor Mi, i = 1, D, the
payload dimension RD, and a scalar hyperparameter r, defining the degree of compression. A
TT-rank resulting from a TT-SVD (Oseledets, 2011) algorithm is bounded as in Holtz et al. (2012,
Eq. 20), with the only difference in added RD term to account for the discussed block structure:

1 ≤ Rk ≤ Rmax
k ≡ min

(
k∏
i=1

Mi, RD

D∏
i=k+1

Mi

)
, k = 1, D91. (3)

This means that the maximal TT-rank forms a “pyramid” of integers, where each position i is assigned
a minimum of products of modes to the left and right of i. We denote Rmax as the maximum value
of TT-rank and imax as the position of the maximum value (the “peak”). As shown in Fig. 3, 7, and
8, Rmax can go as high as 1024 in 220 and 32768 in 230 sizes. To achieve compression with our
parameterizations, we clamp the “pyramid” at a chosen value of rank r ∈ [1, Rmax], thus making the
TT-rank “trapezoid”. This range corresponds to the X-axes of the aforementioned figures.

Full TT-NF Parameterization Full parameterization assumes the allocation of learned parameters
to each element of TT-cores C(i), i = 1, D. Such parameterization is compatible with v1, v2 sampling
schemes, as well as tensor contraction and subsampling.

Reduced TT-NF Parameterization A TT manifold of a fixed TT-rank has a certain number of
Degrees of Freedom (DOF) (Holtz et al., 2012), which is smaller than the number of learned
parameters of TT-NF with v2 sampling. Practical mappings from DoF to learned parameters exist
but require complex transformations (Obukhov et al., 2021). The latter work provides insights into
a simpler form of reduced parameterization, which becomes possible once the rank becomes large
enough that some TT-cores have square “matricizations”, meaning that either Ri−1Mi = Ri or
Ri−1 =MiRi. Such cores can effectively be replaced with fixed identity matrices (reshaped into the
original core shapes), leading to parameter count reduction. Additionally, knowledge of such reduced
parameterization suggests a modification to the v2 sampling algorithm, aliased v3.

Given r, we denote 1 ≤ p ≤ q ≤ D indices of the first and last clamped values in TT-rank. It is easy
to verify that TT-cores C(i) to the left of p and to the right of q should have square matricizations.
Indeed, a TT-core at position i < p has a shape Ri−1 × Mi × Ri = Rmax

i−1 × Mi × Rmax
i =(∏i−1

j=1Mj

)
×Mi ×

(∏i
j=1Mj

)
, thus its left matricization (merging the first two dimensions,

denoted leftmat) is square.

As shown in Obukhov et al. (2021), such cores can effectively be replaced with fixed identity matrices
(reshaped into the original core shapes) without any loss of representation power of such TT-NF. The
sparsity of identity matrices suggests the possibility of skipping steps of the v2 sampling algorithm
and changing several matrix multiplication operations (Linear layers) to a single indexing operation.

Considering the left side of such a TT-NF again, if C(1)1,:,: = IR1
, then on the first step of Alg. 3 v = ei1 ,

where ej denotes an ort with 1 in j-th position. By induction, if v = eileft and leftmat(C(k)) = IRk
,

then C(k):,ik,:
v = eileftMk+ik . Such index propagation rule allows us to skip BIMVP computation for

all such cores and index v directly along the first rank mode of the first parameterized TT-core at
position p. The index propagation rule for the right side of TT-NF can be derived similarly. The full
algorithm for v3 sampling can be found in Alg. 4.

Notably, in the extreme case of decomposition rank r = Rmax, only a single TT-core contains
learned parameters, effectively of an uncompressed tensor. In this case, sampling with v3 becomes
the indexing operation along all three modes of the TT-core, leading to zero FLOPs. This corner
case explains the drop of FLOPs line around the far end of the rank axis. The remaining saw-like
drops occur when r increases above intermediate values, making one or two more TT-cores become
reshaped identity matrices. While the absolute gain in FLOPs is not substantial when rank r is not

14



Preprint, under review

Algorithm 3 Recap of v2 sampling explained in
Sec. 4.2 (for comparison with v3 on the right).

Require:
D - number of tensor dimensions,
B - number of samples,
(1, R1, ..., RD) - TT-rank,
(M1, ...,MD) - TT-modes,
(C(1), ... , C(D)) - TT-cores representing A,((
i
(1)
1 ...i

(1)
D

)
, ... ,

(
i
(B)
1 ...i

(B)
D

))
- indices.

Ensure:
v =

(
A
i
(1)
1 ,...,i

(1)
D

, ...,A
i
(B)
1 ,...,i

(B)
D

)
- samples

without computing the whole A.
1: π ← (1, ..., B) . forward permutation
2: σ ← (1, ..., B) . inverse permutation
3: v ← C(1)1,i1,:

.B ×R1

4: for k ← 2 to D do
5: ik ← π(ik) . align mode indices
6: v, πk ← BIMVP(C(k), ik, v) .B ×Rk
7: σk ← π−1k . invert kth permutation
8: π ← πk(π) . update forward perm.
9: σ ← σ(σk) . update inverse perm.

10: end for
11: v ← σ(v) . recover samples order
12: return v .B ×RD

Intentionally left blank

Algorithm 4 Memory-efficient Sampling from a
Reduced Parameterization of TT-NF (v3). Auto-
differentiation paths are highlighted in blue. Re-
fer to Sec. A.1 for more details.
Require:
D - number of tensor dimensions,
B - number of samples,
1 ≤ p ≤ q ≤ D - parameterized cores range,
(1, R1, ..., RD) - TT-rank,
(M1, ...,MD) - TT-modes,
(C(p), ... , C(q)) - TT-cores representing A,((
i
(1)
1 ...i

(1)
D

)
, ... ,

(
i
(B)
1 ...i

(B)
D

))
- indices.

Ensure:
v =

(
A
i
(1)
1 ,...,i

(1)
D

, ...,A
i
(B)
1 ,...,i

(B)
D

)
- samples

without computing the whole A.
1: ileft ← (0, ..., 0) .B left indices
2: iright ← (0, ..., 0) .B right indices
3: for k ← 1 to p− 1 do
4: .Propagate left indices
5: ileft ← ileft ∗Mk + (ik − 1)
6: end for
7: for k ← q + 1 to D do
8: .Propagate right indices
9: iright ← iright + (ik − 1) ∗Rk

10: end for
11: ileft ← ileft + 1 .make start from 1
12: iright ← iright + 1 .make start from 1
13: if p = q then
14: .Directly index v in C(p)

15: v ← C(p)ileft,ip,iright:iright+RD

16: else
17: π ← (1, ..., B) . forward permutation
18: σ ← (1, ..., B) . inverse permutation
19: v ← C(p)ileft,ip,:

.B ×Rp
20: for k ← p+ 1 to q do
21: ik ← π(ik) . align mode indices
22: v, πk ← BIMVP(C(k), ik, v) .B ×Rk
23: σk ← π−1k . invert kth permutation
24: π ← πk(π) . update forward perm.
25: σ ← σ(σk) . update inverse perm.
26: end for
27: v ← σ(v) . recover order, B ×Rq
28: v ← v:,iright:iright+RD

.B ×RD
29: end if
30: return v .B ×RD

large, we observe a noticeable speed-up of 294× with v3, compared to training with v2, due to fewer
sequential invocations of Linear layer functions.

The reduced parameterization is compatible with v1, v2, v3 sampling schemes, as well as tensor
contraction and subsampling.

Conversion from Full to Reduced Parameterization Given a Full parameterization, conversion
to a Reduced one can be performed in a single pass over TT-cores. Indeed, starting from the first

15



Preprint, under review

10k

100k

1M

10M

100M

1B

10B

1000

10k

100k

1M

10M

100M

1B

100
1000
10k

100k
1M

10M
100M

1B
10B

5
10k
2
5

100k
2
5

1M
2
5

10M
2
5

100M
2
5

1B
2
5

10k

100k

1M

10M

100M

1B

1000

10k

100k

1M

10M

100M

1B

10B

5
100k

2
5

1M
2
5

10M
2
5

100M
2
5

1B
2
5

2
5

100k
2
5

1M
2
5

10M
2
5

100M
2
5

1B
2
5

1000

10k

100k

1M

10M

100M

1B

10B

100k
2
5

1M
2
5

10M
2
5

100M
2
5

1B
2
5

10B
2

5
100k

2
5

1M
2
5

10M
2
5

100M
2
5

1B
2
5

10B

10k

100k

1M

10M

100M

1B

5
1M
2
5

10M
2
5

100M
2
5

1B
2
5

10B
2
5

2
5

1M
2
5

10M
2
5

100M
2
5

1B
2
5

10B
2

10k
2
5

100k
2
5

1M
2
5

10M
2
5

100M
2
5

1B
2
5

10B

200 400 600 800 1000

2
5

10M
2
5

100M
2
5

1B
2
5

10B
2
5

100B
2

200 400 600 800 1000
1M
2
5

10M
2
5

100M
2
5

1B
2
5

10B
2
5

100B

200 400 600 800 1000
5

100k
2
5

1M
2
5

10M
2
5

100M
2
5

1B
2
5

10B
2
5

GPU RAM
Contraction
Sampling v1
Sampling v2
Sampling v3

rank rank rank

Computations (FLOPs) Training memory (floats) Inference memory (floats)

B
atch size: 64

B
atch size: 256

B
atch size: 1024

B
atch size: 4096

B
atch size: 16384

B
atch size: 65536

Figure 7: Space-time complexity of sampling from TT-NF of size 220 with various methods, batch
sizes, and ranks. We compare three sampling schemes discussed in Sec. 4, A.1, as well as the
traditional tensor contraction scheme. As seen from the plots, the optimal choice of sampling scheme
depends on the rank, problem, and batch sizes. Lower is better. Best viewed in color.

TT-core and repeating until reaching position p, we can compute the left matricization of the current
TT-core and absorb (through matrix multiplication) this square matrix into the right-hand-side TT-

16



Preprint, under review

10k

1M

100M

10B

1T

100T

1000
10k

100k
1M

10M
100M

1B
10B

100B

100

10k

1M

100M

10B

10k

1M

100M

10B

1T

100T

10k
100k

1M
10M

100M
1B

10B
100B

100

10k

1M

100M

10B

1M

100M

10B

1T

100T

100k
1M

10M
100M

1B
10B

100B
1T

10k

1M

100M

10B

1T

1M

100M

10B

1T

100T

100k
1M

10M
100M

1B
10B

100B
1T

10T

10k

1M

100M

10B

1T

1M
10M

100M
1B

10B
100B

1T
10T

100T

1M
10M

100M
1B

10B
100B

1T
10T

10k

1M

100M

10B

1T

0 5k 10k 15k 20k 25k 30k

10M
100M

1B
10B

100B
1T

10T
100T

0 5k 10k 15k 20k 25k 30k
1M

10M
100M

1B
10B

100B
1T

10T
100T

0 5k 10k 15k 20k 25k 30k

1M

100M

10B

1T

100T

GPU RAM
Contraction
Sampling v1
Sampling v2
Sampling v3

rank rank rank

Computations (FLOPs) Training memory (floats) Inference memory (floats)

B
atch size: 64

B
atch size: 256

B
atch size: 1024

B
atch size: 4096

B
atch size: 16384

B
atch size: 65536

Figure 8: Space-time complexity of sampling from TT-NF of size 230 with various methods, batch
sizes, and ranks. We compare three sampling schemes discussed in Sec. 4, A.1, as well as the
traditional tensor contraction scheme. As seen from the plots, the optimal choice of sampling scheme
depends on the rank, problem, and batch sizes. Lower is better. Best viewed in color.

core. The current core is then replaced with an identity matrix and reshaped into the original shape

17



Preprint, under review

of the core. A similar process starting from the last TT-core until reaching position q completes the
conversion.

A.2 NEURAL RENDERING

The core of neural rendering is comprised of two main components: (1) a neural field and (2)
differentiable ray marching.

Neural Field In the paper by Mildenhall et al. (2020), the neural field is represented with a neural
network mapping fθ : (x, d)→ (c, σ), where x is a position in some scene-centric frame of reference,
d is a viewing direction pointing at a camera, c is a view-dependent color (e.g., 8-bit RGB channels),
and σ is a view-independent volume density at x.

Other works (Yu et al., 2022) popularized the usage of spherical harmonics to represent view-
dependent color variations. Effectively, the viewing direction d is removed from the parameterization;
instead, color descriptors of sufficient size are regressed at each location along with density σ.
Such color descriptors can be coefficients in a pre-defined spherical harmonics basis, effectively
parameterizing color as a function on a sphere. Alternatively, the transformation of the learned
descriptor and viewing direction can be learned with a dedicated “shading” MLP, as done in Chen
et al. (2022). Empirically, degree two harmonics appear sufficient to represent view-dependent
color variations with high fidelity, which translates into a per-voxel payload size of 28: one value to
represent density and three groups of nine coefficients per channel.

Ray Marching Image formation with radiance fields is usually accomplished through a differen-
tiable ray marching procedure, which is a simplistic version of ray-tracing. Given camera calibration,
a ray is cast through each pixel of the output image to accumulate color at intersections with the
neural field. Samples from the neural field are taken along each ray guided by prior knowledge of
how the ray passes through the field and where the scene roughly is. In NeRF (Mildenhall et al.,
2020), 64 samples are sampled uniformly to probe the field between hardcoded near and far planes,
and then 128 more samples are obtained to increase sampling density at places with content. Voxel
grid neural fields (Yu et al., 2022) alter the sampling procedure: rays are filtered based on whether
they intersect with the voxel grid, and points inside the grid are sampled uniformly between near
and far intersection points. A floating-point coordinate sampling of voxel grids is resolved through
trilinear interpolation of payload vectors. We follow the same procedure in our experiments with
QTT-NF.

Samples (ci, σi) at positions ri of a ray r are accumulated using the following equations:

C(r) =

N∑
i=1

Ti (1− exp(−σiδi)) ci, where Ti = exp

− i−1∑
j=1

σjδj

 .

Here δi = ‖ri− ri−1‖2, Ti represents optical transmittance of the ray at position ri, and the last term
denotes contribution of the position to the accumulated color.

B EXPERIMENTS

B.1 EFFECT OF REDUCED PARAMETERIZATION

We compare our reduced (v3) parameterization with the full one (v2) in the default QTT-NF setting
with spherical harmonics and report results in Tab. 3 (top). As can be seen, the average PSNR does not
change much depending on parameterization. This is contrary to the tensor denoising case described
in Sec. 5.1, which we can attribute to a different (longer) training regime.

B.2 INITIALIZATION OF QTT-NF USING TT-SVD

This set of experiments demonstrates the positive effect of QTT-NF initialization from an uncom-
pressed voxel grid. We start by training such uncompressed representations with the same grid
configuration (2563 × 28 parameters). The training protocol is the same as for QTT-NF training,

18



Preprint, under review

Table 3: Top: per-scene comparison of QTT-NF trained with v2 and v3 from random initialization
(Sec. B.1); Bottom: experiments with training uncompressed voxel grid and using it as initialization
for QTT-NF through TT-SVD (Sec. B.2); Unlike the tensor denoising setting, in neural rendering,
both v2 and v3 parameterizations produce almost identical results. Initialization from uncompressed
volume improves performance.

Metric Method
(flavor)

Chair Drums Ficus Hotdog Lego Materials Mic Ship

Avg.

PSNR ↑

QTT-NF (v2) 31.88 24.95 30.72 35.30 32.17 28.23 31.58 27.84 30.33
QTT-NF (v3) 32.09 24.96 30.89 35.49 32.48 28.22 31.50 27.55 30.40

Uncompressed 32.54 25.10 31.30 33.53 31.91 27.63 32.38 22.76 29.64
QTT-NF (init unc.) 32.26 25.09 30.93 35.53 32.76 28.58 32.18 27.93 30.66

SSIM ↑

QTT-NF (v2) 0.953 0.918 0.967 0.970 0.956 0.929 0.971 0.843 0.938
QTT-NF (v3) 0.955 0.918 0.967 0.971 0.957 0.929 0.971 0.840 0.939

Uncompressed 0.967 0.925 0.970 0.960 0.959 0.926 0.979 0.785 0.934
QTT-NF (init unc.) 0.958 0.921 0.968 0.972 0.961 0.934 0.976 0.845 0.942

LPIPS ↓

QTT-NF (v2) 0.065 0.098 0.040 0.063 0.067 0.093 0.041 0.209 0.085
QTT-NF (v3) 0.062 0.095 0.039 0.060 0.066 0.093 0.039 0.203 0.082

Uncompressed 0.042 0.077 0.038 0.071 0.047 0.088 0.025 0.223 0.076
QTT-NF (init unc.) 0.059 0.093 0.037 0.058 0.058 0.087 0.031 0.202 0.078

except for the usage of larger yet different learning rates for the parameters of spherical harmonics
(1e91) and density (1e1). The results can be seen in Tab. 3 (Uncompressed); many scenes receive
lower scores than training compressed representations from random initialization due to the lack
of L1 or TV regularization. Further, we apply dimensions factorization of the uncompressed voxel
grid to match the decomposition scheme from Fig. 2 and perform TT-SVD with rounding to the
TT-rank matching our QTT-NF. The resulting decomposition is loaded into QTT-NF instead of ran-
dom initialization per Eq. 2, and the same training protocol (only with a lower learning rate of 1e93)
is executed. The results of such fine-tuning are presented in Tab. 3 (QTT-NF init unc.). Evidently,
TT-SVD provides a good initialization for QTT-NF, best in L2 distance between the approximation
and the uncompressed volume, yet suboptimal in terms of the downstream task performance. This
suboptimality is corrected through fine-tuning, and the resulting performance exceeds that of training
from random initialization.

C DISCUSSION

QTT – Quantized or Quantics? The concept of representing data as low-rank tensor decomposi-
tions with the logarithmic number of modes and particular mode grouping pattern was first discussed
in Oseledets (2009); Khoromskij (2009), the latter work coining the term “Quantics Tensor Train”,
used up until present days, e.g., Oseledets & Tyrtyshnikov (2011); Soley et al. (2021). Several
other works (Dolgov et al., 2012; Kazeev et al., 2017; Poirier et al., 2020) call the same concept
“Quantized Tensor Train”, thus making these terms interchangeable. The term means factorizing
(or quantizing) space into repeating small factors (“quants”). The term “quantization” in machine
learning often refers to the reduction of the dynamic range of values of learned parameters in a
parametric model. This exact terminology clash seen in QTTNet (Lee et al., 2021) suggests that the
usage of the “Quantics” variant might lead to less ambiguity in the considered context.

Supported Parallelism All discussed sampling schemes support data parallelism: TT-NF param-
eters can be replicated across multiple computing devices, and a batch of samples is split among
them. This is contrary to tensor contraction, where the main constraint is to be able to fit the entire
uncompressed tensor into memory. On the other hand, optimized contraction schemes (Smith &
Gray, 2018; Rogozhnikov, 2022) followed by subsampling are expected to outperform all sampling
schemes starting with some sufficiently large batch size.

Low-level Optimizations The proposed sampling schemes (Alg. 1,4) are designed to perform well
at training time in all off-the-shelf deep learning frameworks with automatic differentiation support
while keeping memory pressure low. Permutations enable the use of the standard Linear layer, which

19



Preprint, under review

is one of the first functions undergoing heavy optimization on any new-generation computational
device, along with memory operations such as permutations themselves, BLAS (Blackford et al.,
2002), convolutions (LeCun et al., 1989), normalization layers (Ioffe & Szegedy, 2015), and activation
functions (Nair & Hinton, 2010). It is possible, however, to get rid of permutations through a custom
implementation of the BIMVP function (Alg. 2), thus obtaining 2× reduction in space requirements.
Shi et al. (2016) propose a StridedBatchedGemm BLAS primitive, which would need to accept a
batch of offsets instead of scalar strides. CUTLASS (Kerr et al., 2017) provides more promising
building blocks for implementing both forward and backward passes. Deploying TT-NF sampling for
inference in production and edge devices can be feasible, provided the presence of AI accelerators
optimized for neural network inference. An overview of the current state of mobile computing is
given in Ignatov et al. (2019).

Limitations In short training protocols such as experiments with tensor denoising (Sec. 5.1), v3
sampling consistently does not reach the performance of v2, despite effectively learning the same
representation. We hypothesize that this effect may have an explanation in the deep linear networks
literature. This effect is not pronounced in the NeRF setting with its longer training protocol, as seen
in Tab. 3. The reduced complexity of v3 can nevertheless help with saving computational resources
during inference sampling via conversion from v2, as explained in the last paragraph of Sec. A.1.

Future Research Directions The underlying Tensor Train representation of TT-NF permits many
interesting usage scenarios yet to be explored. For example, the TT-format can be used to quickly
compute marginals over selected modes {Mi}, which could be used to compute level-of-detail (LOD)
samples with QTT-NF. Representation capacity can be controlled dynamically through rank rounding
(with TT-SVD) or expansion (by padding TT-cores). TT-NF may be found useful in a streaming
setting, where the neural field is continuously updated.

20


	1 Introduction
	2 Related Work
	3 Notation
	4 Method
	4.1 Initialization of TT-NF
	4.2 Sampling from TT-NF

	5 Experiments
	5.1 Tensor Denoising
	5.2 Neural Radiance Fields
	5.2.1 Ablation Study


	6 Conclusion
	A Method
	A.1 Ranks and Parameterizations
	A.2 Neural Rendering

	B Experiments
	B.1 Effect of Reduced Parameterization
	B.2 Initialization of QTT-NF using TT-SVD

	C Discussion

