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A. Proof of Theorem 1

Proof. For brevity in the proof, we drop the class super-
script (¢) which is used in the statement of the theorem.

Firstly, we draw an association between pixel sets related
to the standard IoU = UloU(1/C) and their counterparts
for UloU defined in equations (7)—(11) of the main paper.
In particular, the following holds true:

ITP(1/C)| + [FN(1/C)|
= |TP(6)| + [EN(6)| + [TI(8)| + |FI(0)], V0 € [1/C, 1].
(13)

The first assumption of Th. 1 implies that FI(6;) = 0, be-
cause VO < 6 (including 67) there exists no false invalid
pixel for the examined class. Thus, applying (13) for 8 = 6,
leads to

[TP(1/C)| = |TP(61)| + TL(61)| + [FN(61)[ — [FN(1/C)].

(14)

Secondly, we plug the proposition of the first assumption

of the theorem into the proposition of the second assump-
tion to obtain

(EN(1/C) UFP(1/C)) \ (FN(61) UFP(61)) # 0. (15)

We further elaborate on (15) by observing that FN(1/C) N
FP(1/C) = 0, FN(#;) C FEN(1/C) and FP(6;) C
FP(1/C) to arrive at

(IEN(1/C)| — [EN(8,)]) + ([EP(1/C)| — [FP(8,)]) > 0.
(16)

Both terms on the left-hand side of (16) are nonnegative
based on our previous observations, while at the same time
(16) implies that at least one of the two is strictly positive.
To complete the proof, we distinguish between the two cor-
responding cases.

In the first case, the first term in (16) is strictly positive,
so (14) implies

ITP(1/C)| < |TP(61)| + |TL(61)]. a7

We establish the inequality we are after by writing

IoU =
B ITP(1/C)|
[TP(1/C)| + [EN(1/C)| + [FP(1/C)|
_ [TP(1/C)|
[TP(61)] + [FN(61)] + |TI(61)] + [FI(61)| + [FP(1/C)|
) [TP(1L/C)|
~ [TP(61)| + [TI(61)] + [FP(61)[ + [FN(61)| + [FI(61)]
_ [TP(9,)] + [TI(6,)
[TP(61)| + [TI(61)] + [FP(61)[ + [FN(61)| + [F1(61)]
= UloU(#y), (18)

where we have used the definition of IoU in the second line,
(13) in the third line, FP(6;) C FP(1/C) in the fourth line,
(17) in the fifth line, and the definition of UloU that has
been introduced in equation (12) of the main paper in the
last line.

In the second case, the second term in (16) is strictly
positive, which implies that

[EP(1/C)[ > [FP(61)]. (19)

Besides, applying the nonnegativity of the first term in (16)
to (14) leads to

ITP(1/C)| < |TP(61)| + |TI(6;)]. (20)

Similarly to the first case, we establish the inequality we are



Figure 5. Examples of our annotations and qualitative semantic segmentation results on Dark Zurich-test. From top to bottom row:
nighttime image, invalid mask annotation overlaid on the image (valid pixels are colored green), semantic annotation, AdaptSegNet [31],

DMAda [8], and GCMA (ours).

after by writing
IoU =
_ [TP(1/C)|
[TP(61)| + [TI(01)[ + [FP(1/C)| + [FN(61)] + [FI(61))
[TP(1/C)]

= TTP(G1)] + [TI(61)] + [FP(61)] + [EN(01)] + [FI(6y)]

§ ITP(8,)] + [T1(61)]

= TTP(@:)] + [TI(61)| + [FP(01)] + [FN(G1)] + [FI(6)]
= UloU(6,), 1)

where we have used the definition of IoU as well as (13) in
the second line, (19) in the third line, (20) in the fourth line,
and the definition of UloU in the last line. O

B. Additional Qualitative Results

In Fig. 5, we compare our GCMA approach against
AdaptSegNet [31] and DMAda [8] on additional images

from Dark Zurich-test, further demonstrating the superior-
ity of GCMA. For these images, we also present our anno-
tations for invalid masks and semantic labels, which show
that a significant portion of ground-truth invalid regions is
indeed assigned a reliable semantic label through our anno-
tation protocol and can thus be included in the evaluation.

C. Configuration of Training Sets for GCMA

In Fig. 6, we show examples from the six training sets
we introduced in Sec. 3.1, which are used for implementing
GCMA. Cityscapes is used to instantiate the labeled sets,
while Dark Zurich is used for the unlabeled sets.

More examples of Cityscapes images stylized to night-
time using a CycleGAN model [45] that is trained to trans-
late Cityscapes to Dark Zurich-night are presented in Fig. 7.

D. Parameter Selection for Prediction Fusion

For our confidence-adaptive prediction fusion, we
demonstrate the benefit of selecting oy < «j, < 1—the ra-



(e) D?S: Cityscapes-nighttime style  (f) D2,.: Dark Zurich-night
Figure 6. Sample images from the training sets used in GCMA.

tionale of which is exposed in Sec. 3.2.2—through a visual
example in Fig. 8.



Figure 7. Top row: Examples of images from Cityscapes (Dj,. in GCMA), bottom row: corresponding images from Cityscapes-nighttime
style (D7, in GCMA).

(a) Dark image [* b)a=ap=1 ©a; =ap =0.6 (d)oy =0.3,p, =06, =0.2
Figure 8. Dark image I from Dark Zurich and our refined predictions S* for the region indicated by the red box for different values of
the parameters involved in the proposed confidence-adaptive prediction fusion. When «; = a4, reducing «, to a value lower than 1,
e.g. (b)—(c), reduces false positives and/or false negatives both for static and dynamic classes, e.g. pole, sidewalk, road and car. When
ap < 1, reducing oy to a value lower than o, e.g. (c)—(d), improves accuracy on pixels that are assigned to a dynamic class in either
prediction, e.g. car, because of the formulation of equation (6) of the main paper. Best viewed with zoom.



