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Abstract

Most progress in semantic segmentation reports on day-
time images taken under favorable illumination conditions.
We instead address the problem of semantic segmentation
of nighttime images and improve the state-of-the-art, by
adapting daytime models to nighttime without using night-
time annotations. Moreover, we design a new evaluation
framework to address the substantial uncertainty of seman-
tics in nighttime images. Our central contributions are: 1) a
curriculum framework to gradually adapt semantic segmen-
tation models from day to night via labeled synthetic images
and unlabeled real images, both for progressively darker
times of day, which exploits cross-time-of-day correspon-
dences for the real images to guide the inference of their
labels; 2) a novel uncertainty-aware annotation and evalu-
ation framework and metric for semantic segmentation, de-
signed for adverse conditions and including image regions
beyond human recognition capability in the evaluation in a
principled fashion; 3) the Dark Zurich dataset, which com-
prises 2416 unlabeled nighttime and 2920 unlabeled twi-
light images with correspondences to their daytime coun-
terparts plus a set of 151 nighttime images with fine pixel-
level annotations created with our protocol, which serves as
a first benchmark to perform our novel evaluation. Exper-
iments show that our guided curriculum adaptation signifi-
cantly outperforms state-of-the-art methods on real night-
time sets both for standard metrics and our uncertainty-
aware metric. Furthermore, our uncertainty-aware eval-
uation reveals that selective invalidation of predictions can
lead to better results on data with ambiguous content such
as our nighttime benchmark and profit safety-oriented ap-
plications which involve invalid inputs.

1. Introduction

The state of the art in semantic segmentation is rapidly
improving in recent years. Despite the advance, most meth-

ods are designed to operate at daytime, under favorable illu-
mination conditions. However, many outdoor applications
require robust vision systems that perform well at all times
of day, under challenging lighting conditions, and in bad
weather [22]. Currently, the popular approach to solving
perceptual tasks such as semantic segmentation is to train
deep neural networks [20, 38, 44] using large-scale human
annotations [0,9,23]. This supervised scheme has achieved
great success for daytime images, but it scales badly to ad-
verse conditions. In this work, we focus on semantic seg-
mentation at nighttime, both at the method level and the
evaluation level.

At the method level, this work adapts semantic seg-
mentation models from daytime to nighttime, without an-
notations in the latter domain. To this aim, we propose
a new method called Guided Curriculum Model Adap-
tation (GCMA). The underpinnings of GCMA are three-
fold: power of time, power of place, and power of data.
Time: environmental illumination changes continuously
from daytime to nighttime. This enables adding interme-
diate domains between the two to smoothly transfer seman-
tic knowledge. This idea is found to be effective in [8, 26];
we extend it by adding two more modules. Place: images
taken over different time but with the same 6D camera pose
share a large portion of content. The shared content can
be used to guide the knowledge transfer process from a fa-
vorable condition (daytime) to an adverse condition (night-
time). We formalize this observation and propose a solu-
tion for large-scale application. Data: GCMA takes advan-
tage of the powerful image translation techniques to stylize
large-scale real annotated daytime datasets to darker target
domains in order to perform standard supervised learning.

The adversity of nighttime poses further challenges for
perceptual tasks compared to daytime. The extracted fea-
tures become corrupted due to visual hazards [41] such as
underexposure, noise, and motion blur. The degradation of
affected input regions is often so intense that they are ren-
dered indiscernible, i.e. determining their semantic content
is impossible even for humans. We term such regions as



invalid for the task of semantic segmentation. A robust
model should predict with high uncertainty on invalid re-
gions while still being confident on valid (discernible) re-
gions, and a sound evaluation framework should reward
such behavior. The above requirement is particularly sig-
nificant for safety-oriented applications such as autonomous
cars, since having the vision system declare a prediction as
invalid can help the downstream driving system avoid the
fatal consequences of this prediction being false, e.g. when
a pedestrian is missed.

To this end, we design a generic uncertainty-aware anno-
tation and evaluation framework for semantic segmentation
in adverse conditions which explicitly distinguishes invalid
from valid regions of input images, and apply it to night-
time. On the annotation side, our novel protocol leverages
privileged information in the form of daytime counterparts
of the annotated nighttime scenes, which reveal a large por-
tion of the content of invalid regions. This allows to reli-
ably label invalid regions and to indeed include invalid re-
gions in the evaluation, contrary to existing semantic seg-
mentation benchmarks [6] which completely exclude them
from evaluation. Moreover, apart from the standard class-
level semantic annotation, each image is annotated with a
mask which designates its invalid regions. On the evalua-
tion side, we allow the invalid label in predictions and adopt
from [40] the principle that for invalid pixels with legiti-
mate semantic labels, both these labels and the invalid label
are considered correct predictions. However, this principle
does not cover the case of valid regions. We address this
by introducing the concept of false invalid predictions. This
enables calculation of uncertainty-aware intersection-over-
union (UloU), a joint performance metric for valid and in-
valid regions which generalizes standard IoU, reducing to
the latter when no invalid prediction exists. UloU rewards
predictions with confidence that is consistent to human an-
notators, i.e. with higher confidence on valid regions than
invalid ones, meeting the aforementioned requirement.

Finally, we present Dark Zurich, a dataset of real im-
ages which contains corresponding images of the same driv-
ing scenes at daytime, twilight and nighttime. We use this
dataset to feed real data to GCMA and to create a bench-
mark with 151 nighttime images for our uncertainty-aware
evaluation. Our dataset and code are publicly available'.

2. Related Work

Vision at Nighttime. Nighttime has attracted a lot of at-
tention in the literature due to its ubiquitous nature. Sev-
eral works pertain to human detection at nighttime, using
FIR cameras [10, 37], visible light cameras [15], or a com-
bination of both [4]. In driving scenarios, a few meth-
ods have been proposed to detect cars [17] and vehicles’
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rear lights [30]. Contrary to these domain-specific meth-
ods, previous work also includes both methods designed for
robustness to illumination changes, by employing domain-
invariant representations [, 25] or fusing information from
complementary modalities and spectra [33], and datasets
with adverse illumination [21, 29] for localization bench-
marking. A recent work [8] on semantic nighttime seg-
mentation shows that images captured at twilight are help-
ful for supervision transfer from daytime to nighttime. Our
work is partially inspired by [8] and extends it by propos-
ing a guided curriculum adaptation framework which learns
jointly from stylized images and unlabeled real images of
increasing darkness and exploits scene correspondences.

Domain Adaptation. Performance of semantic segmenta-
tion on daytime scenes has increased rapidly in recent years.
As a consequence, attention is now turning to adaptation to
adverse conditions [3, 11,33,35]. A case in point are recent
efforts to adapt clear-weather models to fog [7,26,27], by
using both labeled synthetic images and unlabeled real im-
ages of increasing fog density. This work instead focuses
on the nighttime domain, which poses very different and—
as we would claim—greater challenges than the foggy do-
main (e.g. artificial light sources casting very different il-
lumination patterns at night). A major class of adaptation
approaches, including [5,12,13,19,28,31,34,36,43,46], in-
volves adversarial confusion or feature alignment between
domains. The general concept of curriculum learning has
been applied to domain adaptation by ordering tasks [42] or
target-domain pixels [47], while we order domains. Cross-
domain correspondences as guidance have only been used
very recently in [18], which requires pixel-level matches,
while we use more generic image-level correspondences.

Semantic Segmentation Evaluation. Semantic segmenta-
tion evaluation is commonly performed with the IoU met-
ric [9]. Cityscapes [0] introduced an instance-level IoU
(iIoU) to remove the large-instance bias, as well as mean
average precision for the task of instance segmentation. The
two tasks have recently been unified into panoptic segmen-
tation [16], with a respective panoptic quality metric. The
most closely related work to ours in this regard is Wild-
Dash [40], which uses standard IoU together with a fine-
grained evaluation to measure the impact of visual hazards
on performance. In contrast, we introduce UloU, a new
semantic segmentation metric that handles images with re-
gions of uncertain semantic content and is suited for ad-
verse conditions. Our uncertainty-aware evaluation is com-
plementary to uncertainty-aware methods such as [14] that
explicitly incorporate uncertainty in their model formula-
tion and aims to promote the development of such meth-
ods, as UloU rewards models that accurately capture het-
eroscedastic aleatoric uncertainty [14] in the input images
through the different treatment of invalid and valid regions.



3. Guided Curriculum Model Adaptation
3.1. Problem Formulation

GCMA involves a source domain S, an ultimate target
domain 7, and an intermediate target domain 7. In this
work, S is daytime, 7 is nighttime, and T is twilight time
with an intermediate level of darkness between S and 7.
GCMA adapts semantic segmentation models through this
sequence of domains (S, T, T'), which is sorted in ascend-
ing order with respect to level of darkness. The approach
proceeds progressively and adapts the model from one do-
main in the sequence to the next. The knowledge is trans-
ferred through the domain sequence via this gradual adap-
tation process. The transfer is performed using two cou-
pled branches: 1) learning from labeled synthetic stylized
images and 2) learning from real data without annotations,
to jointly leverage the assets of both. Stylized images in-
herit the human annotations of their original counterparts
but contain unrealistic artifacts, whereas real images have
less reliable pseudo-labels but are characterized by artifact-
free textures.

Let us use z € {1,2,3} as the index in (S, 7, 7). Once
the model for the current domain z is trained, its knowledge
can be distilled on unlabeled real data from z, and then used,
along with a new version of synthetic data from the next
domain z + 1 to adapt the current model to z + 1.

Before diving into the details, we first define all datasets
used. The inputs for GCMA consist of: 1) a labeled day-
time set with M real images D}, = {(I),,Y,1)}M_,, e.g.
Cityscapes [0], where Y,1(i,j) € C = {1,..., C} is the
ground-truth label of pixel (7, j) of I ,%1; 2) an unlabeled day-
time set of N, images DL = {I}}N1 }{, 3) an unlabeled
twilight set of Ny images D2, = {12}n 1> and 4) an un-
labeled nighttime set of N3 images D3, = {If; e In
order to perform knowledge transfer with annotated data,
D} is rendered in the style of D2 and D2 . We use Cycle-
GAN [45] to perform this style transfer, leading to two more
sets: D2 {(I2 YT}L) m 1 and D {(I3 YT}L) m 1
where I, 7 and I3, are the stylized tw1hght and nighttime ver-
sion of I;l respectively, and labels are copied. For z = 1,
the semantic segmentation model ¢! is trained directly on
D;... In order to perform knowledge transfer with unlabeled
data, pseudo-labels for all three unlabeled real datasets need
to be generated. The pseudo-labels for D! are generated
using the model ¢! via ¥;! = ¢'(I}). For z > 1, training
¢ and generating Yni is performed progressively as GCMA
proceeds, as is detailed in Sec. 3.1.1. All six datasets are
summarized in Table 1.

3.1.1 Guided Curriculum Model Adaptation

Since the method proceeds in an iterative manner, we
present the algorithmic details only for a single adaptation

Table 1. The training sets used in GCMA. I indicates an image
and Y its label map; [ is a synthetic image and Y a pseudo-label
map. See the text for details.

Labeled Unlabeled
Real Synthetic Real
. N-
1. Daytime {(I ) m 1 {(Irlu YT})}’/]{,}il
2. TWilight time {(Inu m)}nL 1 {(IT2L’ YT%)}nil
3. Nighttime {73, VDM {13, V)12,

step from z — 1 to z. The presented algorithm is straightfor-
ward to generalize to multiple intermediate target domains.
In order to adapt the semantic segmentation model ¢*~1
from the previous domain z — 1 to the current domain z, we
generate synthetic stylized data in domain z: D5,.

For real unlabeled images, since no human annotations
are available, we rely on a strategy of self-learning or cur-
riculum learning. Our motivating assumption is that objects
are generally easier to recognize in lighter conditions, so
the tasks are solved in ascending order with respect to the
level of darkness and the easier, solved tasks are used to re-
train the model to further solve the harder tasks. This is in
line with the concept of curriculum learning [2]. In partic-
ular, the model ¢>~! for domain z — 1 can be applied to
the unlabeled real images of domain z — 1 to generate su-
pervisory labels for training ¢*. Specifically, the dataset of
real images with pseudo-labels for adaptation to domain z
is D271 = {(Iz71, V2" 1)} 21" where Y2~ denotes the
predicted labels of image IZ~1. A simple way to get these
labels is by directly feeding Ifl_l to ¢*~ 1, similar to the
approach of [7,26] for the case of fog. This choice, how-
ever, suffers from accumulation of substantial errors in the
prediction of ¢*~! into the subsequent training step if do-
main z — 1 is not the daytime domain. We instead propose
a method to refine these errors by using guidance from the
semantics of a daytime image I that corresponds to 1771,
i.e. depicts roughly the same scene as IZ~! (the difference
in the camera pose is small):

vilog (df‘l([ﬁ‘l),Ii‘l,qbl(fiz,lﬁl(n))) (D)

where G is a guidance function which will be defined in
Sec.3.2and z — 1 > 1. A,_11(n) is the correspondence
function giving the index of the daytime image that corre-
sponds to 771

Once we have the two training sets D2 (with labels
inferred through (1)) and D7, learning ¢* is performed by
optimizing a loss function that involves both datasets:

n;izn<z L@ (DY) +n 3 L Y) @

(1,Y) (1,Y)
€Di, epit
where L(.,.) is the cross entropy loss and p is a hyper-

parameter balancing the contribution of the two datasets.



In order to leverage the place prior at large scale to im-
prove predictions through the guided label refinement de-
fined in (1), specific aligned datasets need to be compiled.
With this aim, we collected the Dark Zurich dataset by driv-
ing several laps in disjoint areas of Zurich; each lap was
driven multiple times during the same day, starting from
daytime through twilight to nighttime. The recordings in-
clude GPS readings and are split into three sets: daytime,
twilight and nighttime (cf. Sec. 5). Since different drives
of the same lap correspond to the same route, the camera
orientation at a certain point of the lap is similar across all
drives. We implement the correspondence function A, _,;
that assigns to each image in domain z its daytime counter-
part using a GPS-based nearest neighbor assignment. The
method presented in Sec. 3.2 carefully handles the effects
of misalignment and dynamic objects in paired images.

3.2. Guided Segmentation Refinement

In the following presentation of our guided segmentation
refinement for dark images using corresponding daytime
images, we drop for brevity the subscript which was used
to indicate this correspondence. The guidance function G
which models our refinement approach and was introduced
in a general form in (1) can be written more specifically as

G (¢°(I), I7,6"(I")) = R (¢*(I"), B(¢'(I"), I7)),
3)
i.e. as the composition of a cross bilateral filter B on the
daytime predictions, which aligns them to the dark image,
with a fusion function R, which adaptively combines the
aligned daytime predictions with the initial dark image pre-
dictions to refine the latter.

3.2.1 Cross Bilateral Filter for Prediction Alignment

The correspondences between real images that are used in
GCMA are not perfect, in the sense that they are not aligned
at a pixel-accurate level. Therefore, to leverage the predic-
tion for the daytime image I' as guidance for refining the
respective prediction for the dark image I?, it is necessary
to first align the former prediction to /*. To this end, we
operate on soft predictions and define a cross bilateral filter
on the initial soft prediction map S! = ¢!(I') which uses
the color of the dark image I~ as reference:

S'(p)
Y. Golla-pGs, (I1*(q) - I*(p)])S" ()
_ a€N(p)
> Go.(la—pl)Go, (IT*(q) - I*(p)I])
qaeN(p)

“)

In (4), p and q denote pixel positions, N (p) is the neigh-
borhood of p, G, is the spatial-domain Gaussian kernel

and G, is the color-domain kernel. The definition of the
filter implies that only pixels q with similar color to the ex-
amined pixel p in the dark image I* contribute to the output
S'(p), which shifts salient edges in the initial daytime pre-
diction to their correct position in the dark image. For the
color-domain kernel, we use the CIELAB version of 17, as
it is more appropriate for measuring color similarity [24].
We set the spatial parameter o4 to 80 to account for large
misalignment, and o, to 10 following [24,26].

3.2.2 Confidence-Adaptive Prediction Fusion

The final step in our refinement approach is to fuse the
aligned prediction S' for I' with the initial prediction
S* = ¢*(I%) for I* in order to obtain the refined predic-
tion S#, the hard version of which is subsequently used in
training. We propose an adaptive fusion scheme, which
uses the confidence associated with the two predictions at
each pixel to weigh their contribution in the output and
addresses disagreements due to dynamic content by prop-
erly adjusting the fusion weights. Let us denote the con-
fidence of the aligned prediction S* for I' at pixel p by
F'(p) = max.cc S} (p) and respectively the confidence of
the initial prediction S* for I* by F*(p). Our confidence-
adaptive fusion is then defined as

N F* aFt
7= S* St 5
Fz + aF! +Fz+ozF1 ’ )
where 0 < o = a(p) < 1 may vary and we have

completely dropped the pixel argument p for brevity. In
this way, we allow the daytime image prediction to have
a greater effect on the output at regions of the dark image
which were not easy for model ¢~ to classify, while preserv-
ing the initial prediction S* at lighter regions of the dark
image where S* is more reliable.

Our fusion distinguishes between dynamic and static
scene content by regulating «.. In particular, « downweights
S to induce a preference towards S* when both predictions
have high confidence. However, apart from imperfect align-
ment, the two scenes also differ due to dynamic content. In-
tuitively, the prediction of a dynamic object in the daytime
image should be assigned an even lower weight in case the
corresponding prediction in the dark image does not agree,
since this object might only be present in the former scene.
More formally, we denote the subset of C that includes dy-
namic classes by C4 and define

a(p)
o, ifep =arg max Sl(p) € ¢4 and Sz (p)<n
ce ~
= or ¢z = argmax SZ(p) € Cqand SL (p) <,
ce

«y, otherwise.

(6)



(b) Daytime image I
Figure 1. Example pair of corresponding images from Dark Zurich, initial prediction for the dark image and our refined prediction.

(a) Dark image 1*

In our experiments, we manually tune oy = 0.3, ap, = 0.6
and n = 0.2 on a couple of training images (no grid search).
A result of our guided refinement is shown in Fig. 1.

4. Uncertainty-Aware Evaluation

Images taken under adverse conditions such as nighttime
contain invalid regions, i.e. regions with indiscernible se-
mantic content. Invalid regions are closely related to the
concept of negative test cases which was considered in [40].
However, invalid regions constitute intra-image entities and
can co-exist with valid regions in the same image, whereas
a negative test case refers to an entire image that should be
treated as invalid. We build upon the evaluation of [40] for
negative test cases and generalize it to be applied uniformly
to all images in the evaluation set, whether they contain in-
valid regions or not. Our annotation and evaluation frame-
work includes invalid regions in the set of evaluated pixels,
but treats them differently from valid regions to account for
the high uncertainty of their content. In the following, we
elaborate on the generation of ground-truth annotations us-
ing privileged information through the day-night correspon-
dences of our dataset and present our UloU metric.

4.1. Annotation with Privileged Information

For each image I, the annotation process involves two
steps: 1) creation of the ground-truth invalid mask J, and
2) creation of the ground-truth semantic labeling H.

For the semantic labels, we consider a predefined set C of
C classes, which is equal to the set of Cityscapes [0] eval-
uation classes (C' = 19). The annotator is first presented
only with I and is asked to mark the valid regions in it as
the regions which she can unquestionably assign to one of
the C classes or declare as not belonging to any of them.
The result of this step is the invalid mask ./, which is set to
0 at valid pixels and 1 at invalid pixels.

Secondly, the annotator is asked to mark the semantic
labels of I, only that this time she also has access to an aux-
iliary image I’. This latter image has been captured with
roughly the same 6D camera pose as I but under more fa-
vorable conditions. In our dataset, I’ is captured at day-
time whereas [ is captured at nighttime. The large overlap
of static scene content between the two images allows the

(c) Initial prediction S* for [* (d) Our refined prediction S* for I~

annotator to label certain regions in H with a legitimate se-
mantic label from C, even though the same regions have
been annotated as invalid (and are kept as such) in J. This
allows joint evaluation on valid and invalid regions, as it cre-
ates regions which can accept both the invalid label and the
ground-truth label from C as correct predictions. Due to the
imperfect match of the camera poses for I and I’, the label-
ing of invalid regions in H is done conservatively, mark-
ing a coarse boundary which may leave unlabeled zones
around the true semantic boundaries in I, so that no pixel
is assigned a wrong label. The parts of I which remain in-
discernible even after inspection of I’ are left unlabeled in
H. These parts as well as instances of classes outside C
are not considered during evaluation. We illustrate a visual
example of our annotation inputs and outputs in Fig. 2.

4.2. Uncertainty-Aware Predictions

The semantic segmentation prediction that is fed to our
evaluation is expected to include pixels labeled as invalid.
Instead of defining a separate, explicit invalid class, which
would potentially require the creation of new training data
to incorporate this class, we allow a more flexible approach
for soft predictions with the original set of semantic classes
by using a confidence threshold, which affords an evalua-
tion curve for our UloU metric by varying this threshold.

In particular, we assume that the evaluated method out-
puts an intermediate soft prediction S(p) at each pixel p
as a probability distribution among the C classes, which is
subsequently converted to a hard assignment by outputting
the class H(p) = argmax.cc{S.(p)} with the highest
probability. In this case, Sg, (p) € [1/C, 1] is the ef-
fective confidence associated with the prediction. This as-
sumption is not very restrictive, as most recent semantic
segmentation methods are based on CNNs with a softmax
layer that outputs such soft predictions.

The final evaluated output H is computed based on a
free parameter § € [1/C, 1] which acts as a confidence
threshold by invalidating those pixels where the confidence
of the prediction is lower than 6, i.e. ﬁ(p) = Fl(p) if
St (py(P) = 6 and invalid otherwise. Increasing ¢ results
in more pixels being predicted as invalid. This approach is
motivated by the fact that ground-truth invalid regions are
identified during annotation by the uncertainty of their se-



(b) Auxiliary image I’
Figure 2. Example input images from Dark Zurich-test and output annotations with our protocol. Valid pixels in J are marked green.

(a) Input image

mantic content, which implies that a model should ideally
place lower confidence (equivalently higher uncertainty) in
predictions on invalid regions than on valid ones, so that the
former get invalidated for lower values of # than the latter.
The formulation of our UloU metric rewards this behav-
ior as we shall see next. Note that our evaluation does not
strictly require soft predictions, as UloU can be normally
computed for fixed, hard predictions H.

4.3. UloU

We propose UloU as a generalization of the standard loU
metric for evaluation of semantic segmentation predictions
which may contain pixels labeled as invalid. UloU reduces
to standard IoU if no pixel is predicted to be invalid, e.g.
when 6 =1/C.

The calculation of UloU for class ¢ involves five sets of
pixels, which are listed along with their symbols: true pos-
itives (TP), false positives (FP), false negatives (FN), true
invalids (TT), and false invalids (FI). Based on the ground-
truth invalid masks J, the ground-truth semantic labelings
H and the predicted labels H for the set of evaluation im-
ages, these five sets are defined as follows:

TP = {p: H(p) = H(p) = ¢}, (7
FP = {p: H(p) # cand H(p) = c}, ®)
FN = {p: H(p) = cand H(p) ¢ {c, invalid}}, )
TI = {p : H(p) = cand H(p) = invalid and J(p) = 1},

(10)
Fl = {p: H(p) = cand H(p) = invalid and .J (p) = 0}.

(11)

UloU for class c is then defined as

|TP| + |TI]
|TP| + |TI| + |FP| + |FN| -+ |FI|

UloU = (12)
Note that a true invalid prediction results in equal reward to
predicting the correct semantic label of the pixel. Moreover,
an invalid prediction does not come at no cost: it incurs the
same penalty on valid pixels as predicting an incorrect label.

When dealing with multiple classes, we modify our no-
tation to UloU(®) (similarly for the five sets of pixels related
to class c), which we avoided in the previous definitions to

(¢) GT invalid mask J

(d) GT semantic labeling H

Table 2. Comparison of Dark Zurich against related datasets with
nighttime semantic annotations. “Night annot.”: annotated night-
time images, “Invalid”: can invalid regions get legitimate labels?

Dataset Night annot. Classes Reliable GT Fine GT Invalid
WildDash [40] 13 19 v v X
Raincouver [32] 95 3 v X X
BDDI100K [39] 345 19 X v X
Nighttime Driving [8] 50 19 v X X
Dark Zurich 151 19 v v v

reduce clutter. The overall semantic segmentation perfor-
mance on the evaluation set is reported as the mean UloU
over all C classes. By varying the confidence threshold 6
and using the respective output, we obtain a parametric ex-
pression UloU(6). When § = 1/C, no pixel is predicted as
invalid and thus UloU(1/C) = IoU.

We motivate the usage of UloU instead of standard IoU
in case the test set includes ground-truth invalid masks by
showing in Th. 1 that UloU is guaranteed to be larger than
IoU for some # > 1/C under the assumption that predic-
tions on invalid regions are associated with lower confi-
dence than those on valid regions, which lies in the heart of
our evaluation framework. The proof is in the supplement.

Theorem 1. Assume that there exist 601, 05 such that
01 < 0, Vp : Jp) =1 = Sg(p)(p) < 6, and
J(p) = 0 = Sg,(p) = b2. If we additionally assume
that Ip € FN)(1/C) UFP(1/C) : J(p) = 1, then
10U < UloU@ (6;).

5. The Dark Zurich Dataset

Dark Zurich was recorded in Zurich using a 1080p Go-
Pro Hero 5 camera, mounted on top of the front windshield
of a car. The collection protocol with multiple drives of sev-
eral laps to establish correspondences is detailed in Sec. 3.

We split Dark Zurich and reserve one lap for testing.
The rest of the laps remain unlabeled and are used for train-
ing. They comprise 3041 daytime, 2920 twilight and 2416
nighttime images extracted at 1 fps, which are named Dark
Zurich-{day, twilight, night} respectively and correspond to
the three sets in the rightmost column of Table 1. From the
testing night lap, we extract one image every S0m or 20s,
whichever comes first, and assign to it the corresponding



daytime image to serve as the auxiliary image I’ in our an-
notation (cf. Sec. 4.1). We annotate 151 nighttime images
with fine pixel-level Cityscapes labels and invalid masks
following our protocol and name this set Dark Zurich-test.
In total, 272.2M pixels have been annotated with semantic
labels and 56.7M of these pixels are marked as invalid. We
validate the quality of our annotations by having 20 images
annotated twice by different subjects and measuring con-
sistency. 93.5% of the labeled pixels are consistent in the
semantic annotations and respectively 95% in the invalid
masks. We compare to existing annotated nighttime sets
in Table 2, noting that most large-scale sets for road scene
parsing, such as Cityscapes [0] and Mapillary Vistas [23],
contain few or no nighttime scenes. Nighttime Driving [8]
and Raincouver [32] only include coarse annotations. Dark
Zurich-test contains ten times more nighttime images than
WildDash [40]—the only other dataset with reliable fine
nighttime annotations. Detailed inspection showed that
~70% of the 345 densely annotated nighttime images of
BDD100K [39] contain severe labeling errors which render
them unsuitable for evaluation, especially in dark regions
we treat as invalid (e.g. sky is often mislabeled as building).
Our annotation protocol helps avoid such errors by properly
defining invalid regions and using daytime images to aid
annotation, and Dark Zurich-test is an initial high-quality
benchmark to promote our uncertainty-aware evaluation.

6. Results

Our architecture of choice for implementing GCMA is
RefineNet [20]. We use the publicly available RefineNet-
res101-Cityscapes model, trained on Cityscapes, as the
baseline model to be adapted to nighttime. Throughout our
experiments, we train this model with a constant learning
rate of 5 x 10~° on mini-batches of size 1.

Comparison to Other Adaptation Methods. Our first
experiment compares GCMA to state-of-the-art approaches
for adaptation of semantic segmentation models to night-
time. To obtain the synthetic labeled datasets for GCMA,
we stylize Cityscapes to twilight using a CycleGAN model
that is trained to translate Cityscapes to Dark Zurich-
twilight (respectively to nighttime with Dark Zurich-night).
The real training datasets for GCMA are Dark Zurich-day,
instantiating D.,., and Dark Zurich-twilight, instantiating
D2,. Each adaptation step comprises 30k SGD iterations
and uses . = 1. For the second step, we apply our guided
refinement to the labels of Dark Zurich-twilight that are pre-
dicted by model ¢? fine-tuned in the first step, using the cor-
respondences of Dark Zurich-twilight to Dark Zurich-day.
We evaluate GCMA on Dark Zurich-test against the
state-of-the-art adaptation approaches AdaptSegNet [31]
and DMAda [8] and report standard IoU performance in
Table 3, including invalid pixels which are assigned a le-

gitimate semantic label in the evaluation. We have trained
AdaptSegNet to adapt from Cityscapes to Dark Zurich-
night. For fair comparison, we also report the perfor-
mance of the respective baseline Cityscapes models for each
method. RefineNet is the common baseline of GCMA and
DMAda. GCMA significantly outperforms the other meth-
ods for most classes and achieves a substantial 10% im-
provement in the overall mloU score against the second-
best method. The improvement with GCMA is pronounced
for classes which usually appear dark at nighttime, such
as sky, vegetation, terrain and person, indicating that our
method successfully handles large domain shifts from its
source daytime domain. These findings are supported by
visually assessing the predictions of the compared methods,
as in the examples of Fig. 3. We repeat the above com-
parison on Nighttime Driving [8] in Table 4 and show that
GCMA generalizes very well to different datasets.

Ablation Study for GCMA. We measure the individual ef-
fect of the main components of GCMA in Table 5 by evalu-
ating its ablated versions on Dark Zurich-test. Direct adap-
tation to nighttime in a single step using only Cityscapes
images stylized as nighttime with CycleGAN is a strong
baseline, due to the reliable ground-truth labels that accom-
pany the stylized Cityscapes, its high diversity and the lim-
ited artifacts of CycleGAN-based translation. Adding our
real images to the training algorithm and applying our two-
stage curriculum significantly improves upon this baseline.
Finally, our guided segmentation refinement in the second
step of GCMA brings an additional 2.6% benefit, as it cor-
rects a lot of errors in the pseudo-labels of the real twilight
images, which helps compute more reliable gradients from
the corrected loss during the subsequent training.

Comparisons with UloU. In Fig. 4, we use our novel UloU
metric to evaluate GCMA against DMAda and our base-
line RefineNet model on Dark Zurich-test for varying con-
fidence threshold 6 and plot the resulting mean UloU(6)
curves. Note that standard mean IoU can be read out from
the leftmost point of each curve. First, our expectation
based on Th. 1 is confirmed for all methods, i.e. maxi-
mum UloU values over the range of ¢ are larger than IoU
by ca. 3%. This implies that on Dark Zurich-test, these
models generally have lower confidence on invalid regions
than valid ones. Second, the comparative performance of
the methods is the same across all values of § —GCMA
substantially outperforms the other two—which shows that
UloU is generally consistent with standard IoU and is a suit-
able substitute of the latter in adverse settings where declar-
ing the input as invalid is relevant.

7. Conclusion

In this paper, we have introduced GCMA, a method to
gradually adapt semantic segmentation models from day-



(a) Image
Figure 3. Qualitative semantic segmentation results on Dark Zurich-test. “AdaptSegNet” adapts from Cityscapes to Dark Zurich-night.

(b) Semantic GT

(c) AdaptSegNet [31]

(d) DMAda [8] (¢) GCMA (Ours)

Table 3. Comparison on Dark Zurich-test. AdaptSegNet-Cityscapes— DZ-night denotes adaptation from Cityscapes to Dark Zurich-night.

T £ 3 = 8 » =2 = % § - § b ¥ 2 g5 2 3
Method g 3 E g f_{ s » 2 ;?:u E 2 oz z g é’ 2 E % 2z mloU
i = =% g B
RefineNet [20] 68.8 23.2 46.8 20.8 12.6 29.8 30.4 26.9 43.1 143 0.3 36.9 49.7 63.6 6.8 0.2 24.0 33.6 9.3 28.5
AdaptSegNet-Cityscapes [31] 79.0 21.8 53.0 13.3 11.2 22.5 20.2 22.1 43.5 10.4 18.0 37.4 33.8 64.1 6.4 0.0 52.3 304 7.4 2838
AdaptSegNet-Cityscapes—DZ-night [31] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 84 1.2 35.9 26.7 68.2 45.1 0.0 50.1 339 15.6 304
DMAda [?] 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 349 119 32.1
Ours: GCMA 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0

Table 4. Comparison on Nighttime Driving [&]. Read as Table 3.

Method mloU (%)
RefineNet [20] 31.5
AdaptSegNet-Cityscapes [31] 32.6
AdaptSegNet-Cityscapes— DZ-night [31] 34.5
DMAda [8] 36.1
Ours: GCMA 45.6

Table 5. Ablations of GCMA on Dark Zurich-test, reporting mloU.

Daytime baseline: RefineNet [20] 28.5%
+direct CycleGAN adapt. (w/o real, w/o curriculum) 37.1%
+GCMA w/o guided refinement 39.4%
+GCMA w/ guided refinement 42.0%

time to nighttime with stylized data and unlabeled real data
of increasing darkness, as well as UloU, a novel evalua-
tion metric for semantic segmentation designed for images
with indiscernible content. We have also presented Dark
Zurich, a large-scale dataset of real scenes captured at mul-
tiple times of day with cross-time-of-day correspondences,
and annotated 151 nighttime scenes of it with a new proto-
col which enables our evaluation. Detailed evaluation with
standard IoU on real nighttime sets demonstrates the merit

Mean UloU

05

0.458
L ]

04

0.3

0.2

RefineNet

DMAda

GCMA

0.1 L 1 L I I I
0 0.1 0.2 0.3 0.4 0.5 0.6

Confidence threshold 6

I I I ]
0.7 0.8

Figure 4. Uncertainty-aware evaluation of RefineNet [20],
DMAda [8] and GCMA on Dark Zurich-test. We evaluate mean
UloU across the entire range [1/C, 1] of confidence threshold 6.
For each method, the point at which mean UloU is maximized is
marked black and labeled with this maximum mean UloU value.

of GCMA, which substantially improves upon competing
state-of-the-art methods. Finally, evaluation on our bench-
mark with UloU shows that invalidating predictions is use-
ful when the input includes ambiguous content.
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