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Preface

This script is based on the Feynman Lectures, Sakurai’s Modern Quantum
Mechanics and Weinberg’s Lectures on Quantum Mechanics. These books
are great and students are encouraged to study them as a first priority. The
purpose of the present notes, which do not contain original material, is to
facilitate the author for his lecture presentations. Students are of course
welcome to read the script if they find it useful. However, the script should
not replace the study of the recommended and other literature.
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Chapter 1

Quantum behavior

1.1 Atomic mechanics

For a long time, light was thought to behave like waves and electrons were
thought to behave like particles. There are phenomena which violate these
main “rules”. So they behave neither like particles nor like waves. However,
it is true that light, electrons, protons and all subatomic particles behave the
same. This common subatomic behavior is very different from our intuition of
large objects. We will demonstrate the difference of the quantum and classic
behavior by a thought “two-slit” experiment first with macroscopic bullets,
second with waves and third with subatomic particles such as electrons.

1.2 Basic two slit experiments

1.2.1 An experiment with bullets

We have a gun firing very hard indestructible bullets towards a wall. The
wall has two slits which are at a close distance and are big enough so that
they can pass through.

Behind the wall there is a “detector”, a material which can stop the bullets.
We can take a look at it afterwards and see how the bullets are distributed
in space after they have gone through the holes. We perform the experiment
in three stages:

• First, we leave open “Hole 1” and cover up the second hole. We find
that the bullets are distributed according to P1, a Gaussian centered
around the Hole 1.

• Then, we leave open “Hole 2” while we cover up “Hole 1”. We find a
similar Gaussian P2 centered around Hole 2.

• Finally, we leave open both holes. We find a distribution which

(1.1)P12 = P1 + P2 .
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1. Quantum behavior

gun

slit 1

slit 2

detector

P1

P2 P1 + P2

Figure 1.1: A two slit experiment with bullets.

The probability that a bullet goes through the holes is the sum of the proba-
bilities that it passes either through hole 1 or through hole 2.

1.2.2 An experiment with waves

We now perform a different experiment where we create a spherical wave at
some distance in front of the wall with the two holes. The detector measures
the intensity of the wave arriving at it, which is proportional to the square of
the amplitude:

I ∼ |A|2 .

We perform the experiment in three stages:

• First, we leave open “Hole 1” and cover up the second the second hole.
We find that the intensity I1 is a function centered around the Hole 1.

• Then, we leave open “Hole 2” while we cover up “Hole 1”. We find a
similar function intensity I2 centered around Hole 2.

• Finally, we leave open both holes. We find a distribution I12 6= I1 + I2.

There is a simple explanation why the intensity I12 is not equal to the sum
of the intensities when either one of the two holes is covered. The amplitude

10



1.2. Basic two slit experiments

wave
source

detector

I1

I2 I1 + I2 6= I12

interference
pattern

Figure 1.2: A two slit experiment with waves.

of the wave is given by the sum of the amplitudes,

A12 = A1 +A2

where A1 and A2 can be both positive or negative. The total intensity,

(1.2)I12 = |A1|2 + |A2|2 + 2 |A1| |A2| cos δ

= I1 + I2 + 2 |A1| |A2| cos δ

includes an interference term, giving the characteristic interference pattern of
Fig 1.2.

1.2.3 An experiment with electrons

We now shoot electrons at the wall. What happens is pictured in Fig 1.3.

This is a surprising result. If an electron went through either hole 1 or hole 2,
we would not have found P12 6= P1 + P2. Are electrons waves? Well, no. We
always detect one “full” electron at the time at the detector. For example,
we can reconstruct the full energy of an electron as it dissipates it in the
detector, or if the detector is inside a magnetic field, the electron track has
the curvature of charge one, etc.

11



1. Quantum behavior

electron
source

detector

P1

P2 P1 + P2 6= P12

interference
pattern

Figure 1.3: A two slit experiment with electrons with wave behavior.

So, the electron arrives at the detector as a particle and the probability of
arrival is distributed like the intensity of a wave.

1.3 Watching electrons

Let’s put a light source behind the two holes. Deflected light from the vicinity
of hole 1 or hole 2 can tell us where the electron passed through. What
happens? Indeed, we can see a flash coming from the hole every time that an
electron passes through. However, we find the following probability pattern.
The interference pattern is destroyed when we can verify experimentally that
the electrons go through either hole 1 or hole 2. If we switch off the light, the
interference leading to P12 6= P1 + P2 is restored.

Let’s now try to understand how the light affects our measurement. Before
going ahead with modifying the light characteristics, we equip our detector
with a sound system. Each time an electron hits on the detector we also hear
a click.

What happens with a dimmer light? We observe two types of events.

i) Events where a flash comes from hole 1 or hole 2 and we hear a click
immediately after coming from the detector.

12



1.3. Watching electrons

electron
source

light source 1

light source 2

detector

P1

P2 P1 + P2 = P12

Figure 1.4: A two slit experiment with electrons. In this experiment, we
observe which hole the electrons pass through.

ii) Events where we only hear a click from the detector without seeing any
flash.

We plot the probability distribution for the above categories of the events.
For the events where we have seen a light, we find a distribution as in Fig. 1.4
with no interference. For the events where we have not seen the light but we
have heard the sound we get a probability distribution as in Fig. 1.3 with an
interference pattern. The interference pattern gets destroyed if we are able to
observe the hole from where the electrons passed.

The intensity of the light is not its only physical characteristic. When we dim
it, we reduce the amplitude of the electromagnetic wave. This means that
there is a smaller density of “light particles” (photons) and therefore some
electrons can pass through the holes without crashing onto one of them. It
is then when we only hear a sound at the moment the electron arrives at the
detector without having seen a flash from a hole before. But we can also tune
the wavelength of the light. There is a simple relation between the momentum
of the photons and the wavelength,

p =
h

λ
,

where h is a (the Planck) constant. Photons are less energetic and the light

13



1. Quantum behavior

is “gentler” if we increase the wavelength using infrared light or even radio
waves.

So, let’s start increasing gradually the wavelength without changing the in-
tensity. We find that at the beginning there is no change in the type of
probability distribution for the electrons arriving at the detector. As long
as the wavelength is shorter than the distance of the two holes, we can tell
whether a flash light came from one or the other hole and we find no inter-
ference pattern

P12(λ) = P1(λ) + P2(λ), λ ∼ small.

If we increase the wavelength to a size comparable to the distance of the two
holes, we find something dramatic. The flash becomes fuzzy and it is not
possible to tell anymore whether it comes from the first or the second hole.
Then, we find that an interference is restored.

P12(λ) 6= P1(λ) + P2(λ), λ ∼ hole distance or larger.

In conclusion, there is no configuration of our apparatus for which we can
determine which hole the electrons went through without destroying the in-
terference pattern.

1.4 Back to the bullet experiment

If the laws of quantum mechanics are universal, for light particles, electrons,
protons and macroscopic objects, why then did we not observe an interference
pattern for the experiment with the bullets? The reason is that the wavelength
of a large object is very short. The minima and maxima of the interference
pattern are very dense and they cannot be discerned by the resolution of our
detectors. Instead, we measure a smooth average over the distance of several
wavelengths as in Fig.1.5.

1.5 First principles of quantum mechanics

Let’s define an “ideal” experiment as one in which all initial and final con-
ditions are completely specified. An event is a set of such initial and final
conditions. (For example, a bullet leaves the gun, arrives at the detector and
nothing else happens.)

i) The probability of an event in an ideal experiment is given by the square
of the absolute value of a complex number, which is called the probability

14



1.5. First principles of quantum mechanics

bullet
gun

close maxima
and minima

detector
measures
a smooth
average

detector,
interference

pattern

Figure 1.5: A two slit experiment with bullets.

amplitude

(1.3)P = |φ|2 ,

®
φ ≡ probability amplitude

P ≡ probability

ii) If an event can occur in several ways, there is interference

φ = φ1 + φ2

(1.4)P = |φ1 + φ2|2 .

iii) If an experiment can determine whether one or another alternative hap-
pened the interference is destroyed

P = P1 + P2. (1.5)

Note that we compute probabilities. We cannot know what an electron does
at any given instance.

15



1. Quantum behavior

1.6 Heisenberg’s uncertainty principle

The most famous statement of quantum mechanics is Heisenberg’s uncertainty
principle. According to this, the product of the uncertainties in the position
and momentum of a particle in a certain direction cannot be smaller than

(∆x)(∆px) = h, (1.6)

where h ≈ 6.63× 10−34 J s is Planck’s constant. This principle puts a limit on
how well we can determine the position of a particle if we know its momentum
and vice versa. The uncertainty principle is a natural consequence of our more
general principle that we cannot observe one of the alternatives of an event
without destroying the interference. Let’s see why.

electron
source

x

rollers

detectormoving
wall

Figure 1.6: A two slit experiment with electrons where the electron-momenta
are measured.

Consider the following modification of the two-slit experiment, where we
mount the wall of the two slits with rollers such that it can move up and
down freely. When an electron passes through a slit, it deflects against the
wall and sets it in motion. From measuring the momentum of the wall be-
fore and after the electron going through a hole, we can know which hole the
electron chose. But then, according to our principle, we must have destroyed

16



1.6. Heisenberg’s uncertainty principle

the interference. How does this happen? This is feasible if we cannot know
the position of the wall precisely, as suggested by the uncertainty principle.
Then, we cannot know the position of the hole which will be different from
one electron to the other, smearing out the interference pattern.

The uncertainty principle, i.e. inability to determine both momentum and
position with an arbitrary precision simultaneously, preserves the quantum
behavior of destroying the interference when one can determine the alterna-
tives which lead to a single event with an experimental apparatus.

1.6.1 Estimating the size of the atoms

The uncertainty principle protects matter from a catastrophic collapse. Clas-
sically, an electron rotating around a positively charged nucleus would radiate
off energy and it would eventually lose all of its kinetic energy. Thus, it would
end up at a defined position on top of the nucleus with a zero (also defined)
momentum. This cannot happen in quantum mechanics.

From the uncertainty principle, we can get an estimate of the size of the atom.
The electron has a probability amplitude to be somewhere in the vicinity of
the nucleon. Eveytime that we look at the electron we find it at a certain
position, but the probability amplitude for the electron to be somewhere has
a spread of the order of the size of the atom R.

From the uncertainty principle, the momentum of the atom has a spread of
the order

p ≈ h

R

and the energy of the electron is

E ≈ h2

2mR2
− e2

R
, (1.7)

where e is the charge of the electron. For a stable atom, the energy needs to
be minimal

dE

dR

∣∣∣∣
R=R0

= 0 ; R0 ≈ 0.528× 10−10 m . (1.8)

This value of the atom radius is called the Bohr radius. The energy of the
electron is

E ≈ h2

2mR2
0

− e2

R0
= −me

4

2h2
= −13.6 eV (1.9)

The energy is negative since the electron is in a bound state. It has less energy
than when it is free. In order to free the electron from the hydrogen atom,
we need to kick it with an ionization energy of 13.6 eV. This number, 13.6
eV, is called the Rydberg energy.

17



1. Quantum behavior

1.7 The laws for combining amplitudes

This is a good point to formalize and develop further the principles of sec-
tion 1.5. We will denote the probability amplitude of an event using the
“bra-ket” notation of Dirac:

〈final condition|initial condition〉

For example, we can write the amplitude for an electron leaving the source s
and arriving at the point x of the detector as

〈arrives at x|leaves from s〉

or, shortly,

〈x|s〉 ,

and the corresponding probability is

P = |〈x|s〉|2 .

According to our second principle, if an event can occur in more than one way,
then we must add the amplitudes for all alternatives and we have interference.
For example, in our two slit experiment where the electron could pass through
either of the slits, we write

(1.10)〈x|s〉 = 〈x|s〉through
slit 1

+ 〈x|s〉through
slit 2

.

We now introduce a new rule for amplitudes (which leads to the third principle
of the previous section). If an event can be expressed as a sequence of other
events then the amplitude factorizes. For example, we can write≠

arrives
at x

∣∣∣∣ leaves
source s

∑
through

slit 1

=

≠
arrives
at x

∣∣∣∣leaves
slit 1

∑≠
arrives
at slit 1

∣∣∣∣ leaves
source s

∑
or, shortly,

〈x|s〉through
slit 1

= 〈x|1〉 〈1|s〉 .

Then

〈x|s〉 = 〈x|1〉 〈1|s〉+ 〈x|2〉 〈2|s〉 .

18



1.7. The laws for combining amplitudes

electron
source

light source 1

light source 2

x

D1

D2

Figure 1.7: A two slit experiment with waves.

1.7.1 Revisiting the two-slit experiment

Let us now revisit the two-slit experiment where we throw electrons at them
and use a light source behind the slits in an attempt to see which slit is chosen
by an electron before it arrives at the detector. For the purpose of “seeing”
the flashes we place two photon-detectors one to the left of the left hole and
one to the right of the right hole. Let’s focus at the events which will be seen
by the detector D1. The amplitude is

(1.11)M1 =

≠
electron arrives at x
photon strikes D1

∣∣∣∣electron leaves
source s

∑
= 〈x|1〉A1→1(λ) 〈1|s〉+ 〈x|2〉A2→1(λ) 〈2|s〉 .

A1→1(λ) is the amplitude that a photon strikes an electron in hole 1 and it
is deflected into the detector D1. Similarly, A2→1(λ) is the amplitude that
a photon strikes an electron in hole 2 and it is deflected into the detector
D1. The detector D1 is placed closer to hole 1 and for small wavelengths
A2→1 is much smaller than A1→1. The interference term in the probability
P1 = |M1|2 vanishes for A2→1 = 0. Instead, for large wavelength λ the
photon cannot be localized precisely enough and A2→1 ∼ A1→1; then, there
is interference.
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1. Quantum behavior

Similarly, we can write an expression for the amplitude where the photon
scattered from the electron strikes detector D2:

(1.12)M2 =

≠
electron arrives at x
photon strikes D2

∣∣∣∣electron leaves
source s

∑
= 〈x|1〉A1→2(λ) 〈1|s〉+ 〈x|2〉A2→2(λ) 〈2|s〉 .

What is then the probability for the photon to strike either D1 or D2? Notice
that we now ask for the combined probability of two different events with
different final conditions. We should not combine the two amplitudes into
a common amplitude (M 6=M1 +M2). Our rule of combining amplitudes
applies to alternative ways of a single event (where the initial and final condi-
tions are the same for all alternatives). If the events differ, for their combined
probability we add up the probabilities of each separate event. In our specific
case,

P (light in D1 or D2) = P (light in D1) + P (light in D2)

= |M1|2 + |M2|2 .

1.7.2 A subatomic travel from Zurich to China?

Our product rule for amplitudes can puzzle our physics intuition from macro-
scopic physics. Think of a particle at a position x1 which transitions to a
position x2. The corresponding amplitude is

〈x2|x1〉 .

Let y be an intermediate position in the journey of the particle. According
to our rules for combining amplitudes we must have:

〈x2|x1〉 = 〈x2|y〉 〈y|x1〉 .

However, if we have no knowledge of which point exactly the particle passed
through (e.g. by putting up a wall with only a hole open) we must sum up
all positions.

〈x2|x1〉 =
∑
y

〈x2|y〉 〈y|x1〉 .

In the sum, we are supposed to include all positions y no matter how far they
reside from x1,x2 or how improbable they appear to us from our knowledge
of classical physics.

It turns out that amplitudes for classically improbable transitions are sup-
pressed. Up to some normalization, the transition amplitude of a free particle

20



1.7. The laws for combining amplitudes

(no forces are exerted on it) from a position x to a position y is

Mx→y ∼
e−

i
h̄p·(x−y)

|x− y|
, (1.13)

where p is the classical momentum of the particle and h̄ = h
2π (Planck’s)

constant. We note that the amplitude is suppressed for large distances and
that the motion along the direction of the momentum produces a maximum
phase in the exponential.

Probability amplitudes depend in general both in space and time. The time
evolution of the amplitudes is determined by the equation of Schrödinger,
which we shall see in the future.
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Chapter 2

Quantum measurement and
quantum states

In this chapter we shall explore further the basic rules of probability ampli-
tudes and introduce quantum states.

2.1 Stern-Gerlach experiment

Let’s think of a magnetic dipole/loop current localized in a small volume,
with a magnetic moment µ. The potential energy when the current is inside
a magnetic field is

U = −µ ·B . (2.1)

Inside a inhomogeneous magnetic field a force will be exerted in the magnetic
dipole so that it minimizes its energy. The force will be

F = −∇U = ∇ (µ ·B) . (2.2)

For a magnetic field which varies, for example, in the z−direction there is a
force exerted on the magnetic dipole in the same direction,

Fz = µz
∂Bz
∂z

. (2.3)

In classical physics, we can attempt to describe atoms as dipoles, i.e. cur-
rents which are localized in a tiny space. We now perform a conceptually
very simple experiment, the Stern-Gerlach experiment. We produce a beam
of atoms and we direct the beam towards a magnet with a inhomogeneous
magnetic field. In classical physics we expect that the value of µz is a con-
tinuous variable. The effect of the gradient magnetic field should then be to
spread out the beam along the z−direction as in Fig. 2.1. This is not what
really happens. Instead, we find that the beam of atoms is split as in Fig. 2.2
in a number of beams which the original beam is split into depends on the
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2. Quantum measurement and quantum states

beam
of atoms

N

S

inhomogeneous
magnetic field

screen

Figure 2.1: Stern-Gerlach experiment: Expectation from classical electrody-
namics in a description of atoms as magnetic dipoles. (This is not what
happens in reality!)

kind of the atoms and a property of them called “spin” 1. Atoms with spin- 1
2

split into two beams, atoms with spin-1 split into three beams and so on; in
general atoms with spin-j split into 2j + 1 beams.

2.2 The Stern-Gerlach filter

2.2.1 Experimental setup

In the following, we shall take a beam of atoms with spin-1 and examine fur-
ther experimentally the three separated beams which originate from a Stern-
Gerlach apparatus. We construct a Stern-Gerlach filter. This filter takes a
beam of atoms and passes it first through a magnetic field with a gradient
in a certain direction, as in the Stern-Gerlach experiment, splitting the beam
into three. The split beams are channeled through gates which we can decide
at wish to keep them open or have them closed. Afterwards, magnets re-unite
the beams which pass through the gates and let them come out from an exit
point as a single beam.

1It is not yet time to describe spin. We will only say for now that it is a intrinsic
angular momentum of subatomic particles which can be detected even when these particles
are motionless.
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2.2. The Stern-Gerlach filter

beam
of atoms

N

S

inhomogeneous
magnetic field

+ |µ|0 |µ|− |µ|

screen

Figure 2.2: Stern-Gerlach experiment: The beam splits into a number of
separated beams. The magnetic moments of the atoms assume discrete values.

The filter serves the purpose of selecting atoms of a certain state out of the
Stern-Gerlach experiment. We can produce three types of “pure” beams with
our Stern-Gerlach filter.

i) Atom beams in the state |ẑ,+〉, where we close the lower two gates and
allow only the “upper” beam to go through.

ii) Atom beams in the state |ẑ, 0〉, where we block the upper and lower
beams and let the non-deflected central beam to go through.

iii) Atom beams in the state |ẑ,−〉, where we close the upper two gates and
allow only the “lower” beam to go through.

The unit vector ẑ denotes the orientation of the magnetic field gradient in the
Stern-Gerlach apparatus.

2.2.2 Successive aligned Stern-Gerlach filters

We shall now perform experiments passing atom beams through two succes-
sive Stern-Gerlach filters (Filter 1 and Filter 2), both having the same gradient
for the magnetic field.

In a first experiment, we block the middle and lower gates of both filters.
Filter 1 gives a beam of atoms at the state |ẑ,+〉. We observe that the full
beam passes through the second filter, which is also designed to select the
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2. Quantum measurement and quantum states

N S N

S N S

+

0

−

Figure 2.3: Stern-Gerlach filter for spin-1 atoms with a gate +,0 and −.

filter 1

+

0

−

|ẑ,+〉

filter 2

+

0

−

|ẑ,+〉

Figure 2.4: Two aligned Stern-Gerlach filters for spin-1 atoms.

same |ẑ,+〉 state. We then conclude that the probability amplitude for the
transition from a state |ẑ,+〉 to the same state |ẑ,+〉 is unity 2

〈ẑ,+|ẑ,+〉 = 1. (2.4)

In a second experiment, we close the middle and lower gates of Filter 1 and
the upper and lower gates of Filter 2. Filter 1 selects atoms in the state
|ẑ,+〉 and Filter 2 selects atoms in the state |ẑ, 0〉. We observe that no beam
passes through the second filter. Therefore the probability amplitude for the
transition from the state |ẑ,+〉 to the state |ẑ, 0〉 vanishes,

〈ẑ, 0|ẑ,+〉 = 0. (2.5)

2up to a phase exp(iα) which drops out when computing the modulus square of the
amplitude.
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2.2. The Stern-Gerlach filter

filter 1

+

0

−

|ẑ,+〉

filter 2

+

0

−

|ẑ, 0〉

Figure 2.5: Two aligned Stern-Gerlach filters for spin-1 atoms.

filter 1

+

0

−

|ẑ,+〉

filter 2

+

0

−

|ẑ,−〉

Figure 2.6: Two aligned Stern-Gerlach filters for spin-1 atoms.

The same result holds for transitions from |ẑ,+〉 to |ẑ,−〉,

〈ẑ,−|ẑ,+〉 = 0. (2.6)

The following equations summarize our results for the transitions among the
“pure” states |ẑ,+〉 , |ẑ,−〉 , |ẑ, 0〉:

(2.7a)〈ẑ,+|ẑ,+〉 = 〈ẑ, 0|ẑ, 0〉 = 〈ẑ,−|ẑ,−〉 = 1

and

(2.7b)〈ẑ,+|ẑ, 0〉 = 〈ẑ, 0|ẑ,+〉 = 〈ẑ,+|ẑ,−〉 = 0 ,

(2.7c)〈ẑ,−|ẑ,+〉 = 〈ẑ, 0|ẑ,−〉 = 〈ẑ,−|ẑ, 0〉 = 0 .

2.2.3 Successive rotated Stern-Gerlach filters

We now perform a more interesting experiment with two Stern-Gerlach filters
in a row, where the second filter is rotated by an angle θ. Specifically, in
Filter 1 the magnetic field B varies along the ẑ direction and in Filter 2 B
varies along the n̂ direction, with n̂ · ẑ = cos θ. The first filter splits a beam
of spin-1 atoms along the ẑ−axis and it can select atoms in the “pure” states

|ẑ,+〉 , |ẑ,−〉 , |ẑ, 0〉 .
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x

z

n̂

ẑ

ẑ

θ

Filter 1

Filter 2
(rotated)

Figure 2.7: Two Stern-Gerlach filters with their directions of B−field varia-
tion roated at an angle θ.

The second filter splits a beam of spin-1 atoms along the n̂−axis and it can
select atoms in the “pure” states

|n̂,+〉 , |n̂,−〉 , |n̂, 0〉 .

In our sequential experiments, we can find the probability that an atom tran-
sitions from a definite |ẑ, {+, 0,−}〉 state to a definite |n̂, {+, 0,−}〉 state. We
find that all such transitions are indeed possible and therefore the probability
amplitudes

〈n̂, a|ẑ, b〉 , a, b ∈ {+, 0,−}

are different from zero.

We also observe that a transition from a |ẑ, a〉 state to any state |n̂, b〉 takes
always place with a 100% certainty. This gives that

(2.8a)
∣∣〈n̂,+|ẑ,+〉∣∣2 +

∣∣〈n̂, 0|ẑ,+〉∣∣2 +
∣∣〈n̂,−|ẑ,+〉∣∣2 = 1 ,

(2.8b)
∣∣〈n̂,+|ẑ,−〉∣∣2 +

∣∣〈n̂, 0|ẑ,−〉∣∣2 +
∣∣〈n̂,−|ẑ,−〉∣∣2 = 1 ,

(2.8c)
∣∣〈n̂,+|ẑ, 0〉∣∣2 +

∣∣〈n̂, 0|ẑ, 0〉∣∣2 +
∣∣〈n̂,−|ẑ, 0〉∣∣2 = 1 .

2.2.4 Three filters

We now consider an experiment with three Stern-Gerlach filters. The first and
the third apparatus have a direction of B−field variation along the positive ẑ
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x

z
n̂

ẑ
ẑ

ẑ
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Filter 1
Filter 2

(rotated)

Filter 3

Figure 2.8: Three Stern-Gerlach filters in a row. The first and the third
apparatus have a direction of B−field variation along the positive ẑ axis. The
second apparatus is rotated at an angle θ with a B−field variation pointing
along n̂.

axis. The second apparatus is rotated at an angle θ with a B−field variation
pointing along n̂. We arrange that the first filter sets the atoms in the state
|ẑ,+〉 and that the second filter puts them at a state |n̂, 0〉. What happens
when the atoms pass through the third filter? Do the atoms have a memory
that they have been before in a |ẑ,+〉 state? No! The atoms can transition
to any of the three states |ẑ, {+, 0,−}〉 despite the fact that they have once
been made to be in a pure |ẑ,+〉 state.

Indeed, we can easily show that the fraction of atoms that ends up in any of
the |ẑ, {+, 0}〉 states through the last filter is independent of the transition
through the first filter. The amplitudes for the transition through the second
and third filter from the |ẑ,+〉 to, say, either a |ẑ,+〉 or a |ẑ,−〉 state are

〈ẑ,+|n̂, 0〉 〈n̂, 0|ẑ,+〉

and

〈ẑ,−|n̂, 0〉 〈n̂, 0|ẑ,+〉

respectively. The ratio of probabilities for the two transitions is∣∣〈ẑ,+|n̂, 0〉 〈n̂, 0|ẑ,+〉∣∣2∣∣〈ẑ,−|n̂, 0〉 〈n̂, 0|ẑ,+〉∣∣2 =

∣∣〈ẑ,+|n̂, 0〉∣∣2∣∣〈ẑ,−|n̂, 0〉∣∣2
and it does not depend on the state of the beam prior to the second filter.

29



2. Quantum measurement and quantum states

2.3 Base states

The previous results illustrate one of the basic principles of quantum mechan-
ics: Atomic systems can be decomposed through a filtering process into base
states. The evolution of the system in any of these states is independent of
the past and depends solely on the nature of the base state. The base states
depend on the filtering process. For example, the states |ẑ, {+, 0,−}〉 are one
set of base states and the states |n̂, {+, 0,−}〉 are another.

Let’s now go back to our three-filter experiment and do the following:

i) open only the ẑ−“+” gate in the first filter

ii) open only the n̂−“0” gate in the second filter

iii) open only the ẑ−“−” gate in the second filter

If the beam exiting the first filter has N atoms, there will be N×|〈ẑ,−|n̂, 0〉|2
atoms exiting the last filter.

Now, let’s open all the gates in the second filter. How many atoms will go
through this time? The result of this experiment is very intriguing. No atom
exits our apparatus! It is so, that our filter has no effect if none of the base-
states are selected. We can then write

(2.9)
∑
all i

〈ẑ,−|i〉 〈i|ẑ,+〉 = 0, i ∈
∣∣n̂, {+, 0,−}〉.

To verify that this is a generic property of a “wide open” filter we check with
a third Stern-Gerlach filter which filter in a completely different direction r̂
than the other two filters. If the first filter is set to prepare the atoms in a
state |φ〉 and the third filter is set to prepare the atoms in a state |χ〉, we find
that the open second filter does not affect at all the transition from |φ〉 to |χ〉:

(2.10)〈χ|φ〉 =
∑
all i

〈χ|i〉 〈i|φ〉 .

Let us list here the properties of base states:

i) If a system is in a base state then the future evolution is independent of
the past.

ii) Base states satisfy equation 2.10

iii) Base states are completely different from each other

〈i|j〉 = δij . (2.11)
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2.4. Rules of quantum mechanics at work

Base states are not unique and they depend on the filtering method. For
example, a Stern-Gerlach filter in the n̂ direction and a Stern-Gerlach exper-
iment in a different r̂ direction yield a different set of base states.

Let us now compare equation 2.10 and equation 2.8a. In order for both of
them to be valid, we require one more rule for the conjugation of probability
amplitudes. Namely,

〈φ|χ〉∗ = 〈χ|φ〉 . (2.12)

2.4 Rules of quantum mechanics at work

Quantum mechanics is a predictive theory, allowing us to calculate the prob-
ability for the outcomes of experiments. The general properties of probability
amplitudes and base states as we established them in the previous section,
allow us to systematize the calculation of such probability amplitudes.

A
|χ〉 |φ〉

Figure 2.9: Transition from a state |χ〉
to any state |φ〉 through an experimental
apparatus or a physical process A.

Consider an atom which is prepared at a state |χ〉 and it is subjected to an
experiment or a physical process A. The atom will transition to a different
state |φ〉 at the end of the experiment. We denote the probability amplitude
for such a transition with

(2.13)〈φ|A |χ〉

The above has to be read from left to right,

(2.14)〈final| through |start〉 .

The experimental apparatus or physical process A can modify the initial state
|χ〉, but it is not necessary that this happens in all situations. For example,
A can be a Stern-Gerlach apparatus with all channels open. Then,

A = 1,

and we have

〈φ| 1 |χ〉 = 〈φ|χ〉 .

In order to understand the physics of the experiment or the physical process,
we would need to compute all the amplitudes (an infinite number) for arbitary
|φ〉 , |χ〉.
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2. Quantum measurement and quantum states

Figure 2.10: Transition from a
state |χ〉 to a state |φ〉 through
an experimental apparatus or a
physical process A and Stern-
Gerlach apparatus with all filters
open.

A1 1
|χ〉 |j〉 |i〉 |φ〉

Suppose now that we place two Stern-Gerlach apparatus so that the atom
passes through them before it enters apparatus A and after it exits it. We
arrange that the Stern-Gerlach apparatus have all their filters open, so that
their presence does not alter the transition. We denote with |i〉 , |j〉 the base
states of the Stern-Gerlach apparatus at the entry and exit of A respectively.
We then must have

〈φ|A |χ〉 =
∑
i,j

〈φ|j〉 〈j|A |i〉 〈i|χ〉 . (2.15)

We realize that we can just describe the apparatus A in terms of nine numbers
〈j|A |i〉
Suppose now that we have to analyze a more complicated experiment C for
which we realize that it can be decomposed into two successive apparatus, A
and B. We can again insert “unit” experiments in between the steps of the

Figure 2.11: Transition from a
state |χ〉 to a state |φ〉 through an
experimental apparatus or a phys-
ical process C which is a sequence
of other processes. C

A B
|φ〉 |χ〉

experiment, leading to

〈φ|C |χ〉 =
∑
i,j

〈φ|j〉 〈j|AB |i〉 〈i|χ〉 =
∑
i,j,k

〈φ|j〉 〈j|A |k〉 〈k|B |i〉 〈i|χ〉 .

(2.16)
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Chapter 3

Quantum Mechanics and
Linear Algebra

In quantum mechanics we are interested in computing the probability am-
plitudes 〈b|a〉 for transitions from an initial state |a〉 to a final state |b〉. In
this chapter, we will postulate that such amplitudes are the inner products
of vectors in a space of physical states:

〈b|a〉 ↔ b · a.

All physical information for a physical system, e.g. a particle, an atom, a
system of many particles, etc. 1 is encoded in these vectors.

3.1 Ket-space

Physical states are represented by vectors in a complex vector space. We
call such a vector state a ket. Kets possess complete information about the
physical system. The dimensionality of the ket space is equal to the number
of base states which we can obtain with a filtering experiment, such as our
Stern-Gerlach experiment.

i) Two kets can be added yielding a new ket for another physical state

|α〉+ |β〉 = |γ〉 . (3.1)

ii) The multiplication of a ket with a complex number yields a new ket which
corresponds however to the same physical state as the original

c |χ〉 and |χ〉 → same physical state. (3.2)

1the universe
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3. Quantum Mechanics and Linear Algebra

3.2 Operators

The state of a physical system can change during an experiment or by letting
the system evolve with time. We represent mathematically changes in physical
states by the action of operators on kets:

A |ψ〉 = |φ〉 (Operator |state〉 = |new state〉). (3.3)

For a given operator A, there are some special states, |i〉, which are not
changed, up to a multiplicative factor λi, by the action of the operator,

A |i〉 = λi |i〉 . (3.4)

The values λi are called the eigenvalues of the operator. The eigenstates of
a physical operator are postulated to correspond to base states: Any other
physical state |φ〉 can be written as a superposition of the base states.

∀ |φ〉 ∃ {ci} : |φ〉 =
∑
i

ci |i〉 .

3.3 Dual space

We define a dual space of “bra” states 〈φ|,

|φ〉 ↔ 〈φ| . (3.5)

By dual we mean that all information about the bra 〈φ| is already encoded
in the ket |φ〉 and we only need to use it for a different purpose. We can
think of kets as states of an “initial condition” and bras as states of a “final
condition”. The duality means that all states are eligible as starting or ending
states of an experiment. For a general superposition of ket states, the bra
dual reads

c1 |a1〉+ . . .+ cn |cn〉 ↔ c∗1 〈a1|+ . . .+ c∗n 〈cn| , (3.6)

where we conjugate the multiplicative factors in front of every bra component.

3.4 Inner product

The dual bra-space serves to define probability amplitudes as inner products:

〈a|b〉 (inner product). (3.7)

We postulate that
〈a|b〉 = 〈b|a〉∗ , (3.8)
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and that the “square” of a state is positive definite:

〈φ|φ〉 ≥ 0, ∀ |φ〉 . (3.9)

We call
√
〈φ|φ〉 the norm of the state |φ〉. We can normalize all states to have

a unit norm without altering the physics,

|φ〉 →
∣∣∣φ̃∂ =

|φ〉√
〈φ|φ〉

, (3.10)

where
¨
φ̃
∣∣∣φ̃∂ = 1.

3.5 Properties of operators and their duals

i) Two operators are said to be equal, X = Y , if

X |φ〉 = Y |φ〉 , ∀ |φ〉 . (3.11)

ii) An operator is zero, X = 0, if

X |φ〉 = 0, ∀ |φ〉 . (3.12)

iii) Operators can be added together, with properties

(3.13)X + Y = Y +X ,

(3.14)X + (Y + Z) = X + (Y + Z) = X + Y + Z .

iv) Operators can be multiplied together with the property

(3.15)X(Y Z) = (XY )Z

= XY Z .

v) However, the multiplication order is important and, in general,

XY 6= Y X.

The dual of an operator acting on a ket X |φ〉 is in general a different operator

X |φ〉 ↔ 〈φ|X†, (3.16)

with
X† 6= X.

35



3. Quantum Mechanics and Linear Algebra

X† is called the “Hermitian adjoint” of X. Operators with the special prop-
erty that X† = X are called hermitian operators.

The dual of a product of operators is

(XY )
†

= Y †X†. (3.17)

Proof. Let’s write

Y |a〉 = |b〉 ,

where the dual is
〈b| = 〈a|Y † .

Then

XY |a〉 = X(Y |a〉) = X |b〉 ↔ 〈b|X† = 〈a|Y †X†,

which proves our assertion.

We can define an outer product |b〉 〈a|, which is an operator turning a generic
state |φ〉 to a state |b〉

(3.18a)
(
|b〉 〈a|

)
|φ〉 = |b〉

(
〈a|φ〉

)
=
(
〈a|φ〉

)
|b〉 ,

(3.18b)(operator) |state〉 = . . . = (number) |new state〉 .

The dual of an outer product is also an outer product(
|φ〉 〈ψ|

)†
= |ψ〉 〈φ| . (3.19)

Indeed,(
|φ〉 〈ψ|

)
|a〉 = |φ〉

(
〈ψ|a〉

)
↔ 〈φ|

(
〈ψ|a〉

)∗
=
(
〈a|ψ〉

)
〈φ| = 〈a|

(
(|ψ〉 〈φ|

)
.

3.6 Hermitian operators

For a general operator, X, we can prove that

〈a|X |b〉 = 〈b|X† |a〉∗ (3.20)

Proof.

〈a|X |b〉 = 〈a|
(
X |b〉

)
=
(Ä
〈b|X†

ä
|a〉
)∗

= 〈b|X† |a〉∗ .
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Hermitian operators H† = H have the special property that

〈a|H |b〉 = 〈b|H |a〉∗ .

We can prove the following:

i) The eigenvalues of a Hermitian operator are real.

Proof. For a Hermitian operator H with eigenstates |i〉,

H |i〉 = λi |i〉 .

The dual of the above equation is

〈i|H = λ∗i 〈i| ,

where we have exploited the hermiticity of H (H† = H). Multiplying
the first equation with 〈i| from the left and the second equation with |i〉
from the right, we obtain that

〈i|H |i〉 = λi = λ∗i ,

which proves that the eigenvalue λi is real.

ii) The eigenstates of a Hermitian operator with non-degenerate eigenvalues
are orthogonal.

Proof. Following the same reasoning as above, we can easily show that
for two eigenstates |i〉 , |j〉 of a Hermitian operator H we can write the
quantity 〈i|A |j〉 in two alternative ways:

〈i|A |j〉 = λi 〈i|j〉 = λj 〈i|j〉

which leads to
(λi − λj) 〈i|j〉 = 0.

For non-degenerate eigenvalues, i.e.

λi 6= λj , ∀ |i〉 6= |j〉

we conclude that

〈i|j〉 = 0, ∀ |i〉 6= |j〉

and the eigenstates are orthogonal.
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We typically normalize eigenstates of Hermitian operators to be orthonormal:

〈i|j〉 = δij . (3.21)

We postulate that a Hermitian operator A which corresponds to a physical
observable has a “complete” set of eigenstates {|i〉}. Every other physical
state can be written as a superposition:

∀ |φ〉 ∃{ci} : |φ〉 =
∑
i

ci |i〉 . (3.22)

The coefficients ci can be determined to be the transition amplitude from the
state |φ〉 to the eigenstate |i〉:

ci = 〈i|φ〉 . (3.23)

Indeed, ∑
j

cj |j〉 = |φ〉

;
∑
j

cj 〈i|j〉 = 〈i|φ〉

;
∑
j

cjδij = 〈i|φ〉

; ci = 〈i|φ〉 .

From Eq. 3.22 and Eq. 3.23 we obtain that for every state |φ〉,

(3.24)|φ〉 =
∑
i

(〈i|φ〉) |i〉 ,

which we can re-arrange into.

(3.25)|φ〉 =

(∑
i

|i〉 〈i|

)
|φ〉 ,

Thus, for base-states |i〉 which are eigenstates of a non-degenerate Hermitian
operator, we have that:

(3.26)1 =
∑
all i

|i〉 〈i| .
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For a normalized state |φ〉 we have that

(3.27)1 = 〈φ|φ〉 =
∑
i

〈φ|i〉 〈i|φ〉

(3.28); 1 =
∑
i

|〈i|φ〉|2 .

This is consistent with the probabilistic interpretation of the inner product,
associating the probability P (|φ〉 → |i〉) for a transition from a state |φ〉 to
an eigenstate with the square of the inner product

(3.29)P (|φ〉 → |i〉) = |〈i|φ〉|2 .

In a filtering experiment (corresponding to the operator A with eigenstates
|i〉) of a quantum mechanical system (such as an atom in a state |φ〉 ) the
probability that the system passes through one of the filters (the state φ
collapses to one of the eigenstates |i〉 ) is one

(3.30)
∑
all i

P (|φ〉 → |i〉) = 1 .

The operator Λi ≡ |i〉 〈i| projects a general state onto the eigenstate |i〉 of the
Hermitian operator A. Indeed,

(3.31)Λi |φ〉 =
(
|i〉 〈i|

)
|φ〉 =

(
〈i|φ〉

)
|i〉

=
[
amplitude(|φ〉 → |i〉)

]
× |i〉 .

This operator has the defining property of a projector,

ΛiΛj =
(
|i〉 〈i|

) (
|j〉 〈j|

)
= |i〉 〈i|j〉 〈j|

= |i〉 δij 〈j| = |i〉 〈i| δij
= Λiδij .

For i = j, we find that Λ2
i = Λi, which tells us that filtering a quantum system

onto a pure state |i〉 successively does induce any further change to the system
after the filtering of the first time. For i 6= j, we find that ΛiΛj = 0. A system
which is already filtered onto a pure state |i〉 cannot transition directly into
a different pure state of the same observable.

39



3. Quantum Mechanics and Linear Algebra

3.7 Matrix representation of states and operators

Consider a Hermitian operator A with a set of eigenstates {|i〉}, i = 1 . . . N .
These satisfy the orthonormality condition 〈j|i〉 = δij . We can represent these
eigenstates as vectors,

(3.32a)|1〉 .=

á
1
0
...
0

ë
, |2〉 .=

á
0
1
...
0

ë
, · · · , |N〉 .=

á
0
0
...
1

ë
.

We represent the dual bra-eigenstates as

(3.32b)〈1| .= (1, 0, . . . , 0) , 〈2| .= (0, 1, . . . , 0) , · · · , 〈N | .= (0, 0, . . . , 1) .

The above representations of the bra and ket eigenstates are consistent with
their orthonormality condition. For example,

〈1|2〉 .= (1, 0, . . . , 0)

á
0
1
...
0

ë
= 0

and

〈2|2〉 .= (0, 1, . . . , 0)

á
0
1
...
0

ë
= 1

etc.

A general state |φ〉 must satisfy

|φ〉 =
∑
i

〈i|φ〉 |i〉 (3.33)

This can be represented as

(3.34)|φ〉 .= 〈1|φ〉

á
1
0
...
0

ë
+ 〈2|φ〉

á
0
1
...
0

ë
+ . . .+ 〈N |φ〉

á
0
0
...
1

ë
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yielding,

|φ〉 .=

á
〈1|φ〉
〈2|φ〉

...
〈N |φ〉

ë
.

For a bra state 〈φ| we write

〈φ| = 〈φ|
∑
i

|i〉〈i| =
∑
i

〈φ|i〉 〈i| =
∑
i

〈i|φ〉∗ 〈i| . (3.35)

This is represented as

〈φ| .=
(
〈1|φ〉∗, 〈2|φ〉∗, . . . , 〈N |φ〉∗

)
. (3.36)

The inner product of two general states is

(3.37)〈a|b〉 = 〈a|

(∑
i

|i〉〈i|

)
|b〉 =

∑
j

〈a|i〉 〈i|b〉 =
∑
i

〈i|a〉∗ 〈i|b〉 .

This is consistent with the result that we obtain by using our representation,

(3.38)〈a|b〉 .=
(
〈1|a〉∗, 〈2|a〉∗, . . . , 〈N |a〉∗

)
á
〈1|b〉
〈2|b〉

...
〈N |b〉

ë
A general operator X can be written as

(3.39)X =

(∑
i

|i〉 〈i|

)
X

(∑
j

|j〉 〈j|

)
=
∑
ij

|i〉 〈i|X |j〉 〈j| .

The operator is represented as an N ×N matrix,

(3.40)X
.
=

á
〈1|X |1〉 〈1|X |2〉 . . . 〈1|X |N〉
〈2|X |1〉 〈2|X |2〉 . . . 〈2|X |N〉

...
...

. . .
...

〈N |X |1〉 〈N |X |2〉 . . . 〈N |X |N〉

ë
.

For the case of the outer product operator, we obtain the following represen-
tation

(3.41)|a〉〈b| .=

á
〈1|a〉 〈1|b〉∗ 〈1|a〉 〈2|b〉∗ . . . 〈1|a〉 〈N |b〉∗
〈2|a〉 〈1|b〉∗ 〈2|a〉 〈2|b〉∗ . . . 〈2|a〉 〈N |b〉∗

...
...

. . .
...

〈N |a〉 〈1|b〉∗ 〈N |a〉 〈2|b〉∗ . . . 〈N |a〉 〈N |b〉∗

ë
.
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3.8 Compatible and incompatible observables

Two Hermitian operators which commute with each other,

[A,B] ≡ AB −BA = 0, (3.42)

are called compatible. If they do not commute, [A,B] 6= 0 , they are incom-
patible. We shall prove a couple of theorems which elucidate the meaning of
this terminology.

Theorem 3.1. For two hermitian operators A,B : [A,B] = 0, where A has
a spectrum of eigenstates |i〉 with non-degenerate eigenvalues,

A |i〉 = λi |i〉 ,

i) B is a diagonal matrix in the representation of the |i〉 basis,

ii) The set of |i〉 states is also a set of eigenstates of the B operator.

Proof. For any two eigenstates |i〉 , |j〉 of A we have that

0 = [A,B]

; 0 = 〈i|AB −BA |j〉 = 〈i|AB |j〉 − 〈i|BA |j〉
= (λi − λj) 〈i|B |j〉 .2

For |i〉 6= |j〉, given that the eigenvalues are not degenerate, we have that
λi 6= λj . Thus, it must be that 〈i|B |j〉 = 0. Only the diagonal elements,
i = j, are allowed to be different than zero. We write:

〈i|B |j〉 = δij 〈i|B |i〉 , (3.43)

which is the first statement of our theorem.

The B operator can be written as

B =

Ñ∑
i

|i〉〈i|

é
B

Ñ∑
j

|j〉〈j|

é
=
∑
ij

|i〉 〈i|B |j〉 〈j|

=
∑
ij

|i〉 δij 〈j|
(
〈i|B |i〉

)
=
∑
i

(
〈i|B |i〉

)
|i〉〈i|.

2〈i|AB −BA |j〉 can be seen as 〈i| (AB −BA) |j〉.
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Acting on an eigenstate |m〉 of the A operator, we have

B |m〉 =
∑
i

(
〈i|B |i〉

)
|i〉〈i| |m〉

=
∑
i

(
〈i|B |i〉

)
|i〉 δim

=
(
〈m|B |m〉

)
|m〉

which proves that the eigenstates |m〉 of A are also eigenstates of the com-
muting operator B.

Theorem 3.2. If two operators do not commute, [A,B] 6= 0, their common
eigenstates do not form a complete set.

Proof. We can prove the above by assuming the opposite, i.e. the common
eigenstates of A,B, denoted by |a, b〉 and satisfying

A |a, b〉 = a |a, b〉 ,
B |a, b〉 = b |a, b〉 ,

form a complete set. Then a general state can be written as

|φ〉 =
∑
a,b

cab |a, b〉 . (3.44)

Acting with the commutator on an arbitrary state |φ〉, we obtain that

[A,B] |φ〉 =
∑
a,b

cab (AB −BA) |a, b〉 =
∑
a,b

cab (ab− ba) |a, b〉 = 0. (3.45)

From the above we conclude that the commutator vanishes, [A,B] = 0, which
is in contradiction to our hypothesis.

3.9 Expectation value and uncertainty of Hermitian
operators (measurements)

Consider a Hermitian operator A which corresponds to a physical observ-
able, such as energy, momentum, position, spin magnetic moment, etc. We
associate the average value measured in an experiment (which is repeated in-
finitely many times) for the quantity corresponding to A with the expectation
value of the operator with respect to the system’s state |φ〉:

〈A〉 = 〈φ|A |φ〉 . (3.46)
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Let’s use the eigenstates |i〉 of the operator A as a basis of physical states.
These have eigenvalues λi, where

A |i〉 = λi |i〉 . (3.47)

The expectation value of A can be written as

(3.48)〈A〉 = 〈φ|

(∑
i

|i〉〈i|

)
A

(∑
j

|j〉〈j|

)
|φ〉 ,

which yields

(3.49)〈A〉 =
∑
i

λi |〈i|φ〉|2 .

We can re-write this expression as

(3.50)〈A〉 =
∑
i

λiProb(|φ〉 → |i〉)

The expectation value is a sum over all possible eigenvalues weighted by
the probability that the state of the system collapses to the corresponding
eigenstate. If |φ〉 is itself an eigenstate of A, e.g. |φ〉 = |j〉 the expectation
value of the measurement is simply the eigenvalue λj :

(3.51)〈A〉 = 〈j|A |j〉 =
∑
i

λi |〈i|j〉|2 =
∑
i

λiδij = λj .

In addition to the average of mesurements for an observable in a quantum
mechanical system, we can compute the uncertainty in these measurements.
This is defined as

(3.52)
〈
(∆A)2

〉
≡
¨
(A− 〈A〉1)

2
∂

.

3 Indeed,

(3.53)
〈
(∆A)2

〉
=
〈
A2
〉
− 〈A〉2 ,

which we can easily prove,

(3.54)

〈(
A− 〈A〉

)2〉
=
¨
A2
∂
− 2

〈
A 〈A〉

〉
+ 〈A〉2 =

¨
A2
∂
− 2 〈A〉2 + 〈A〉2

=
¨
A2
∂
− 〈A〉2 ,

3From now on we will drop the 1.
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where

(3.55)

〈
A 〈A〉

〉
= 〈φ|A 〈φ|A |φ〉︸ ︷︷ ︸

number

|φ〉 = 〈φ|A |φ〉 〈φ|A |φ〉 =
(
〈φ|A |i〉

)2
= 〈A〉2 .

Notice that the uncertainty for a system in an eigenstate of A is zero,〈
(∆A)2

〉
= 〈i|A2 |i〉 − 〈i|A |i〉2 = λ2

i − λ2
i = 0. (3.56)

3.10 The uncertainty principle

In this section, we shall derive Heisenberg’s uncertainty principle for any pair
of incompatible (non-commuting) Hermitian (physical) operators A,B.

We start with〈
(A− 〈A〉)(B − 〈B〉)

〉
=
〈
AB −A 〈B〉 − 〈A〉B + 〈A〉 〈B〉

〉
= 〈AB〉 − 〈A〉 〈B〉

=
1

2

〈
[A,B]

〉
+

1

2
〈AB +BA〉 − 〈A〉 〈B〉

=
1

2

〈
[A,B]

〉
+

1

2

≠(
A− 〈A〉

) (
B − 〈B〉

)
+
(
B − 〈B〉

) (
A− 〈A〉

)∑
(3.57)=

1

2
〈[A,B]〉+

1

2
〈{A− 〈A〉 , B − 〈B〉}〉

where the anti-commutator is defined as

{X,Y } ≡ XY + Y X. (3.58)

The anti-commutator of Hermitian operators is also a Hermitian operator.
Indeed,

{X,Y }† = (XY )† + (Y X)† = Y †X† +X†Y †

= Y X +XY = XY + Y X = {X,Y }

On the other hand, the commutator of two Hermitian operators is anti-
Hermitian 4. Indeed,

[A,B]† = [B†, A†] = [B,A] = −[A,B].

Now we can prove an important theorem:

4(an operator Z is anti-Hermitian if its adjoint is Z† = −Z)
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Theorem 3.3. The expectation value of a Hermitian operator is real, while
the expectation value of an anti-Hermitian operator is imaginary.

Proof. Indeed, the real and imaginary parts of the expectation value for an
operator A are

(3.59)< (〈A〉) =
〈A〉+ 〈A〉∗

2
=

1

2
〈φ|A+A† |φ〉

(3.60)=
(
〈A〉
)

=
〈A〉 − 〈A〉∗

2i
=

1

2i
〈φ|A−A† |φ〉

The real part vanishes if A is anti-Hermitian, A† = −A, while the imaginary
part vanishes if A is Hermitian, A† = A.

In the rhs of Eq. 3.57, the first term is then purely imaginary while the second
term is real. Both give an independent positive definitive contribution in the
absolute value square of the lhs, and we can write∣∣∣〈(A− 〈A〉)(B − 〈B〉)〉∣∣∣2 =

∣∣∣∣12 〈[A,B]
〉∣∣∣∣2 +

∣∣∣∣12 〈{A− 〈A〉 , B − 〈B〉}〉
∣∣∣∣2 .

(3.61)
This leads to the inequality,

|〈(A− 〈A〉) (B − 〈B〉)〉|2 ≥
∣∣∣∣12 〈[A,B]〉

∣∣∣∣2 . (3.62)

Now we shall use a Schwarz inequality,∣∣〈a|b〉∣∣2 ≤ 〈a|a〉 〈b|b〉 , (3.63)

which we can prove easily by the postulate 〈φ|φ〉 ≥ 0 for

|φ〉 = |a〉 − 〈b|a〉
〈b|b〉

|b〉 .

Applying Schwarz’s inequality to

|a〉 = (A− 〈A〉) |φ〉
and

|b〉 = (B − 〈B〉) |φ〉

we obtain,

|〈(A− 〈A〉)(B − 〈B〉)〉|2 ≤
〈
(A− 〈A〉)2

〉 〈
(B − 〈B〉)2

〉
(3.64)

Combining the inequalities 3.57 - 3.62 we obtain the “uncertainty principle”:〈
(∆A)2

〉 〈
(∆B)2

〉
≥ 1

4
|〈[A,B]〉|2 (3.65)
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3.11 Change of basis

Incompatible operators offer different sets of base-kets to describe the states
of a quantum mechanical system (furnishing a different “representation” for
each one of such operators).

Given two sets of base-kets there is a unitary operator which can transform
general states and operators from one basis to the other. Consider two Hermi-
tian operators A,B and their corresponding sets of eigenstates {|ai〉}, {|bi〉}
where,

A |ai〉 = ai |ai〉 , (3.66)

B |bi〉 = bi |bi〉 , (3.67)

and
〈ai|aj〉 = 〈bi|bj〉 = δij . (3.68)

There is a unitary operator U which transforms a state |ai〉 into a state |bi〉:

|bi〉 = U |ai〉 , (3.69)

with
UU† = U†U = 1. (3.70)

Explicitly, we can easily verify that

(3.71)U =
∑
k

|bk〉 〈ak| .

Indeed,

(3.72)
U |ai〉 =

∑
k

|bk〉 〈ak|ai〉 =
∑
k

|bk〉 δki

= |bi〉 .

Similarly,

(3.73)
U† |bi〉 =

∑
k

(
|bk〉 〈ak|

)† |bi〉 =
∑
k

(
|ak〉 〈bk|

)
|bi〉 =

∑
k

|ak〉 δki

= |ai〉 .

Finally,

(3.74)
U†U =

(∑
j

|aj〉 〈bj |

)(∑
k

|bk〉 〈ak|

)
=
∑
jk

|aj〉 〈bj |bk〉 〈ak|

=
∑
jk

|aj〉 δjk 〈ak| =
∑
j

|aj〉 〈aj | = 1 ,
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and

(3.75)
UU† =

(∑
j

|bj〉 〈aj |

)(∑
k

|ak〉 〈bk|

)
=
∑
jk

|bj〉 〈aj |ak〉 〈bk|

=
∑
jk

|bj〉 δjk 〈bk| =
∑
j

|bj〉 〈bj | = 1 .

3.11.1 Transformation matrix

The transformation matrix

(3.76)U =
∑
k

|bk〉〈ak|

is represented in the basis of {|ai〉} as

〈aj |U |ai〉 =
∑
k

〈aj |bk〉 〈ak|ai〉 =
∑
k

〈aj |bk〉 δki = 〈aj |bi〉 . (3.77)

An arbitrary state |φ〉 is written as

(3.78)|φ〉 =
∑
k

ck |ak〉 =
∑
k

〈ak|φ〉 |ak〉
.
=

á
〈a1|φ〉
〈a2|φ〉

...
〈aN |φ〉

ë
and in the {|ai〉} basis it is represented as a column vector with elements
〈ai|φ〉. Similarly, in the {|bi〉} basis it is represented as a column vector with
elements 〈bi|φ〉.

(3.79)|φ〉 =
∑
k

dk |bk〉 =
∑
k

〈bk|φ〉 |bk〉
.
=

á
〈b1|φ〉
〈b2|φ〉

...
〈bN |φ〉

ë
The two column vectors are related as follows:

(3.80)
〈bi|φ〉 =

∑
k

〈bi|ak〉 〈ak|φ〉

=
∑
k

〈ai|U† |ak〉 〈ak|φ〉 .
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In matrix form

(3.81)

Ü
...

〈bi|φ〉
...

ê
︸ ︷︷ ︸

new basis

=

Ü
. . .

... . .
.

. . . 〈ai|U† |ak〉 . . .

. .
. ...

. . .

ê
︸ ︷︷ ︸

〈ai|U†|ak〉 at ith row
and kth column

Ü
...

〈ak|φ〉
...

ê
︸ ︷︷ ︸

old basis

Let’s now look at changing representations for operators. In the two bases,
{|ai〉} and {|bi〉}, an operator X is represented by the matrices

〈aj |X |ai〉 and 〈bj |X |bi〉 ,

respectively. We write:

(3.82)

〈bj |X |bi〉 =
∑
k`

〈bj |ak〉 〈ak|X |a`〉 〈a`|bi〉

=
∑
k`

〈aj |U† |ak〉 〈ak|X |a`〉 〈a`|U |ai〉

Which, in matrix notation is written as 5

(3.83)

Ñ
〈bj |X |bi〉

é
︸ ︷︷ ︸

new basis

=

Ñ
〈aj |U† |ak〉

éÑ
〈ak|X |a`〉

é
︸ ︷︷ ︸

old basis

Ñ
〈a
`
|U |ai〉

é
.

3.11.2 Trace of operators

The trace of an operator is defined as

tr(X) =
∑
i

〈ai|X |ai〉 , (3.84)

5In the same manner as Eq. 3.81
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and it is independent of the representation. Indeed, for two representation
{|ai〉}, {|bi〉}, we have:∑

i

〈ai|X |ai〉 =
∑
ijk

〈ai|bj〉 〈bj |X |bk〉 〈bk|ai〉

=
∑
jk

〈bk|

(∑
i

|ai〉〈ai|

)
︸ ︷︷ ︸

1

|bj〉 〈bj |X |bk〉

=
∑
jk

〈bk|bj〉 〈bj |X |bk〉

=
∑
jk

δjk 〈bj |X |bk〉

=
∑
i

〈bi|X |bi〉 .

It is easy to prove the typical properties for traces, such as

tr(XY ) = tr(Y X). (3.85)

We also note that the trace of an outer product is an inner product,

tr
(
|c〉〈b|

)
=
∑
i

〈ai|c〉 〈b|ai〉 = 〈b|

(∑
i

|ai〉〈ai|

)
|c〉 = 〈b|c〉 . (3.86)

3.12 Eigenstates and eigenvalues

Suppose that we know the representation 〈ai|X |aj〉 of an operator X in a
basis {|ai〉}. We would like to compute the eigenstates of X in the same
representation. We have

X |bi〉 = bi |bi〉

; X
∑
l

|al〉〈al| |bi〉 = bi |bi〉

; 〈aλ|X
∑
l

|al〉〈al| |bi〉 = bi 〈aλ|bi〉

;
∑
l

〈aλ|X |al〉 〈al|bi〉 = bi 〈aλ|bi〉

which, in matrix notation, is cast as

(3.87)

Ö
〈a1|X |a1〉 . . . 〈a1|X |aN 〉

...
. . .

...
〈aN |X |a1〉 . . . 〈aN |X |aN 〉

èÖ
〈a1|bi〉

...
〈aN |bi〉

è
= bi

Ö
〈a1|bi〉

...
〈aN |bi〉

è
.
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We can find the eigenvalues bi and eigenstates

(3.88)

Ö
〈a1|bi〉

...
〈aN |bi〉

è
as eigenvalues and eigenstates of the matrix in the lhs of Eq. 3.87. The
eigenvalues satisfy,

det(X − bi1) = 0. (3.89)

Knowing the eigenvalues the eigenstates can be constructed as usual in linear
algebra by substituting bi explicitly in Eq. 3.87 and solving for the 〈ai|bi〉’s.

3.13 Unitary equivalent observables

Two operators A,B are equivalent if they can be related by a unitary trans-
formation.

B = UAU†, U† = U−1. (3.90)

These operators have the same eigenvalues and their eigenstates are related
by the same unitary transformation.

A |a〉 = a |a〉
; AU†U︸︷︷︸

1

|a〉 = aU†U︸︷︷︸
1

|a〉

;
(
UAU†

)
(U |a〉) = aUU†U |a〉

(3.91); B (U |a〉) = a (U |a〉) .

The operator B satisfies an eigenvalues equation

B |b〉 = b |b〉 .

Comparing with the above, we conclude that the eigenstates of the operator
B are

|b〉 = U |a〉 ,

and the eigenvalues are

b = a .
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Chapter 4

Time evolution

States evolve with time. In this chapter we will postulate how this happens
in nature. Our description of time evolution needs to be consistent with the
mathematical language of kets, bras and operators upon which we have for-
mulated the principle of quantum mechanics. This language is very restrictive
and leads to an elegant and austere formalism for time evolution. Consider a
state which evolves as:

|φ, t0〉 → |φ, t〉 , t ≥ t0. (4.1)

We introduce a time evolution operator and write a relation of the two states
at times t0 and t as

|φ, t〉 = U(t− t0) |φ, t0〉 . (4.2)

The operator U(t− t0) is a time evolution operator which as for now we have
only defined its purpose and name. We can guess some of the properties of
the time evolution operation easily.

i) Let us consider a normalized state |φ, t0〉. We would like that the time
evolution operator does not destroy the normalization of the states:

(4.3)〈φ, t|φ, t〉 = 1 .

This is satisfied if the time evolution operator is unitary:

(4.4)U†(t− t0)U(t− t0) = 1, t > t0 .

ii) We also expect that a time evolution t0 → t1 > t0 followed by a time
evolution t1 → t2 > t1 is equivalent to a time evolution t0 → t2

U(t2 − t1)U(t1 − t0) = U(t2 − t0). (4.5)

iii) Finally, we anticipate that

lim
t→t0

U(t− t0) = 1. (4.6)

53



4. Time evolution

For small times, all of the above are satisfied if

(4.7)U(∆t) = 1− iΩ∆t+O((∆t)2),

with

(4.8)Ω† = Ω .

We postulate that

Ω =
H

h̄
, (4.9)

where H is the Hamiltonian operator. This is inspired by classical mechanics,
where time translations are generated by the Hamiltonian.

4.1 Schrödinger equation

We start by the product property for a time translation in the interval

(4.10)(t0 = 0, t+ ∆t)

with ∆t being infinitesimal.

U(t+ ∆t) = U(∆t)U(t)

; U(t+ ∆t) =

Å
1− iH

h̄
∆t

ã
U(t)

; U(t) + ∆t
∂

∂t
U(t) =

Å
1− iH

h̄
∆t

ã
U(t)

·ih̄/∆t
; ih̄

∂

∂t
U(t) = HU(t). (4.11)

The operators of the left and right sides of the last equation acting on a state
at the starting time t0 = 0 give

(4.12)ih̄
∂

∂t
U(t) |φ, t0 = 0〉 = HU(t) |φ, t0 = 0〉

Recalling that

(4.13)U(t) |φ, t0 = 0〉 = |φ, t〉 ,

we obtain the equation of Schrödinger

(4.14)ih̄
∂

∂t
|φ, t〉 = H |φ, t〉 .
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4.2. Eigenstates of the Hamiltonian operator

For a constant Hamiltonian, H(t) = H, the solution of Schrödinger’s equation
is

(4.15)|φ, t〉 = e−
i
h̄ (t−t0)·H |φ, t0〉 .

For a time-dependent Hamiltonian with

(4.16)[H(t1), H(t2)] = 0, ∀ t1, t2 ∈ [t0, t]︸ ︷︷ ︸
interval

we have that

(4.17)|φ, t〉 = e
− i
h̄

∫ t
t0

dt′H(t′)
|φ, t0〉 .

The exponential of an operator X is defined through its series expansion

eX = 1 +X +
X2

2!
+ . . . (4.18)

4.2 Eigenstates of the Hamiltonian operator and time
evolution

Consider a constant Hamiltonian operator H with eigenstates |n〉 and eigen-
values En

H |n〉 = En |n〉 . (4.19)

A general state at an initial time t0 is written as

|ψ, t0〉 =

Ç∑
n

|n〉〈n|
å
|ψ, t0〉 . (4.20)

Acting with the time evolution operator we obtain

U(t− t0) |ψ, t0〉 = U(t− t0)

Ç∑
n

|n〉〈n|
å
|ψ, t0〉

; |ψ, t〉 = e−
i
h̄ (t−t0)·H

Ç∑
n

|n〉〈n|
å
|ψ, t0〉

; |ψ, t〉 =
∑
n

|n〉 e− i
h̄ (t−t0)·En 〈n|ψ, t0〉 . (4.21)

For the special situation where the initial state is also an eigenstate,

|ψ, t0〉 = |m〉 ,

55



4. Time evolution

we obtain

|ψ, t〉 =
∑
n

|n〉 e− i
h̄ (t−t0)·En 〈n|m〉

; |ψ, t〉 =
∑
n

|n〉 e− i
h̄ (t−t0)·Enδnm

; |ψ, t〉 = |m〉 e− i
h̄ (t−t0)·Em (4.22)

The time evolved state is the original eigenstate up to a phase factor unimpor-
tant for physics. Once a physical system is in an eigenstate of the Hamiltonian,
it will always remain in this eigenstate.

Assuming again that the system is in an eigenstate of the Hamiltonian, the
expectation value of a physical observable A at a later time t will be

〈A〉t = 〈φ, t|A |φ, t〉
= 〈m| e+ i

h̄ (t−t0)·HAe−
i
h̄ (t−t0)·H |m〉

= 〈m| e+ i
h̄ (t−t0)·EmAe−

i
h̄ (t−t0)·Em |m〉

(4.23)= 〈m|A |m〉 .

Therefore, expectation values of physical observables remain unchanged if the
system is in an eigenstate of the Hamiltonian.

Otherwise, we anticipate that expectation values “oscillate” among various
values. For an initial state (at t0 = 0)

|φ〉 =
∑
m

|m〉 〈m|φ〉 ,

we have that at a later time the expectation value becomes

〈A〉t = 〈φ, t|A |φ, t〉

= 〈φ| e+ i
h̄ (t−t0)·HAe−

i
h̄ (t−t0)·H |φ〉

=
∑
n,m

〈φ|m〉 〈m| e+ i
h̄ (t−t0)·HAe−

i
h̄ (t−t0)·H |n〉 〈n|φ〉

=
∑
n,m

〈φ|m〉 〈m| e+ i
h̄ (t−t0)·EmAe−

i
h̄ (t−t0)·En |n〉 〈n|φ〉

=
∑
n,m

e−i(t−t0)·ωnm 〈m|φ〉∗ 〈n|φ〉 〈n|A |m〉 , (4.24)

where the “oscillation” frequencies are

ωnm =
En − Em

h̄
. (4.25)
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4.3. Spin precession

4.3 Spin precession

Consider an electron, which is a spin- 1
2 particle, inside a magnetic field. The

potential energy of a classical magnetic dipole is given by

U = −µ ·B,

where µ is the dipole magnetic moment, proportional to the angular momen-
tum of the rotating electric charge. Inspired by this, we define a quantum
mechanical Hamiltonian operator

H = −
Å

e

mec

ã
S ·B, (4.26)

where S is the spin operator and B is the magnetic field. Let us take the
magnetic field to be along the ẑ direction,

B = Bẑ.

Thus

H = −
Å
eB

mec

ã
Sz ≡ ωSz, (4.27)

with

ω ≡ |e|B
mec

. (4.28)

The Hamiltonian and the operator of spin in the z-direction, Sz, commute.
Therefore, they must have a common set of eigenvalues. The spin operator
has two eigenstates

Sz |±〉 = ± h̄
2
|±〉 , (4.29)

which are also energy eigenstates with eigenvalues

H |±〉 = E± |±〉 , E± = ± h̄ω
2
. (4.30)

The time evolution operator is

U(t) = e−
iHt
h̄ = e−

iωtSz
h̄ . (4.31)

Acting on an initial state

(4.32)|φ〉 = c+ |+〉+ c− |−〉 ,

we obtain

(4.33)|φ, t〉 = c+e
−iωt/2 |+〉+ c−e

+iωt/2 |−〉 .

57



4. Time evolution

The coefficients c± are such that
(4.34)〈φ|φ〉 = 1 ,

(4.35); |c+|2 + |c−|2 = 1.

Let’s study the case of real c± coefficients and parametrize them in terms of
an “angle” θ, such that

c+ = cos θ, c− = sin θ. (4.36)

Exercise 4.1. generalize the following to arbitrary complex coefficients.

The state can be written as

|φ〉 = cos θ |+〉+ sin θ |−〉 . (4.37)

Note that there is an orthogonal state |ψ〉 to |φ〉,

|ψ〉 = − sin θ |+〉+ cos θ |−〉 , (4.38)

such that
〈φ|ψ〉 = 0.

The probability that the electron is found again at the same state |φ〉 after
some time t is given by

P1(t) = |〈φ|φ, t〉|2 = . . . = 1− sin2

Å
ωt

2

ã
sin2 (2θ) . (4.39)

Notice that for θ = 0, π2 , which corresponds to |φ〉 being an eigenstate |±〉 of
the Hamiltonian, the probability that the electron remains in the same state
is 100% at all times. For all other states, θ 6= 0, π2 , the probability oscillates
with time. There exist, however, periodic times,

t = n
2π

ω
, n = 0, 1, 2, . . .

for which the probability is always one,

P1

Å
t =

2π

ω

ã
= 1.

The probability to transition to the orthogonal state ψ after some time t is

P2(t) = |〈ψ|φ, t〉|2 = . . . = sin2

Å
ωt

2
t

ã
sin2 (2θ) . (4.40)

As you can observe, the total probability is conserved

P1 + P2 = 1.
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4.4. Heisenberg and Schrödinger picture of time evolution

P1(t)

P2(t)

P (t)

t
0 π

ω
2π
ω

3π
ω

4π
ω

0

0.2

0.4

0.6

0.8

1

Figure 4.1: The probability
P1 for a transition to the ini-
tial state and the probabiltity
for a transition to its orthogo-
nal state after some time t as
a function of t.

4.4 Heisenberg and Schrödinger picture of time
evolution

A physical system described by |b〉 which evolves in time

(4.41a)|b, t0〉 → |b, t〉 = U (t, t0)︸ ︷︷ ︸
time evolu-

tion operator

|b, t0〉 ,

with

(4.41b)U†U = 1

(4.41c)ih̄
dU

dt
= HU .

Remember that if H is time independent ; U = e−iHt/h̄

Let’s set t0 = 0 and talk about

(4.42)U(t) ≡ U(t, t0 = 0) .

Information about the system comes from objects like

(4.43)〈b|X |a〉 ,

where X is an operator corresponding to an observable. How does this quan-
tity evolve with time?

(4.44)〈b|X |a〉 →
(
〈b|U†

)
X (U |a〉) = 〈b|U†XU |a〉 .
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4. Time evolution

Up to now information about time evolution was carried by the state kets.

4.4.1 Shift in picture:

Define
(4.45)|a〉H = |a, 0〉S ,

that does not evolve in time. Now define

(4.46)XH = U†XSU ,

which does evolve in time. In this picture (Heisenberg) the time evolution
information is carried by the operators!

So physical observables correspond to operators that might be changing in
time, like in classical mechanics. How do the operators change?

(4.47a)
dXH

dt
=

d

dt

(
U†XSU

)
=

dU†

dt
XSU + U†XS

dU

dt
.

(4.47b);
dXH

dt
=

1

ih̄
U† [XH , H]U =

1

ih̄
[XS , H] ,

which is known as the Heisenberg equation of motion. Notice the analogy
with classical mechanics and the Poisson equation

(4.48)
dX

dt
= {X,H} Poisson .
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4.4. Heisenberg and Schrödinger picture of time evolution

4.4.2 Recapitulation

Schrödinger Heisenberg

|S〉S evolves: |S〉H doesn’t change
|S〉 → U |S〉

AS doesn’t evolve AH evolves
AH → U†AHU

Eigenstates don’t evolve: Eigenstates evolve:
AS |a〉S = a |a〉S

→ AS |a〉S = a |a〉S .
AH |a〉H = a |a〉H

→ U†AHUU
† |a〉H = aU† |a〉H ,

so |a〉H → U† |a〉H .

This means that
d |a〉H

dt
=
−1

ih̄
H |a′〉H .

expansion coefficients

ca(0) = 〈a, 0|S, 0〉

ca(t) = 〈a|S, t〉S
= 〈a, 0|U |S, 0〉S

ca(t) = 〈a, t|S, t〉H
= 〈a, 0|U |S, 0〉H

transition amplitude

base bra→ 〈b, 0|a, 0〉 ← state

〈b, t|a, t〉S 〈b, t|a, t〉H
〈b, 0|U |a, 0〉S 〈b, 0|U |a, 0〉H
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Chapter 5

Two-state systems

Consider a system with only two base states

|1〉 .=
Å

1
0

ã
|2〉 .=

Å
0
1

ã
.

The Hamiltonian of the system represented in this basis is

(5.1)H
.
=

Å
H11 H12

H∗12 H22

ã
,

where

Hij = H∗ji = 〈i|H |j〉 ,

so that

H† = H.

We shall assume for now that the Hamiltonian is independent of time,

(5.2)H(t) = H, ∀ t .

The Hamiltonian has two energy eigenstates with eigenvalues E satisfying

(5.3)det

Å
H11 − E H12

H∗12 H22 − E

ã
= 0 .

This yields the solutions

E± =
H11 +H22 ±

√
∆

2
, ∆ = (H11 −H22)2 + 4|H12|2. (5.4)

The energy eigenstates, |E±〉, satisfy

(5.5)(H − E±1) |E±〉 = 0 .
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5. Two-state systems

We find (exercise) that

|E±〉 =
1»

|H12|2+ (E± −H11)
2

Å
H12

E± −H11

ã
, (5.6)

where we have normalized so that 〈E±|E±〉 = 1. They also satisfy (exercise)

〈E±|E∓〉 = 0.

5.1 The ammonia molecule

In this section we will describe a simplified model of the ammonia molecule
NH3. The molecule consists of three hydrogen and one nitrogen atoms and
can be depicted as in Fig 5.1. Let us make the simplifying assumption that

Figure 5.1: The rotation of the
molecule of ammonia around its axis
can be described as a two-state sys-
tem.

H
H

H

N

H

H

H

N

|1〉

|2〉

the collective motion of the molecule is not important and focus only on the
spinning motion of the molecule around its axis. The molecule can spin in
two different ways; the nitrogen atom is “above” the plane of the hydrogen
atoms or “below” that plane. We denote the two states corresponding to the
two types of rotations as |1〉 , |2〉. Ignoring all other motions, we can consider
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5.1. The ammonia molecule

these kets as base kets:

(5.7)|1〉 .=
Å

1
0

ã
, |2〉 .=

Å
0
1

ã
.

We assume that the system is completely symmetric under exchanging the
states |1〉 , |2〉. Specifically, the expectation value for the energy in the two
states is the same:

(5.8)〈1|H |1〉 = 〈2|H |2〉 = E0 .

We also allow for a probability that with time the nitrogen atom can push
the hydrogen plane and flip its state:

(5.9)〈1|H |2〉 = 〈2|H |1〉 = −A .

The Hamiltonian of the system can be written as

(5.10)H
.
=

Å
E0 −A
−A E0

ã
.

The energy eigenvalues are
E± = E0 ±A (5.11)

and the corresponding eigenstates are

|+〉 =
1√
2

Å
1
−1

ã
, |−〉 =

1√
2

Å
1
1

ã
. (5.12)

The time evolution operator is a function of the Hamiltonian:

U(t) = e−
iHt
h̄ . (5.13)

Exercise 5.1. Show that the matrix U(t) is a polynomial with no quadratic
or higher order terms in H.

In the {|+〉 , |−〉} basis

U(t)
.
=

Å
〈+|U(t) |+〉 〈+|U(t) |−〉
〈−|U(t) |+〉 〈−|U(t) |−〉

ã
(5.14)

=

(
exp
Ä
− i(E+A)t

h̄

ä
0

0 exp
Ä
− i(E−A)t

h̄

ä) . (5.15)
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5. Two-state systems

We now compute the transformation matrix,

|b〉 〈a| , |a〉 ∈ {|+〉 , |−〉}, |b〉 ∈ {|1〉 , |2〉}.

To obtain the representation of U(t) in the {|1〉 , |2〉} basis, we use that

〈i1|U(t) |i2〉 =
∑
kl

〈i1|ek〉 〈ek|U(t) |el〉 〈el|i2〉 , i1,2 ∈ {1, 2}, e1,2 ∈ {+,−}.

(5.16)

In matrix notation we have

(5.17)

time evolution operator
in {|1〉 , |2〉} basis︷ ︸︸ ︷Å

〈1|U(t) |1〉 〈1|U(t) |2〉
〈2|U(t) |1〉 〈2|U(t) |2〉

ã
=

Å
〈1|+〉 〈1|−〉
〈2|+〉 〈2|−〉

ã
︸ ︷︷ ︸

basis transformation
{|+〉,|−〉}→{|1〉,|2〉}

Å
〈+|U(t) |+〉 〈+|U(t) |−〉
〈−|U(t) |+〉 〈−|U(t) |−〉

ã
︸ ︷︷ ︸

time evolution operator
in {|+〉 , |−〉} basis

Å
〈+|1〉 〈+|2〉
〈−|1〉 〈−|2〉

ã
︸ ︷︷ ︸

basis transformation
{|1〉,|2〉}→{|+〉,|−〉}

,

which yields the time evolution operator in the {|1〉 , |2〉} basis

U(t)
.
= exp

Å
− iE0t

h̄

ãÑ cos
(
At
h̄

)
i sin

(
At
h̄

)
i sin

(
At
h̄

)
cos
(
At
h̄

)
é
. (5.18)

It is easy to verify (exercise) that the evolution operator does not change
(except up to a phase) the energy eigenstates:

U(t) |±〉 = exp

Å
− iE±

h̄

ã
|±〉 . (5.19)

Unsurprisingly, we also find that if we start from any other state at t = 0 the
system changes. For a general state, |ψ, t0 = 0〉 with norm 〈ψ, t0|ψ, t0〉

|ψ, t0 = 0〉 .= eiφ
Å

cos θ
sin θ

ã
, (5.20)

we find that it evolves as

|ψ, t〉 .= ei(φ−E0t/h̄)

Ñ
cos θ cos

(
At
h̄

)
+ i sin θ sin

(
At
h̄

)
sin θ cos

(
At
h̄

)
+ i cos θ sin

(
At
h̄

)
é
. (5.21)
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5.2. The ammonia molecule inside an electric field

The probability P1 that the ammonia molecule is found to be at the same
state |ψ, t0 = 0〉 after some time t has elapsed is

P1 =
∣∣〈ψ, t0 = 0|ψ, t〉

∣∣2 = 1− sin2

Ç
At

h̄

å
cos2(2θ). (5.22)

We notice that for times

t =
nπh̄

A
, n = 0, 1, 2, . . . (5.23)

the molecule is certainly P1 = 1 back to the original state. For values of θ
corresponding to the energy eigenstates, θ = ±π4 , the molecule remains in the
original state at all times.

At t0 = 0 we can find a state |ξ, t0 = 0〉 which is orthogonal to |ψ, t0 = 0〉,
satisfying

〈ψ, t0 = 0|ξ, t0 = 0〉 = 0.

Namely,

|ξ, t0 = 0〉 .= eiφ
Å

sin θ
− cos θ

ã
. (5.24)

The probability P2 that the ammonia molecule transitions after some time t
from the state |ψ, t0 = 0〉 to its orthogonal |ξ, t0 = 0〉 is

P2 =
∣∣〈ξ, t0 = 0|ψ, t〉

∣∣2 = sin2

Ç
At

h̄

å
cos2(2θ), (5.25)

and we find that
P1 + P2 = 1.

The time evolution is completely analogous to the evolution of a spin-1/2
particle inside a magnetic field which we have studied earlier.

5.2 The ammonia molecule inside an electric field

The distribution of the electric charges in the ammonia molecule is not spa-
tially symmetric; it has a non-zero electric dipole moment with a vertical
direction from the hydrogen plane to the nitrogen atom. When the molecule
is placed inside an electric field E, the energy of the molecule in the states
|1〉 , |2〉 is not the same anymore since in one state the dipole moment d is in
the direction of the electric field and in the other against it. We then have
the Hamiltonian

H
.
=

Å
E0 + dE −A
−A E0 − dE

ã
(5.26)
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5. Two-state systems

Figure 5.2: The molecule in-
side an electric field develops
an electric dipole moment with
a vertical direction from the ni-
trogen atom to the plane of the
hydrogen atoms.

E

d

d

H
H

H

N

H

H

H

N

|1〉

|2〉

The energy eigenvalues are

E± = E0 ±
√
A2 + d2E2. (5.27)

For weak electric fields, dE � E0, we can approximate 1

E± ≈ E0 ±A±
d2E2

2A
. (5.28)

In an inhomogeneous electric field, the molecules will move to the regions of
the field where they can minimize their energy. The force acting on a molecule
in a |±〉 state is,

(5.29)F± = −∇E± = ∓ d
2

2A
∇E2 .

The electric force acts opposite to the molecules in the two energy eigenstates
and separates them.

1second order Taylor approximation
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5.3. Ammonia in an oscillating electric field

|+〉

|−〉

∇E2

Figure 5.3: The force on ammonia
molecules inside an inhomogeneous
electric field is opposite for the two
energy eigenstates.

5.3 Ammonia in an oscillating electric field

Let us put the ammonia molecule in a time varying electric field

E cos(ωt).

The Hamiltonian is

H(t)
.
=

Å
E0 + dE cos(ωt) −A

−A E0 − dE cos(ωt)

ã
. (5.30)

Notice (exercise) that the Hamiltonian at one time t1 does not commute with
the Hamiltonian at a later time t2:

[H(t1), H(t2)] 6= 0 .

We now need to solve Schrödinger’s equation

ih̄
∂

∂t
|ψ, t〉 = H(t) |ψ, t〉 (5.31)

in a complicated time-varying situation. Without loss of generality, we write

|ψ, t〉 = exp

Å
− iH0t

h̄

ã
|φ, t〉 , (5.32)

where

H0 =

Å
E0 −A
−A E0

ã
, (5.33)

is the Hamiltonian in the absence of the electric field. Schrödinger’s equation
becomes

ih̄
∂

∂t
|φ, t〉 = HI(t) |φ, t〉 , (5.34)
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5. Two-state systems

with

HI(t) = exp

Å
+
iH0t

h̄

ã
[H(t)−H0] exp

Å
− iH0t

h̄

ã
. (5.35)

We have already computed the exponential of H0 in Eq. 5.18. After a bit of
calculation (exercise) we find

HI(t) = dE cos(ωt)

Å
cos(ω0t) i sin(ω0t)
−i sin(ω0t) − cos(ω0t)

ã
(5.36)

with

ω0 =
2A

h̄
. (5.37)

Now, we make one last trick and rewrite

|φ, t〉 = V |ρ, t〉 , (5.38)

where V is the transformation matrix from the {|1〉 , |2〉} basis to the basis of
energy eigenkets {|+〉 , |−〉} of the free ammonia molecule.

V =

Å
〈+|1〉 〈−|1〉
〈+|2〉 〈−|2〉

ã
=

1√
2

Å
1 1
−1 1

ã
. (5.39)

We obtain,

ih̄
∂

∂t
|ρ, t〉 =

(
V †HI(t)V

)
|ρ, t〉 . (5.40)

In components

(5.41)
ih̄
∂

∂t

Å
ρ1(t)
ρ2(t)

ã
=
dE
2

Å
0 e+i(ω0−ω)t + e+i(ω0+ω)t

e−i(ω0−ω)t + e−i(ω0+ω)t 0

ãÅ
ρ1(t)
ρ2(t)

ã
.

Now, we will assume that the electric field is small (dE � E0). The |ρ, t〉 ket
should not change very fast in comparison to the rapidly oscillating exponen-
tial terms with frequency ω + ω0. These oscillations average to a zero value
and do not contribute much to the change of the ρi coefficients. We make an
approximation and ignore them. The exponentials with frequency ω−ω0 are
also rapidly oscillating unless the two frequencies are very close to each other.

We write

ih̄
∂

∂t

Å
ρ1(t)
ρ2(t)

ã
≈ dE

2

Å
0 e+i(ω0−ω)t

e−i(ω0−ω)t 0

ãÅ
ρ1(t)
ρ2(t)

ã
. (5.42)
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5.3. Ammonia in an oscillating electric field

5.3.1 Transitions at resonance

Let’s consider the situation where the frequency of the electric field is tuned
to be ω = ω0.

ih̄
∂

∂t

Å
ρ1(t)
ρ2(t)

ã
≈ dE

2

Å
0 1
1 0

ãÅ
ρ1(t)
ρ2(t)

ã
(5.43)

Combining the two equations, we obtain a second order differential equation
for the coefficients ρi:

ρ′′i = −ω2
eρi, ωe =

dE
2h̄

(5.44)

which are the equations of a harmonic oscillator. The solution of our system
of differential equations is

ρ1(t) = a cos(ωet) + a sin(ωet) (5.45)

ρ2(t) = ib sin(ωet)− ib cos(ωet) (5.46)

We then find

|ψ, t〉 = U(t) |φ, t〉 = U(t)V |ρ, t〉 = U(t)

Ñ
(a+ib)√

2
e−iωet

(a−ib)√
2
e+iωet

é
. (5.47)

Let’s assume that at t = 0 the molecule is in the |−〉 energy eigenstate (of
H0), where

|−〉 =
1√
2

Å
1
1

ã
.

This fixes the values of the coefficients

a = 1, b = 0,

and we have

|ψ, t〉 =
U(t)√

2

Ñ
e−iωet

e+iωet

é
. (5.48)

The probability that the molecule is found at the other energy eigenstate (of
H0)

|+〉 =
1√
2

Å
1
−1

ã
.
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5. Two-state systems

after some time t is

(5.49)P
(
|−〉 → |+〉

)
=
∣∣〈+|ψ, t〉∣∣2 =

∣∣〈+|U(t) |φ, t〉
∣∣2

=
∣∣〈+|φ, t〉∣∣2

In the above we have used that the time-evolution operator U(t) does not
change the energy eigenstate |+〉 except up to an overal phase which drops
out in taking the modulus for the probability. Substituting, we find

P
(
|−〉 → |+〉

)
= sin2(ωet). (5.50)

Similarly, the probability for the molecule to be found again in the state |−〉
is

P
(
|−〉 → |−〉

)
= cos2(ωet). (5.51)

5.3.2 Microwave amplification with stimulated emission of
radiation

|−〉

|+〉

Stern-Gerlach

microwave
cavity

|−〉

Figure 5.4: The ammonia maser

We now discuss the ammonia maser which is based on the quantum behavior
of the two-state molecule. By means of a static inhomogeneous electric field
in a Stern-Gerlach type of apparatus, we can separate molecules in the two
energy eigenstates. Molecules in the upper state are directed into a cavity with
an oscillating electric field having the resonance frequency ω = ω0 = 2A/h̄.
After time T = 2π

ωe
the molecules will transition to the lower energy eigenstate,
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5.3. Ammonia in an oscillating electric field

losing energy equal to the difference of the two energy eigenvalues. This
energy feeds back to the oscillating electric field. To avoid that the molecules
transition back to the original state, thus recapturing the released energy, we
arrange the length of the cavity such that the molecules exit the cavity in
time T .

Exercise: Prove that ∫ +∞

−∞
dx

sin2 x

x2
= π. (5.52)

5.3.3 Transition off resonance

We now solve the differential equation for very small times t and ω ∼ ω0.

ih̄
∂

∂t

Å
ρ1(t)
ρ2(t)

ã
≈ dE

2

Å
0 e+i(ω0−ω)t

e−i(ω0−ω)t 0

ãÅ
ρ1(t)
ρ2(t)

ã
. (5.53)

Assuming that we start from a |+〉 state corresponding to ρ1(0) = 1, ρ2(0) = 0,
for very small times the coefficient ρ1(t) will remain very close to 1. Then,
we have

ih̄
∂

∂t
ρ2(t) =

dE
2
e−i(ω0−ω)t (5.54)

which yields

ρ2(t) =
dE
2h̄

1− e−i(ω−ω0)t

ω − ω0
(5.55)

The probability for a transition is

(5.56)P (|+〉 → |−〉) =

ï
dE
h̄

ò2 sin2 [(ω − ω0)t/2]

[ω − ω0]
2

This is a function peaked very much around ω = ω0.
Exercise: Plot it! Unless we are spot-on on the frequency of the MASER, a
transition does not occur.
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Chapter 6

Position and momentum

6.1 Continuous spectra

For operators with a continuous spectrum of eigenvalues, such as the position
and momentum operators, we need some generalizations. Consider such a
Hermitian operator Ξ with eigenstates |ξ〉 and eigenvalues ξ

Ξ |ξ〉 = ξ |ξ〉 , (6.1)

where ξ is a continuous variable. We postulate the properties of the states |ξ〉
in complete analogy to the discrete case, turning summations into integrations
and Kronecker δ symbols into Dirac delta functions:

Discrete Continuous

Kronecker δij Dirac δ(ξ − ξ′)

〈i|j〉 = δij 〈ξ|ξ′〉 = δ(ξ − ξ′)

|φ〉 =
∑
i |i〉 〈i|φ〉 |φ〉 =

∫
dξ |ξ〉 〈ξ|φ〉

Proofs are very similar in the continuous and discrete cases. For example, for
a general state |φ〉 which can be written as a superposition of eigenstates |i〉
of an operator with a discrete set of of eigenvalues, we have:

〈φ|φ〉 = 1 ;
∑
i

|〈i|φ〉|2 = 1. (6.2)

If it can be written as a superposition of an operator with a continuous spec-
trum of eigenstates

1 = 〈φ|φ〉 =

∫
dξ 〈φ| (|ξ〉〈ξ|) |φ〉

(6.3); 1 =

∫
dξ |〈ξ|φ〉|2

75



6. Position and momentum

6.2 Position operator and eigenstates

We define position operators x̂, ŷ, ẑ which commute with each other:

[x̂, ŷ] = [ŷ, ẑ] = [ẑ, x̂] = 0. (6.4)

These operators have a common set of eigenstates, |x, y, z〉, with

(6.5)x̂ |x, y, z〉 = x |x, y, z〉 ,
(6.6)ŷ |x, y, z〉 = y |x, y, z〉 ,
(6.7)ẑ |x, y, z〉 = z |x, y, z〉 .

We identify the eigenvalues x, y, z with the positions in the x−, y−, z−directions
accordingly. Employing a compact notation, we can write

|r〉 ≡ |x, y, z〉 .

Also, when there is no risk of confusion of the position operators and their
eigenstates, we may drop theˆnotation for the operators.

A quantum state |φ〉 can be expressed as a superposition of position eigen-
states.

|φ〉 =

∫
d3r |r〉 〈r|φ〉 . (6.8)

An experimental measurement of the position will collapse a general state |φ〉
to a state |r〉:

|φ〉 −→ |r〉

with a probability amplitude 〈r|φ〉. This is amplitude is the so-called wave-
function. In practice, a measurement to a single point is impossible and a
region d3r around a point r needs to be considered. The probability den-
sity for such a transition is the squared modulus of the wave-function. The
probability is then

P
Ä
|φ〉 → ( d3r around r)

ä
= d3r

∣∣〈r|φ〉∣∣2 . (6.9)

6.3 Translation operator

Lets’s start with a position state |x〉 and define an operator P such that it
transforms the state into a new position eigenket |x + ∆x〉:

P |x〉 = |x + ∆x〉 , (6.10)
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6.3. Translation operator

The action of the operator P on a general state |φ〉,

|φ〉 =

∫
d3x1 |x1〉 〈x1|φ〉

is

P |φ〉 = P︸︷︷︸
operator

∫
d3x1 |x1〉︸︷︷︸

state

〈x1|φ〉︸ ︷︷ ︸
number

=

∫
d3x1 (P |x1〉) 〈x1|φ〉

=

∫
d3x1 |x1 + ∆x〉 〈x1|φ〉 .

Changing variables

x1 → x1 −∆x

we obtain

(6.11)P |φ〉 =

∫
d3x1 |x1〉 〈x1 −∆x|φ〉 .

6.3.1 Properties of the translation operator

For the translation operator P (∆x) we can demand the following properties

i) A translated state
|φ′〉 = P (∆x) |φ〉 ,

must also have a unit norm,

1 = 〈φ′|φ′〉 = 〈φ|P †(∆x)P (∆x) |φ〉 . (6.12)

The above is satisfied if the translation operator is unitary:

P †(∆x)P (∆x) = 1. (6.13)

ii) We also require that two successive translations by ∆xa and ∆xb are
equivalent to a single translation by ∆xa + ∆xb, i.e

P (∆xa)P (∆xb) |x〉 = P (∆xa) |x + ∆xb〉 = |x + ∆xb + ∆xa〉
= P (∆xa + ∆xb) |x〉 .

This is satisfied if

(6.14)P (∆xa)P (∆xb) = P (∆xa + ∆xb).
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6. Position and momentum

iii) The inverse of the translation operator is a translation operator too,
translating by the opposite amount,

P (∆x)P (−∆x) |x〉 = |x〉 ,

which is satisfied if
P (∆x)−1 = P (−∆x). (6.15)

iv) Finally, in the limit of infinitesimally small translations,

lim
∆x→0

|x + ∆x〉 = |x〉 ,

the translation operator is the unit operator

lim
∆x→0

P (∆x) = 1. (6.16)

6.3.2 Generator of translations

For small translations, an operator which satisfies all of the above properties
is

P (∆x) = 1− iK ·∆x +O
(
(∆x)2

)
, (6.17)

where K is a hermitian operator,

P †(∆x)P (∆x) = 1 (6.18)

; K† = K. (6.19)

The operators K ≡ (Kx,Ky,Kz) do not commute with the position operators
r̂ ≡ (x̂, ŷ, ẑ). We have that,

r̂P (∆x) |y〉 = r̂ |y + ∆x〉 = |y + ∆x〉 (y + ∆x). (6.20)

Applying the operators in the reverse order

P (∆x)r̂ |y〉 = P (∆x) |y〉y = |y + ∆x〉y. (6.21)

Thus,
[r̂, P (∆x)] |y〉 = ∆x |y + ∆x〉 . (6.22)

Expanding in ∆x, using Eq. 6.18 and that

|y + ∆x〉 (∆x) = |y〉 (∆x) +O
(
(∆x)2

)
, (6.23)

we obtain
[r̂,−iK ·∆x] |y〉 = (∆x) |y〉 . (6.24)
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6.3. Translation operator

The same identity holds for an arbitrary state

|φ〉 =

∫
d3y |y〉〈y| ,

i.e.
[r̂,−iK ·∆x] |φ〉 = (∆x) |φ〉 (6.25)

Thus, the operators of the left and right hand sides must be equal:

[r̂,K ·∆r] = i∆r. (6.26)

In components,
[x̂,Kx∆x+Ky∆y +Kz∆z] = i∆x ,

[ŷ,Kx∆x+Ky∆y +Kz∆z] = i∆y ,

[ẑ, Kx∆x+Ky∆y +Kz∆z] = i∆z .

For ∆y = ∆z = 0 and ∆x 6= 0, we obtain

[x̂,Kx] = i, [x̂,Ky] = [x̂,Kz] = 0. (6.27)

Similarly, we can prove the general set of commutation relationsî
ˆ̀,Kk

ó
= iδ`k, `, k = x, y, z. (6.28)

6.3.3 Momentum operator

It is an axiom of quantum mechanics that the operator K is proportional to
the operator of momentum p. This is inspired by classical physics, where the
generator of displacements is indeed the momentum (recall the Hamiltonian
formalism and Poisson brackets). The explicit relation is

K =
p

h̄
, (6.29)

where 2πh̄ is Planck’s constant. From Eq. 6.28 we obtain the commutation
relations for the position and momentum operators:î

ĵ, pk
ó

= ih̄δjk, j, k = x, y, z. (6.30)

Given that the operators of position and momentum in the same direction do
not commute, the values of these observables cannot be determined simulta-
neously. From the general uncertainty relation,〈

(∆A)2
〉 〈

(∆B)2
〉
≥ 1

4

∣∣ [A,B]
∣∣2 , (6.31)
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6. Position and momentum

we obtain that

〈
(∆x)2

〉 〈
(∆px)2

〉
≥ h̄2

4
, (6.32)〈

(∆y)2
〉 〈

(∆py)2
〉
≥ h̄2

4
, (6.33)〈

(∆z)2
〉 〈

(∆pz)
2
〉
≥ h̄2

4
. (6.34)

6.3.4 Translations of arbitrary length

The translation operator for small translations is

P (∆r) = 1− ip ·∆r

h̄
, (6.35)

where p is the momentum operator. To perform a large translation rB − rA
from a point A to a point B we divide the translation into infinitesimally
small steps,

rB − rA
N

= ∆r, N →∞ (6.36)

and perform an infinite number of very small translations ∆r in succession:

|x + rB − rA〉 = P (∆r)N

= lim
N→∞

Å
1− ip ·∆r

h̄

ãN
|x〉

= lim
N→∞

Å
1− ip · (rA − rB)

N h̄

ãN
|x〉

which leads to,

(6.37)|x + rB − rA〉 = U(rB − rA) |x〉 ,

with

(6.38)U(r) = e−
i
h̄p·r .

The exponential of an operator is defined as usual through its Taylor series
expansion at all orders,

eX =
∞∑
n=0

Xn

n!
.
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6.3. Translation operator

xA
xC

xB
xD

Figure 6.1: Two different
paths to translate from a point
xA to a point xB .

6.3.5 Commutator of momentum operators

We consider the position eigenstates xA and xB . We relate the two states
with the product of two successive translations, one in the x−direction by an
amount ∆x and one in the y−direction by an amount ∆y. This translation
goes through an intermediate point xC as depicted in Fig. 6.1. Performing
the same displacements in the reverse order leads to the same final point xB
through a different point xD this time.

The two translations through either point xC or xD lead to the same position
eigenstate. We write,

|xB〉 = U(∆x)U(∆y) |xA〉 = U(∆y)U(∆x) |xA〉 (6.39)

This yields
[U(∆x), U(∆y)] |xA〉 = 0, (6.40)

and for small ∆x,∆y
(6.41)

(6.42)

ï
1− i

h̄
p̂x∆x, 1− i

h̄
p̂y∆y

ò
|xA〉 = 0 ,

(6.43); [p̂x, p̂y] |xA〉 = 0.

This identity is valid for any general position eigentstate xA and paths in the
x− z or y − z planes as well. Thus, the momentum operators must satisfy

[p̂x, p̂y] = [p̂y, p̂z] = [p̂x, p̂z] = 0 (6.44)

Given that the momentum operators commute with each other, they have a
common set of eigenstates which we label with the eigenvalues of momentum
in the three directions

(6.45)|p〉 ≡ |px, py, pz〉 ,
where

(6.46)p̂x |px, py, pz〉 = px |px, py, pz〉
(6.47)p̂y |px, py, pz〉 = py |px, py, pz〉
(6.48)p̂z |px, py, pz〉 = pz |px, py, pz〉
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6. Position and momentum

6.3.6 Commutation relations

By imposing that the momentum operator is a generator of space-translations
we have arrived to the following commutation relations:

[r̂i, r̂j ] = 0, [p̂i, p̂j ] = 0, [r̂i, p̂j ] = ih̄δij . (6.49)

Alternatively, one could have considered then as postulates of quantum me-
chanics and derive that the momentum is generator of translations. We find
the first approach more intuitive and aesthetically more appealing.

6.4 Wave-function

The eigenstates of the position operator

r̂ |r〉 = r |r〉

are orthonormal
〈r1|r2〉 = δ(3)(r1 − r2)

and form a complete basis such that every other one-particle state can be
written as a superposition

|φ〉 =

∫
d3r |r〉 〈r|φ〉 .

A measurement of the position will collapse the state |φ〉 into a position
eigenstate |r〉 with a probability amplitude

ψφ(r) ≡ 〈r|φ〉 . (6.50)

The wave-function ψφ(r) is simply the probability amplitude that a particle
in a state |ψ〉 is measured at a position |r〉.
A description of quantum states in terms of wavefunctions corresponds to a
representation of quantum states in the basis of eigenstates of the position
operator. Although important, the position operator and the wavefunction
representation are not more special than other operators and their represen-
tations. However, traditionally, many of the results of quantum mechanics
have been worked out in the position representation first. For example, scalar
products of quantum states are:

〈a|b〉 =

∫
d3r 〈a|r〉 〈r|b〉

; 〈a|b〉 =

∫
d3r ψ∗a(r)ψb(r). (6.51)
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6.5. Representation of momentum in position space

6.5 Representation of momentum in position space

Let’s act with a small translation operator on an arbitrary state |a〉Å
1− ip̂ · δr

h̄

ã
|a〉 =

Å
1− ip̂ · δr

h̄

ã∫
d3x |x〉 〈x|a〉

=

∫
d3x |x + δr〉 〈x|a〉

=

∫
d3x |x〉 〈x− δr|a〉

For small displacements, we can expand up to linear terms in δr:

〈x− δr|a〉 = 〈x|a〉 − δr · ∇ 〈x|a〉

Substituting above, we haveÅ
1− ip̂ · δr

h̄

ã
|a〉 =

∫
d3x |x〉 〈x|a〉 −

∫
d3x |x〉 (δr · ∇) 〈x|a〉

= |a〉 −
∫

d3x |x〉 (δr · ∇) 〈x|a〉

Comparing the two sides of the equation, we have

(6.52)p̂ |a〉 =

∫
d3x |x〉 [−ih̄∇] 〈x|a〉

and,

(6.53)
〈r| p̂ |a〉 =

∫
d3x 〈r|x〉 [−ih̄∇] 〈x|a〉

=

∫
d3x δ (r− x) [−ih̄∇] 〈x|a〉

which leads to

(6.54)〈r| p̂ |a〉 = [−ih̄∇r] 〈r|a〉 .

Finally, we obtain the representation of the momentum operator in the position-
ket basis by setting |a〉 = |r′〉, a position eigenstate,

(6.55)〈r| p̂ |r′〉 = [−ih̄∇r] 〈r|r′〉 ,

we find

(6.56)〈r| p̂ |r′〉 = [−ih̄∇r] δ (r− r′) .
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6.6 Eigenstates of the momentum operator

The eigenstates of the momentum operator satisfy:

p̂ |p〉 = p |p〉 (6.57)

with
〈p1|p2〉 = δ(3) (p1 − p2) . (6.58)

The probability that a particle with a momentum p is found at a position x
is

〈x|p〉 .
Consider

〈x| p̂ |p〉 = p 〈x|p〉 ,
but also, from the previous section,

〈x| p̂ |p〉 = −ih̄∇〈x|p〉 .

We have then derived the following differential equation for the requested
probability amplitude:

− ih̄∇〈x|p〉 = p 〈x|p〉 (6.59)

which has a solution
〈x|p〉 = Ne

ip·x
h̄ (6.60)

We compute the normalization constant as follows:

δ(3)(x− y) = 〈x|y〉 =

∫
d3p 〈x|p〉 〈p|y〉 =

∫
d3p 〈x|p〉 〈y|p〉∗

= |N |2
∫

d3p ei
p
h̄ (x−y) = |N |2 (2πh̄)3δ(3)(x− y)

; |N | = 1

(2πh̄)
3/2

.

Thus, we can write

〈x|p〉 =
1

(2πh̄)
3/2

e
ip·x
h̄ . (6.61)

6.6.1 Position and momentum wave-functions

Let’s assume that a particle is in a state |φ〉. The probability amplitudes for
finding the particle at a position x or to have a momentum p are given by
the position and momentum wavefunctions

〈x|φ〉 , 〈p|φ〉
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6.6. Eigenstates of the momentum operator

respectively. The two amplitudes are related by a Fourier transformation.
Indeed,

(6.62)
〈x|φ〉 =

∫ +∞

−∞
d3p 〈x|p〉 〈p|φ〉

=

∫ +∞

−∞

d3p

(2πh̄)
(3/2)

ei
p
h̄ ·x 〈p|φ〉 .

Similarly,

(6.63)
〈p|φ〉 =

∫ +∞

−∞
d3x 〈p|x〉 〈x|φ〉

=

∫ +∞

−∞

d3x

(2πh̄)
(3/2)

e−i
x
h̄ ·p 〈x|φ〉 .
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6.7 Ehrenfest theorem

6.7.1 Free particles in the Heisenberg picture

(6.64)H =
p2(t)

2m

(6.65a)
dpi(t)

dt
=

1

ih̄
[pi(t), H] = 0

(6.65b)⇒ pi(t) = pi(0) Galileo

(6.65c)
dxi(t)

dt
=

1

ih̄
[xi(t), H] =

pi(t)

m
=
pi
m

(6.65d)⇒ xi(t) = xi(0) +
pi
m
· t

Note that

(6.65e)[xi(t), xi(0)] =
t

m
[pi, xi] = − ih̄t

m
,

and remembering the uncertainty principle we get

(6.65f)
¨
(∆x)

2
∂ ¨

(∆x(0))
2
∂
≥ h̄2t2

4m2
,

which shows that a free particle delocalizes with time.

6.7.2 Particles in potential

(6.66)H =
p2(t)

2m
+ V (x)

(6.67a)
dpi(t)

dt
=

1

ih̄
[pi, V (x)] = −dV (x)

dxi

(6.67b)
dxi
dt

=
pi
m

(6.67c)⇒ d2xi
dt2

= − 1

m

dV (x)

dxi
.

So,

(6.67d)m
d2x(t)

dt2
= −∇V (x). Newton
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6.7. Ehrenfest theorem

This is valid for the quantum operators x and p in the Heisenberg-picture.
Taking averages with respect to a state-ket, we find

(6.68)m
d2

dt2
〈x〉 = −〈∇V (x)〉 .

This is the Ehrenfest theorem: No h̄, averages evolve classically!
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Chapter 7

The harmonic oscillator

A very simple system in quantum mechanics, which we can solve exactly,
is the harmonic oscillator in one space dimension. The Hamiltonian of the
oscillator in classical physics is

H =
p2

2m
+

1

2
mω2x2, (7.1)

where m is the mass of the oscillaing particle and ω the angular frequency of
the oscillation. For convenience, we shall set

m = h̄ = ω = 1

in this chapter. It will always be easy to recover the full dependence on these
parameters with dimensional analysis.

7.1 Quantization

We quantize the harmonic oscillator by promoting the coordinate x and mo-
mentum p to operators, satisfying the commutation relation

[x, p] = i. (7.2)

The Hamiltonian can be cast as

H =
(x− ip)√

2

(x+ ip)√
2
− ixp− px

2
, (7.3)

and using the commutation relation above,

H = a†a+
1

2
, (7.4)

with

(7.5)a =
x+ ip√

2
, a† =

x− ip√
2

.
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7. The harmonic oscillator

For reasons to become clear later, the a, a† operators are called annihilation
and creation operators respectively. Their commutator isî

a, a†
ó

=

ñ
x+ ip√

2
,
x− ip√

2

ô
=

1

2

(
[x,−ip] + [ip, x]

)
= −i [x, p]

= 1 .

Exercise 7.1. Prove that for the operators A,B,C,

[AB,C] = [A,C]B +A [B,C] .

We define the so-called number operator

N ≡ a†a. (7.6)

The commutators of the number operator and the creation or annihilation
operators are

(7.7)
[
N, a†

]
=
[
a†a, a†

]
= a†

[
a, a†

]
= a†

and

(7.8)[N, a] =
[
a†a, a

]
=
[
a†, a

]
a = −a.

The Hamiltonian H = N + 1
2 and the number operator have common eigen-

states |n〉, since they commute.

If |n〉 is such an eigenstate with an eigenvalue n,

N |n〉 = n |n〉 , (7.9)

the eigenvalue n cannot be negative. Indeed,

0 ≤ |a |n〉|2 = 〈n| a†a |n〉 = 〈n|N |n〉 = n. (7.10)

Also, the states a† |n〉 and a |n〉 are eigenstates of N with eigenvalues n + 1
and n− 1 respectively:

(7.11a)N
(
a† |n〉

)
=
([
N, a†

]
+ a†N

)
|n〉 =

(
a† + a†n

)
|n〉

= (n+ 1)
(
a† |n〉

)
,

(7.11b)N (a |n〉) = ([N, a] + aN) |n〉 = (−a+ an) |n〉
= (n− 1) (a |n〉) .

Thus
a |n〉 = cn |n− 1〉 , a† |n〉 = dn |n+ 1〉 .
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7.1. Quantization

We can fix the normalization factors cn, dn by requiring that the states |n〉
have a unit norm.

(7.12a)
1 = 〈n+ 1|n+ 1〉 =

〈n| aa† |n〉
|dn|2

=
〈n| [a, a†] + a†a |n〉

|dn|2

=
〈n| 1 +N |n〉
|dn|2

=
1 + n

|dn|2
.

Similarly,

(7.12b)
1 = 〈n− 1|n− 1〉 =

〈n| a†a |n〉
|cn|2

=
〈n|N |n〉
|cn|2

=
n

|cn|2
.

We can choose cn =
√
n and dn =

√
n+ 1. We these choices, we have

(7.13a)a† |n〉 =
√
n+ 1 |n+ 1〉 ,

and

(7.13b)a |n〉 =
√
n |n− 1〉 .

Notice that for n non-integer, the repeated application of the last equation
leads eventually to an eigenstate with a negative eigenvalue, which is incon-
sistent with the requirement n ≥ 0. The only allowed values of n, are non-
negative integers. Notice that the coefficient in the lhs of Eq. 7.13b vanishes
for n = 0, thus preventing to obtain a state |−1〉 with a negative eigenvalue.
The spectrum of eigenvalues for the number operator and the Hamiltonian is
discrete (quantized) with

n = 0, 1, 2, 3, . . .

and energy eigenvalues

En = n+
1

2
. (7.14)

91



7. The harmonic oscillator

The eigenstates can all be generated from the “ground” state |0〉 by a repeated
application of the creation operator:

|1〉 = a† |0〉

|2〉 =
a†

2

√
2!
|0〉

...

|n〉 =
a†
n

√
n!
|0〉

...

Let’s focus on the ground state for which we shall compute the expecation
values

〈x〉 , 〈p〉 ,
〈
x2
〉
,
〈
p2
〉
.

We recall that

a =
x+ ip√

2
, a† =

x− ip√
2
,

which, by inverting, yield

x =
a+ a†√

2
, p =

a− a†√
2i

. (7.15)

We shall need that
a |0〉 = 0, 〈0| a† = 0,

and
aa† |0〉 =

[
a, a†

]︸ ︷︷ ︸
1

|0〉+ a† a |0〉︸︷︷︸
0

= |0〉

It is then easy to compute that

〈0|x |0〉 = 〈0| p |0〉 = 0, (7.16)

and

〈0|x2 |0〉 = 〈0| p2 |0〉 =
1

2
. (7.17)

In the ground state, the product of the uncertainties in position and momen-
tum is therefore minimal: 〈

(∆x)2
〉 〈

(∆p)2
〉

=
1

4
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7.1. Quantization

Exercise 7.2. Show that for the |n〉 state, the product of uncertainties is

〈
(∆x)2

〉
n

〈
(∆p)2

〉
n

=

Å
n+

1

2

ã2

. (7.18)

We shall now determine the wave function in the ground state:

ψ0(x) ≡ 〈x|0〉 ,

where
x̂ |x〉 = x |x〉

and
a |0〉 = 0.

We have

(7.19)
0 = 〈x| a |0〉 = 〈x| x̂+ ip̂√

2
|0〉 =

x√
2
〈x|0〉+

i√
2
〈x| p̂ |0〉

=
x√
2
〈x|0〉+

i√
2

Å
−i d

dx

ã
〈x|0〉 .

We have thus derived the following differential equation for the wave-function
in the ground state:

(7.20)

Å
x+

d

dx

ã
ψ0(x) = 0 .

The solution of the above is

(7.21)ψ0(x) = Ae−
x2

2 .

We can fix the normalization by requiring,

1 = 〈0|0〉 =

∫ ∞
−∞
〈0|x〉 〈x|0〉 =

∫ ∞
−∞

dx |ψ0(x)|2

= |A|2
∫ ∞
−∞

dx e−x
2

(7.22); |A| =
Å∫ ∞
−∞

dx e−x
2

ã−1/2

.

The integral is

I =

∫ ∞
−∞

dx e−x
2

=
√
π,
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7. The harmonic oscillator

We obtain this result as follows:

(7.23)I2 =

Å∫ ∞
−∞

dx e−x
2

ã2

=

∫ ∞
−∞

dxdy e−x
2−y2

,

subistituting x = r cos θ, y = r sin θ gives

(7.24)
I2 =

∫ ∞
0

dr re−r
2

∫ 2π

0

dθ = 2π

∫ ∞
0

dr re−r
2

= 2π

∫ ∞
0

dr
−1

2

d

dr
e−r

2

= −π e−r
2
∣∣∣∞
r=0

= π .

We thus have that

〈x|0〉 =
1

π1/4
e−x

2/2. (7.25)

We compute the wave-functions of all energy eigenstates recursively.

(7.26)

〈x|n〉 = 〈x| a
†
√
n
|n− 1〉

=
1√
n

∫
dy 〈x| a† |y〉 〈y|n− 1〉

=
1√
2n

∫
dy 〈x|x− ip |y〉 〈y|n− 1〉

=
1√
2n

Å
x− d

dx

ã
〈x|n− 1〉 .

Iterating, we obtain

〈x|n〉 =
1√

2nn!

Å
x− d

dx

ãn
〈x|0〉 (7.27)

The solutions for n = 0, 1, 2, 3 can be seen in Fig. 7.1.

7.2 Time evolution

We now consider the position and momentum operators in the Heisenberg
picture. They satisfy the Heisenberg equations of motion (remember h̄ = 1)

(7.28)i
∂

∂t
x = [x,H] =

ï
x,
x2 + p2

2

ò
=

ï
x,
p2

2

ò
= [x, p]

p

2
+
p

2
[x, p]

= ip .
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7.2. Time evolution

〈x|n〉

x

〈x|0〉

〈x|1〉

〈x|2〉
〈x|3〉

1

Figure 7.1: The wavefunctions of the energy levels n = 0, 1, 2, 3 of the quan-
tum harmonic oscillator.

Similarly,

(7.29)i
∂

∂t
p = [p,H] =

ï
p,
x2 + p2

2

ò
=

ï
p,
x2

2

ò
= [p, x]

x

2
+
x

2
[p, x]

= −ix ,

with
(7.30)[A,BC] = [A,B]C +B [A,C] .

Thus

(7.31)
∂x(t)

∂t
= p(t) ,

∂p(t)

∂t
= −x(t) .
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7. The harmonic oscillator

The solution of these equations is

(7.32a)x(t) = x(0) cos t+ p(0) sin t

(7.32b)p(t) = −x(0) sin t+ p(0) cos t

The above are all operator equations. Notice that for any energy eigenstate,
the expectation values of the momentum and position operators vanish. In-
deed,

(7.33)〈n| a† |n〉 = 〈n| a |n〉 = 0

and

(7.34)x(0) =
a+ a†√

2
, p(0) =

a− a†√
2i

and therefore,

(7.35)〈n|x(t) |n〉 = 〈n| p(t) |n〉 = 0 .

Unlike the position and momentum of a classical harmonic oscillator, the
expectation values of their analogue quantum operators do not oscillate in an
energy eigenstate.

7.3 Coherent states

Are there quantum states in which the expectation values of the position and
momentum operators oscillate as in the classical system? Yes. These states
are called coherent states. Consider a state |λ〉 which is an eigenstate of the
annihilation operator a:

a |λ〉 = λ |λ〉 . (7.36)

We can write a coherent state as a superposition of energy eigenstates:

|λ〉 =
∞∑
n=0

f(n) |n〉 . (7.37)

Then

a |λ〉 =
∞∑
n=1

f(n)
√
n |n− 1〉

=
∞∑
n=0

f(n+ 1)
√
n+ 1 |n〉
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7.3. Coherent states

Substituting into Eq. 7.36 we find:

∞∑
n=0

î
f(n+ 1)

√
n+ 1− λf(n)

ó
|n〉 = 0. (7.38)

Since the set of |n〉 eigenstates is a complete basis of Hilbert space, we must
have the recurrence identity:

(7.39)f(`+ 1) = f(`)
λ√

1 + `
, ` = 0, 1, 2, . . .

We can solve this recurrence identity easily:

n−1∏
i =0

f(`+ 1) =
n−1∏
`=0

f(`)
λ√

1 + `

; f(n)

(
n−1∏
`=1

f(`)

)
= f(0)

(
n−1∏
`=1

f(`)

)
λn√
n!

(7.40); f(n) = f(0)
λn√
n!

.

Therefore, the coherent state |λ〉 is

|λ〉 = f(0)
∞∑
n=0

λn√
n!
|n〉 . (7.41)

We fix the constant f(0) by normalizing the state

1 = 〈λ|λ〉 = |f(0)|2
∞∑
n=0

∞∑
m=0

λn√
n!

(λ∗)m√
m!
〈m|n〉

= |f(0)|2
∞∑
n=0

∞∑
m=0

λn√
n!

(λ∗)m√
m!

δnm

= |f(0)|2
∞∑
n=0

(|λ|2)n

n!

= |f(0)|2 e|λ|
2

(7.42); f(0) = e−|λ|
2/2

Therefore, the normalized coherent state takes the form (up to a choice of an
overall phase):

|λ〉 = e−|λ|
2/2

∞∑
n=0

λn√
n!
|n〉 . (7.43)
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7. The harmonic oscillator

The probability that a particle in a coherent state |λ〉 is measured to have an
energy En = n+ 1

2 is,

P (|λ〉 → |n〉) = |〈n|λ〉|2 = e−|λ|
2

Ä
|λ|2
än

n!
(7.44)

which is a Poisson distribution with a mean value

(7.45)〈n〉 = 〈λ|N |λ〉
= |λ|2 .

Notice that for λ = 0 in Eq. 7.44 the coherent state becomes the ground state
(first energy eigenstate) of the harmonic oscillator:

|λ = 0〉 = |n = 0〉 . (7.46)

We can work further on Eq. 7.44,

|λ〉 = e−|λ|
2/2

∞∑
n=0

λn√
n!
|n〉

= e−|λ|
2/2

∞∑
n=0

λn√
n!

(a†)n√
n!
|0〉

= e−|λ|
2/2

( ∞∑
n=0

(λa†)n

n!

)
|0〉

leading to

|λ〉 = e−|λ|
2/2eλa

†
|0〉 . (7.47)

The expectation value of the energy in a coherent state is:

〈λ|H |λ〉 = 〈λ| a†a |λ〉+ 〈λ| 1
2
|λ〉

= |a |λ〉|2 +
1

2

= |λ |λ〉|2 +
1

2

; 〈λ|H |λ〉 = |λ|2 +
1

2
. (7.48)

The expectation value of the position operator in a coherent state is:

〈λ|x |λ〉 = 〈λ| a+ a†√
2
|λ〉 cos t+ 〈λ| a− a

†

i
√

2
|λ〉 sin t

=
λ+ λ∗√

2
cos t+

λ− λ∗

i
√

2
sin t (7.49)
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7.3. Coherent states

For
λ = |λ| eiθ = |λ| (cos θ + i sin θ) ,

we obtain:
〈λ|x |λ〉 =

√
2 |λ| cos(t− θ). (7.50)

The expectation value of the position in a coherent state oscillates exactly as
the position in a classical harmonic oscillation with amplitude

√
2 |λ|. Per-

forming a similar computation, we find for the expectation value of the mo-
mentum:

〈λ| p |λ〉 = −
√

2 |λ| sin(t− θ). (7.51)

Carrying on to the second powers of the position and momentum operators
we find (exercise) the following results:

〈λ|x2 |λ〉 =
1

2
+ 2 |λ|2 cos2(t− θ), (7.52)

〈λ| p2 |λ〉 =
1

2
+ 2 |λ|2 sin2(t− θ), (7.53)

For the uncertainties in position and momentum we have:〈
(∆x)2

〉
= 〈λ|x2 |λ〉 − 〈λ|x |λ〉2 =

1

2
(7.54)

and 〈
(∆p)2

〉
= 〈λ| p2 |λ〉 − 〈λ| p |λ〉2 =

1

2
. (7.55)

The product of the uncertainties in position and momentum for a particle in
a coherent state is therefore exactly the minimum allowed by Heisenberg’s
uncertainty principle: 〈

(∆x)2
〉 〈

(∆p)2
〉

=
1

4
. (7.56)
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Chapter 8

Schrödinger’s wave equation

Consider a particle in a quantum state |ψ, t〉 and subject to the Hamiltonian

H =
p2

2m
+ V (r), (8.1)

where p, r are the position and momentum operators. The time evolution of
the particle’s state is determined by Schrödinger’s equation,

ih̄
∂

∂t
|ψ, t〉 = H |ψ, t〉 . (8.2)

The traditional Schrödinger’s wave equation is the application of the above
to the position-representation of the state |ψ, t〉:

ψ(r, t) = 〈r|ψ, t〉 ,

called the wave-function. We have:

〈r| ih̄ ∂
∂t
|ψ, t〉 = 〈r|H |ψ, t〉

; ih̄
∂

∂t
ψ(r, t) = 〈r| p2

2m
+ V (r) |ψ, t〉

(8.3); ih̄
∂

∂t
ψ(r, t) =

ñ
− h̄2

2m
∇2 + V (r)

ô
ψ(r, t) .

Eq. 8.3 is Schrödinger’s wave equation.

The time evolution of energy eigenstates is particularly simple for time-
independent Hamiltonians.

H |ψE , t = 0〉 = E |ψE , t = 0〉 , (8.4)

then

|ψE , t〉 = e−iEt/h̄ |ψE , t = 0〉
; 〈r|ψE , t〉 = e−iEt/h̄ 〈r|ψE , t = 0〉
; ψE(r, t) = e−iEt/h̄ ψE(r) (8.5)
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8. Schrödinger’s wave equation

Substituting into Eq. 8.3 we obtain:ñ
− h̄2

2m
∇2 + V (r)

ô
ψE(r) = EψE(r) (8.6)

This is Schrödinger’s time independent wave equation.

Exercise 8.1. Solve Eq. 8.6 for the wavefunctions of the energy eigenstates
of the harmonic oscillator.

8.1 Probability density and probability current

Consider a particle in a state |ψ, t〉 at a time t. The probability amplitude
that the particle is found at a position r is the wave-function:

ψ(r, t) = 〈r|ψ, t〉 .

From the normalization of the state we have:

1 = 〈ψ, t|ψ, t〉 =

∫
d3r 〈ψ, t|r〉 〈r|ψ, t〉

=

∫
d3r |ψ(r, t)|2 (8.7)

We can interpret the quantity:

ρ(r, t) = |ψ(r, t)|2 , (8.8)

as the probability density for the particle to be found at the position r.

From the wave equation 8.3 of Schrödinger, we can derive

ih̄ψ∗∂tψ = − h̄2

2m
ψ∗∇2ψ + V (r) |ψ|2 (8.9)

ih̄ψ∂tψ
∗ =

h̄2

2m
ψ∇2ψ∗ − V (r) |ψ|2 (8.10)

Adding the two equations we obtain:

∂t(ψ
∗ψ) = − h̄

2mi

(
ψ∗∇2ψ − ψ∇2ψ∗

)
= −∇·

ï
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗)

ò
(8.11)
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8.2. Quantized energy levels

We have derived a continuity equation for the probability density ρ = |ψ|2,

(8.12)
∂ρ

∂t
+∇ · j = 0,

with a probability current:

j =
h̄

2mi
[ψ∗∇ψ − ψ∇ψ∗] . (8.13)

Let’s now rewrite
ψ(r, t) =

»
ρ(r, t) · eiF (r,t)/h̄, (8.14)

where the function F (r, t) is real. Then,

ψ∗∇ψ − ψ∇ψ∗ =
2i

h̄
ρ∇F. (8.15)

The probability current is then

j(r, t) = ρ(r, t)
∇F (r, t)

m
. (8.16)

We can regard ∇F/m as a “velocity”.

Integrating the probability current over all space we find that it is equal to
the expectation value of the momentum divided by the mass:∫

d3r j(r, t) =

∫
d3r

1

2m
[ψ∗(−ih̄∇)ψ + ψ(ih̄∇)ψ∗]

=

∫
d3r

1

2m

[
〈ψ, t|r〉 〈r|p |ψ, t〉+ 〈ψ, t|p |r〉 〈r|ψ, t〉

]
=

1

m
〈ψ, t|p |ψ, t〉 . (8.17)

8.2 Quantized energy levels

One of the biggest triumphs of quantum mechanics is the prediction of bound
states, where particles are restricted to small regions of space (atoms, molecules)
and have a discrete energy spectrum. In this section, we shall try to under-
stand these phenomena qualitatively from the wave equation of Schrödinger.
Consider a well-potential (i.e. a potential which can trap a particle as in
Fig 8.1) in one space-dimension. Schrödinger’s equation can be written in the
form

(8.18)
ψ′′

ψ
=

2m (V (x)− E)

h̄2
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8. Schrödinger’s wave equation

V (x)

x

E

x1 x2

Figure 8.1: A well-potential.

The second derivative of the wave-function is proportional to the difference
of the potential and the energy of the particle. Geometrically, the second
derivative represents the rate of change of the slope of the wave-function.

i) If V (x) > E then ψ′′ and ψ must have the same sign. In that case, the
wave function is concave away from the axis (as depicted in Fig. 8.2)

ii) If V (x) < E then ψ′′ and ψ must have the opposite sign. In that case,
the wave function is concave towards the axis (as depicted in the right
picture of Fig. 8.2)

Let us apply the above qualitative principles to a bound state, where

(8.19)ψ(−∞) = 0 .

Drawing wave-functions with the above rules starting from x = −∞ and
guessing the wave-function all the way up to x = +∞, we realize that it is
not easy to end up with a wave-function which is bound at x = +∞ (see
Fig. 8.3).

In order to get a physical solution with finite probabilities it is necessary to
tune the energy very precisely. Only for a selected number of energy values
we are able to get physical solutions like in Fig. 8.4. The difficulty in the
matching of a physical wave-function over the full range of space explains the
quantization of energy. As we increase the energy level of the bound particle
the wave-function for V (x) > E oscillates stronger and over a larger range.
Higher energy levels lead to more crossings of the wavefunction and the x-axis
(Fig. 8.5).
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8.3. Semiclassical approximation

ψ

x

ψ

x

ψ

x

ψ

x

ψ

x

(a) In regions of x where the poten-
tial energy is higher than the energy of
the particle the wave-function is con-
cave away from the x-axis.

ψ

x

ψ

x

ψ

x

ψ

x

ψ

x

(b) Otherwise it is concave towards the
axis.

Figure 8.2: Examples of Schrödinger wave-functions.

8.3 Semiclassical approximation

In this section we shall develop an approximation method in order to compute
the wave-function of a particle in a static system. This means that we demand
that the probability of finding the particle at a certain region is the same
irrespectively of the time that we performed our experiment. For such a
system, we must have:

∂ρ

∂t
= 0. (8.20)

The continuity equation 8.12 gives that

∇ · j = 0. (8.21)

For simplicity, we will restrict our discussion to one-dimensional systems.
Writing the wave-function in the form

(8.22)ψ(x) =
»
ρ(x)eiS(x)/h̄ ,
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8. Schrödinger’s wave equation

V (x)

x

E1

E2

ψE1
(x)

x

ψE2
(x)

x

Figure 8.3: A few failed attempts to arrive at a vanishing wave-function as
x→ +∞ starting from a physical behavior at x = −∞.

with a probability current

(8.23)j(x) = ρ(x)
∂
∂xS(x)

m
,

we have from Eq. 8.21 that:

∂

∂x

Å
ρ
∂S

∂x

ã
= 0
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8.3. Semiclassical approximation

V (x)

x

E

ψ(x)

x

Figure 8.4: Only for selected
(quantized) values of the energy
we are able to match a physical
behavior of the wave-function at
x→ +∞ with a physical behav-
ior at x = −∞.

V (x)

x

ψ(x)

x

ψ(x)

x

ψ(x)

x

Figure 8.5: Higher energy levels corre-
spond to wave-functions with more cross-
ings with the x-axis.

; ρS′ = const

(8.24); ρ =
const

S′
.

Let’s assume that h̄ is a small parameter (h̄→ 0 corresponds to the classical
limit) and expand:

(8.25)S = S0 + h̄S1 + h̄2S2 + . . .
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8. Schrödinger’s wave equation

Notice that the derivatives of the wave-function are proportional to the wave-
function itself (by taking the derivative Eq. 8.22):

(8.26)ψ′ = ψ

ñ√
ρ ′
√
ρ

+ i
S′

h̄

ô
(8.27)ψ′′ = ψ

[Ç√
ρ ′
√
ρ

+ i
S′

h̄

å2

+

Ç√
ρ ′
√
ρ

å′
+ i

S′′

h̄

]

Substituting our expansion ansatz for ψ of Eq. 8.25 into Eq. 8.18 and keep-
ing the leading order term in h̄ (semiclassical approximation), we obtain the
following differential equation:

(S′0)
2

= −2m (V (x)− E) . (8.28)

For the regions of x where V (x) > E we have

(8.29)S′0(x) = ±i
»

2m(V (x)− E)

and, thus,

(8.30)ψ(V (x)>E) ≈
const[

2m
(
V (x)− E

)] 1
4

exp

Ç
±
∫ x

x0

dy

√
2m (V (y)− E)

h̄

å
Similarly, for V (x) < E, we find an approximate solution:

S′0(x) = ±
»

2m(E − V (x)) (8.31)

and, thus,

ψ(V (x)<E) ≈
const

[2m(E − V (x))]
1
4

exp

Ç
±i
∫ x

x0

dy

√
2m (E − V (y))

h̄

å
(8.32)

Obviously, non of the two solutions is a good approximation for values of the
potential close to the energy V (x) ∼ E. For these regions, we can find an
explicit solution expanding the potential around the region x = xsp for which
V (xsp) = E. We write:

(8.33)V (x) ≈ V (xsp) + (x− xsp)V ′(xsp) + . . .

= E + (x− xsp)V ′(xsp) + . . .
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8.4. Linear potential

The Hamiltonian becomes

H ≈ p̂2

2m
+ E + (x̂− xsp)V ′(xsp) (8.34)

and we need to solve the eigenvalue problem:

H |ψE〉 = E |ψE〉

(8.35);

ï
p̂2

2m
+ (x̂− xsp)V ′(xsp)

ò
|ψE〉 = 0 .

The linear potential problem can be solved exactly, as we shall see in the next
section.

Having approximate solutions for the three distinct regions V (x) < E, V (x) >
E and V (x) ≈ E we can construct an approximate solution for all values of x.
It is required that the solutions are the same for the regions where more than
one approximations are valid. This leads to “matching” conditions which, for
bound states, leads to quantization conditions of the energy levels.

8.4 Linear potential

In this section we shall solve Schrödinger’s energy eigenstate problem for a
linear potential: ï

p̂2

2m
+ ax̂+ b

ò
|ψ〉 = 0. (8.36)

It is easier to solve this problem in momentum space. Recall that

〈x|p〉 =
1√
2πh̄

eipx/h̄. (8.37)

It is easy to verify that this amplitude satisfies the correct momentum eigen-
state equation:

〈x| p̂ |p〉 = −ih̄ ∂

∂x
〈x|p〉 = −ih̄ ∂

∂x

1√
2πh̄

eipx/h̄

= p
1√
2πh̄

eipx/h̄ = p 〈x|p〉 . (8.38)
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8. Schrödinger’s wave equation

For two momentum states, |p〉 , |q〉, we have

〈p| x̂ |q〉 =

∫
dy 〈p| x̂ |y〉 〈y|q〉 =

∫
dy y 〈p|y〉 〈y|q〉

=

∫
dy 〈p|y〉

Å
−ih̄ ∂

∂q

ã
1√
2πh̄

eiqy/h̄

=

Å
−ih̄ ∂

∂q

ã∫
dy 〈p|y〉 〈y|q〉

=

Å
−ih̄ ∂

∂q

ã
〈p|q〉 =

Å
−ih̄ ∂

∂q

ã
δ(p− q). (8.39)

Also,

〈p| x̂ |ψ〉 =

∫
dq 〈p| x̂ |q〉 〈q|ψ〉

= −ih̄ ∂
∂p

∫
dq δ(q − p) 〈q|ψ〉

; 〈p| x̂ |ψ〉 = −ih̄ ∂
∂p
〈p|ψ〉 . (8.40)

Thus,

〈p| p̂
2

2m
+ ax̂+ b |ψ〉 = 0

; ih̄a
∂

∂p
〈p|ψ〉 =

Å
p2

2m
+ b

ã
〈p|ψ〉

(8.41); 〈p|ψ〉 = N exp

(
p3

6m + pb

ih̄a

)

The wavefunction in x−space can be found as:

〈x|ψ〉 =

∫ ∞
−∞

dp 〈x|p〉 〈p|ψ〉

= N

∫ ∞
−∞

dp√
2πh̄

eipx/h̄ exp

(
p3

6m + pb

ih̄a

)
(8.42)

The solution is an Airy function. It is defined through its integral represen-
tation

Ai(z) =
1

2π

∫ ∞
−∞

dt exp

ï
i

Å
t3

3
+ zt

ãò
(8.43)

and can be computed numerically for all values of z.
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Chapter 9

Particle in a constant
electromagnetic field

The Hamiltonian for a charged particle in a time-independent electromagnetic
field is

H =
(p− qA)

2

2m
+ qΦ, (9.1)

where A = A(r) and Φ = Φ(r) are the vector and scalar potential respectively.

Working in the Heisenberg picture, we find that the velocity operator is (ex-
ercise):

dri
dt

= − i
h̄

[ri, H] =
pi − qAi

m
(9.2)

and the operator analogue of the classical momentum is then

Π = m
dr

dt
= p− qA. (9.3)

We call Π the kinetic momentum and p the canonical momentum. For the
commutator of kinetic momenta we find,

[Πi,Πj ] = ih̄q (∂iAj − ∂jAi) . (9.4)

Recalling that the magnetic field is given by

Bi = εijk∂jAk, (9.5)

we have that

εijkBk = (∂iAj − ∂jAi) . (9.6)

We then write,

[Πi,Πj ] = ih̄qεijkBk. (9.7)
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9. Particle in a constant electromagnetic field

We now compute the commutator

[Πi, H] =

ï
Πi,

ΠjΠj

2m
+ qΦ

ò
= ih̄q

Å
−∂iΦ + εijk

1

2m
[ΠjBk −BjΠk]

ã
We then obtain for the quantum operator corresponding to the classical force,

m
d2r

dt2
=

1

ih̄

ï
m

dr

dt
,H

ò
= q

ï
−∇Φ +

1

2

Å
dr

dt
×B−B× dr

dt

ãò
. (9.8)

9.1 Wave-function for a particle in an electromagnetic
field

The time-evolution of a state is determined by Schrödinger’s equation, which
in the case of a particle in a constant electromagnetic field takes the form:

ih̄
d

dt
|ψ, t〉 =

Å
Π2

2m
+ qΦ

ã
|ψ, t〉 . (9.9)

For the wave-function

ψ(r, t) = 〈r|ψ, t〉 ,

we obtain

ih̄
∂ψ(r, t)

∂t
=

ñ
− h̄2

2m

Å
∇− i

h̄
qA

ãÅ
∇− i

h̄
qA

ã
+ qΦ

ô
ψ(r, t) (9.10)

We define a “covariant” gradient operator:

∇c ≡ ∇−
i

h̄
qA (9.11)

We then rewrite Schrödinger’s equation as

ih̄
∂ψ(r, t)

∂t
=

ñ
− h̄2

2m
∇2
c + qΦ

ô
ψ(r, t) (9.12)

Maxwell equations are invariant under a gauge transformation, which in the
case of steady fields takes the form:

A(r)→ A(r) +∇Λ(r). (9.13)
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9.1. Wave-function for a particle in an electromagnetic field

Under this transformation, Schrödinger’s equation becomes:

ih̄
∂ψΛ(r, t)

∂t
=

ñ
− h̄2

2m
(∇c −∇Λ)2 + qΦ

ô
ψΛ(r, t) (9.14)

We would now like to compare the solutions of the Schrödinger equation
before and after the gauge transformation. We can verify easily that if ψ(r, t)
is a solution of Eq. 9.12 then also the function

ψΛ(r, t) = e
iq
h̄ Λ(r)ψ(r, t) (9.15)

is a solution. Indeed,Å
∇− iqA

h̄
− iq∇Λ

h̄

ã
e
iq
h̄ Λ(r) = e

iq
h̄ Λ(r)

Å
∇− iqA

h̄

ã
(9.16)

and (
∇c − i

q

h̄
∇Λ
)2

e
iq
h̄ Λ(r)ψ(r, t) = e

iq
h̄ Λ(r)∇2

cψ(r, t). (9.17)

Therefore, a gauge transformation results in the wave-function being multi-
plied with an overall phase.

We shall now revisit our interpretation of the absolute square of the wave-
function as a probability density:

ρ(r, t) = |ψ(r, t)|2 .

Taking the time derivative we have,

(9.18)

∂ρ

∂t
= ψ∗ (∂tψ) + (∂tψ

∗)ψ

= i
h̄

2m

Ä
ψ∗∇2

cψ − ψ
(
∇2
cψ
)∗ä

= −∇J,

where

(9.19)J = −i h̄
2m

[ψ∗∇cψ − ψ∇∗cψ∗] ,

and

(9.20)∇∗c = ∇+
i

h̄
qA .

Contrast this current with the one in the absence of the electromagnetic field.
It is consistent with the substitution:

∇ → ∇c,

or, equivalently, replacing the canonical momentum operator with the kinetic
momentum operator,

p→ Π.
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9. Particle in a constant electromagnetic field

9.2 Aharonov-Bohm effect

Consider a particle that at t = 0 is found at a position |a〉. After some time
t the state will have evolved according to Schrödinger’s equation:

ih̄∂t |a, t〉 =

ï
Π2

2m
+ qΦ

ò
|a, t〉 . (9.21)

The probability amplitude that the particle is found at a position r after time
t is then

〈r|a, t〉 ,

and it satisfies

ih̄∂t 〈r|a, t〉 =

ñ
− h̄2

2m
∇2
c + qΦ

ô
〈r|a, t〉 . (9.22)

Let’s assume that we can compute the amplitude for the same transition

〈r|a, t〉0

in the absence of a vector potential A = 0 ; ∇c = ∇. Then, the amplitude
for the transition for A 6= 0 is:

〈r|a, t〉 = 〈r|a, t〉0 exp

Å
iq

h̄

∫ r

a

dl ·A
ã

(9.23)

Exercise 9.1. Prove that the above is indeed a solution of Eq. 9.22 and that
it satisfies the amplitude “multiplication rule” for two successive transitions:

M(a→ b)M(b→ c) =M(a→ c).

where M denotes

M (x→ y) = 〈y|x〉 .

Now consider a two-slit experiment where in between the two slits inside the
wall there is a magnetic field B. The field is contained inside the wall and
the particles cannot penetrate it. The transition amplitude from the shooting
point to a point on the screen behind the wall is the sum of the amplitude for
the particle to go through slit 1 (path Γ1) and the amplitude to go through
slit 2 (path Γ2).

(9.24)M =MΓ1 +MΓ2 .
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9.2. Aharonov-Bohm effect

particle
source

⊗

⊗
B

detector

Γ1

Γ2

Figure 9.1: Sketch of the setup for the Aharomov-Bohm-effect. Note that the
B-Field is only within the wall and is enclosed by any path Γ1 + Γ2.

According to Eq. 9.23, this is equivalent to:

(9.25)M =M1 exp

Ç
iq

h̄

∫
Γ1

dl ·A
å

+M2 exp

Ç
iq

h̄

∫
Γ2

dl ·A
å

The probability of this transition is

(9.26a)
P = |M|2

= |M1|2 + |M2|2 + 2<

(
M∗1M2 exp

Ç
iq

h̄

∮
dl ·A

å)
.

The interference term now depends on the flux of the magnetic field enclosed
by the two alternative paths. (Fig. 9.1)

(9.26b)ΦB =

∮
dl ·A =

∫
S(Γ1+Γ2)

dS · ∇A =

∫
S(Γ1+Γ2)

dS ·B.

(9.26c); P = |M1|2 + |M2|2 + 2<
Ç
M∗1M2 exp

Å
iq

h̄
ΦB

ãå
It is remarkable that the path of the particles lies outside the range of the
magnetic field. Nevertheless, the interference pattern is affected by it. This
is the Aharonov-Bohm effect.
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Chapter 10

Symmetries in Quantum
Mechanics

A symmetry changes our way of looking at a physical system without changing
the physics of it. In quantum mechanics, symmetry transformations alter
quantum states,

(10.1)|ψ〉 T−→ |ψ′〉 , |φ〉 T−→ |φ′〉 ,

without changing probabilities

|〈φ′|ψ′〉|2 = |〈φ|ψ〉|2 . (10.2)

States can be represented as vectors in Hilbert space. If {|ai〉} is a set of
base-kets, we can write

|ψ〉 =
∑
i

ci |ai〉

and we represent |ψ〉 as a Hilbert space vector

|ψ〉 .=

á
c1
c2
...
cN

ë
.

Under the symmetry transformation T , the vector of |ψ〉 in Hilbert space
transforms asá

c1
c2
...
cN

ë
T−→

á
c′1
c′2
...
c′N

ë
=

á
U11(T ) . . . U1N (T )
U21(T ) . . . U2N (T )

...
. . .

...
UN1(T ) . . . UNN (T )

ëá
c1
c2
...
cN

ë
or, briefly,

|ψ′〉︸︷︷︸
Hilbert space vector

.
=

matrix︷ ︸︸ ︷
U(T ) |ψ〉︸︷︷︸ (10.3)
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10. Symmetries in Quantum Mechanics

where the kets in the above equations are the vector representations of the
states in Hilbert space and not the states themselves. The matrix U(T )
changes for other representation of the states with sets of base states different
than {|ai〉}.
To preserve the probabilities under symmetry transformations, according to
Wigner’s theorem, we have two options:

i) U(T ) is linear and unitary,

U(a |ψ〉+ b |φ〉) = aU |ψ〉+ bU |φ〉

〈ψ|U†U |φ〉 = 〈ψ|φ〉 ,

ii) U(T ) is anti-linear and anti-unitary,

U(a |ψ〉+ b |φ〉) = a∗U |ψ〉+ b∗U |φ〉

〈ψ|U†U |φ〉 = 〈φ|ψ〉 .

We shall not prove Wigner’s theorem here. 1 We will restrict ourselves in
verifying the inverse statement. Consider, for example, that U is anti-linear
and anti-unitary. For two states,

(10.4)|φ〉 , |ψ〉 = a1 |ψ1〉+ a2 |ψ2〉 ,

the probability that |ψ〉 collapses into |φ〉 is transformed to

∣∣〈φ′|ψ′〉∣∣2 =
∣∣∣〈φ|U†U |ψ〉∣∣∣2

=
∣∣∣〈φ|U†U (a1 |ψ1〉+ a2 |ψ2〉)

∣∣∣2
=
∣∣∣〈φ|U† (a∗1U |ψ1〉+ a∗2U |ψ2〉)

∣∣∣2
=
∣∣∣a∗1 〈φ|U†U |ψ1〉+ a∗2 〈φ|U†U |ψ2〉

∣∣∣2
=
∣∣a∗1 〈ψ1|φ〉+ a∗2 〈ψ2|φ〉

∣∣2
=
∣∣∣(a∗1 〈ψ1|+ a∗2 〈ψ2|

)
|φ〉
∣∣∣2

=
∣∣〈ψ|φ〉∣∣2

=
∣∣〈φ|ψ〉∣∣2 .

1A proof can be found in Weinberg’s Quantum Theory of Fields, Vol. I
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10.1. Continuous symmetry transformations

Similarly, if U is linear and unitary,∣∣〈φ′|ψ′〉∣∣2 =
∣∣∣〈φ|U†U |ψ〉∣∣∣2

=
∣∣∣〈φ|U†U (a1 |ψ1〉+ a2 |ψ2〉)

∣∣∣2
=
∣∣∣〈φ|U† (a1U |ψ1〉+ a2U |ψ2〉)

∣∣∣2
=
∣∣a1 〈φ|ψ1〉+ 〈φ|ψ2〉

∣∣2
=
∣∣∣〈φ| (a1 |ψ1〉+ a2 |ψ2〉

)∣∣∣2
=
∣∣〈φ|ψ〉∣∣2 .

10.1 Continuous symmetry transformations

Notice that the unit operator is unitary and linear, not anti-unitary and anti-
linear. Some symmetry transformations T (θa) are connected to the unity
smoothly, such as rotations, translations and Lorentz boosts, via continuous
parameters (angles, velocities, etc),

(10.5)T ≡ T (θa), θa ≡


θ, φ angles

βx, βy, βz boosts

ε1, ε2, ε3 space-displacements

Such transformations which are related to the unity (no transformation) con-
tinuously must have a unitary and linear representation.

|ψ′〉 = U
(
T (θa)

)
|ψ〉 . (10.6)

We choose the parameters θa of these continuous transformations so that
when the parameters of the transformation vanish, θa = 0, the system is
unchanged:

U
(
T (θa = 0)

)
= 1. (10.7)

Let as restrict ourselves to unitary and linear transformations T ≡ T (θa) and
study their representation U(T ). The product of two such transformations is
also a transformation,

T3 = T2T1.
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10. Symmetries in Quantum Mechanics

A state |ψ〉 transforms as

|ψ〉 → |ψ′〉 = U(T2)U(T1) |ψ〉 ,

under the T1 transformation followed by the T2 transformation. Transforming
under T3 = T2T1, we obtain

|ψ〉 → |ψ′′〉 = U(T3) |ψ〉 = U(T2T1) |ψ〉 .

The states |ψ′〉 and |ψ′′〉 must be equivalent, describing the same physics.
Therefore, they can only differ by a phase:

U(T2)U(T1) |ψ〉 = eiφψ(T2,T1)U(T2T1) |ψ〉 . (10.8)

We can show that the phase φψ(T2, T1) is independent of the state |ψ〉. Take
a |ψ〉 which is a superposition of two independent states:

|ψ〉 = |ψA〉+ |ψB〉 .

Then,

eiφABU(T2T1)
(
|ψA〉+ |ψB〉

)
= U(T2)U(T1)

(
|ψA〉+ |ψB〉

)
= U(T2)U(T1) |ψA〉+ U(T2)U(T1) |ψB〉
= eiφAU(T2T1) |ψA〉+ eiφBU(T2T1) |ψB〉 .

(10.9)

Multiplying both sides with U−1(T2T1), we obtain:

eiφAB
(
|ψA〉+ |ψB〉

)
= eiφA |ψA〉+ eiφB |ψB〉

; 0 =
(
eiφAB − eiφA

)
|ψA〉+

(
eiφAB − eiφB

)
|ψB〉

; eiφAB = eiφA = eiφB . (10.10)

Thus, the phase is the same for all states and we can write:

U(T2)U(T1) = eiφ(T2,T1)U(T2T1). (10.11)

For φ(T2, T1) = 0, the matrix U(T ) furnishes a representation of the symmetry
transformation T . For the general φ(T2, T1) 6= 0, U(T ) is a so-called projective
representation of the symmetry transformations. It can be shown that we
can always enlarge the symmetry group so that projective representations
turn into representations with a zero phase. Let’s consider the product of the

120



10.2. Lie algebra and generators

representations of three symmetry transformations:

U(T3)U(T2)U(T1) = U(T3)
[
U(T2)U(T1)

]
=
[
U(T3)U(T2)

]
U(T1)

; U(T3)eiφ(T2,T1)U(T2T1) = eiφ(T3,T2)U(T3T2)U(T1)

; eiφ(T2,T1)+iφ(T3,T2T1)U(T3T2T1) = eiφ(T3,T2)+iφ(T3T2,T1)U(T3T2T1)

; φ(T2, T1) + φ(T3, T2T1) = φ(T3, T2) + φ(T3T2, T1) (10.12)

This is satisfied if we write the phase φ in terms of a function χ as in:

φ(Ta, Tb) = χ(TaTb)− χ(Ta)− χ(Tb). (10.13)

Defining a representation of an enlarged symmetry transformation as

Ū(T ) = U(T )eiχ(T ), (10.14)

we see that Ū(T ) furnishes a representation (with zero phase)

(10.15)

Ū(Tb)Ū(Ta) = U(Tb)U(Ta)ei(χ(Ta)+χ(Tb))

= U(TbTa)ei(φ(Tb,Ta)+χ(Ta)+χ(Tb))

= Ū(TbTa)ei(φ(Tb,Ta)+χ(Ta)+χ(Tb)−χ(TbTa))

= Ū(TbTa) .

For the symmetries of interest we shall take that they have representations
with a zero-phase or that they have been enlarged so that this is achieved.

10.2 Lie algebra and generators

We consider a continuous symmetry transformation

T (θa)

parameterized by a set of continuous parameters

{θa}, a = 1 . . . N

The symmetry transformations form a Lie group and the product of two such
transformations is also a symmetry transformation belonging to the group:

T (θa1)T (θa2) = T
(
fa(θa1 , θ

a
2)
)
. (10.16)
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10. Symmetries in Quantum Mechanics

We arrange that T corresponds to the unit element of the symmetry group if
all values of the parameters are zero, θa = 0,

T (θa = 0) = 1. (10.17)

The product rule of Eq. 10.16 and our definition of the unit transformation
of Eq. 10.17 yield:

(10.18)fa(0, θa) = fa(θa, 0)

= θa

Restricting ourselves to small transformations around the unity transforma-
tion, we perform a Taylor expansion around θa = 0:

(10.19)
fa(θa1 , θ

a
2) = fa(0, 0) +

∂fa

∂θb1
θb1 +

∂fa

∂θb2
θb2 +

1

2

∂2fa

∂θb1∂θ
c
1

θb1θ
c
1

+
1

2

∂2fa

∂θb2∂θ
c
2

θb2θ
c
2 +

∂2fa

∂θb1∂θ
c
2

θb1θ
c
2 + . . .

with b, c = 1, . . . , N and Einstein summation convention. Imposing the re-
quirement of Eq 10.18 leads to the form:

fa(θa1 , θ
a
2) = θa1 + θa2 + fabcθ

b
1θ
c
2 + . . . (10.20)

with fabc being the second order coefficient of the Taylor expansion of fa and
in this case b, c are dummy indices to sum over.

For an ordinary representation U(T ) of the symmetry group,

U
(
T (θa1)

)
U
(
T (θa2)

)
= U

Ä
T
(
fa(θa1 , θ

a
2)
)ä
. (10.21)

For small parameters θa, we can expand the representation of the transfor-
mation as follows:

U
(
T (θa)

)
= 1 + iθata +

1

2
θbθctbc + . . . (10.22)

where 1, ta, tbc in the above equation are matrices of the same dimensionality
as U

(
T (θa)

)
and the matrix tbc is symmetric in b and c:

tbc = tcb . (10.23)

Expanding, using Eq. 10.22, the terms in Eq. 10.21 we haveÅ
1 + iθa1 ta +

1

2
θb1θ

c
1tbc + . . .

ãÅ
1 + iθa2 ta +

1

2
θb2θ

c
2tbc + . . .

ã
= 1 + i

(
θa1 + θa2 + fabcθ

b
1θ
c
2 + . . .

)
ta +

1

2

(
θb1 + θb2 + . . .

)
(θc1 + θc2 + . . .) tbc
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10.2. Lie algebra and generators

where we have neglected θa terms of third order and higher. Matching the
powers of θa1 , θ

a
2 , we find that

tbc = −tbtc − ifabcta. (10.24)

From the symmetry of tbc, we obtain:

0 = tbc − tcb = −(tbtc − tctb)− i(fabc − facb)ta (10.25)

This leads to the commutation relation for the matrices ta:

[tb, tc] = iCabcta. (10.26)

where the constants
Cabc = facb − fabc (10.27)

are antisymmetric in c↔ b and are called the structure constants of the Lie-
group. As you may observe, the structure constants do not depend on the
specific representation U(T (θa)). Instead, the matrices ta are specific to the
representation and have the same dimensionality. These matrices are known
as the generators of the representation. Knowing the generators, we can con-
struct the representation of an arbitrary symmetry transformation by using
the product property of Eq. 10.21 to assemble large symmetry transforma-
tions from many small ones where the expansion of Eq 10.22 is valid. The
common commutation relation of Eq. 10.26 satisfied by the generators of all
representations of the symmetry group is known as a Lie algebra.

Requiring that the representation of a symmetry transformation is unitary,
leads to the conclusion that the generators of the transformation are Hermi-
tian operators:

UU† = 1 ; t†a = ta. (10.28)

Therefore, generators are good candidates for physical observables.

In the special case of “Abelian” symmetry groups ,

f(θa1 , θ
a
2) = θa1 + θa2 ,

the generators commute:
[tb, tc] = 0. (10.29)

A representation for general values of the parameters of the symmetry trans-
formation can then be found as:

U (T (θa)) = lim
N→∞

U

Å
T

Å
θa

N

ããN
= lim
N→∞

Å
1 + i

θa

N
ta

ãN
= exp (iθata) . (10.30)
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10. Symmetries in Quantum Mechanics

10.3 Symmetry and degeneracy

A symmetry transformation T should change a system in the same way irre-
spective of the time we performed the transformation. Therefore, the follow-
ing two states must be the same:

U(T )
Ä
eiHt/h̄ |ψ〉

ä
= eiHt/h̄

(
U(T ) |ψ〉

)
. (10.31)

The state of the lhs corresponds to performing the transformation after the
system has evolved for time t. The state of the rhs corresponds to performing
the transformation at t = 0 and then evolving for a time t. Since the above
equation is valid for any state |ψ〉, we must have that the time-evolution
operator and the representation of the symmetry commute:[

U(T ), eiHth̄
]

= 0. (10.32)

Equivalently, the Hamiltonian and the symmetry representations also com-
mute:

[U(T ), H] = 0. (10.33)

For continuous symmetry transformations where

U(T ) = 1− iθata + . . .

the generators of the representation commute with the Hamiltonian:

[ta, H] = 0. (10.34)

Then, the Hamiltonian and the generators have a common set of eigenstates.

Symmetries are associated with a degeneracy in the energy spectrum of a
physical system. Consider an energy eigenstate:

H |E〉 = E |E〉 . (10.35)

All states,

U(T ) |E〉 ,

are also eigenstates of the Hamiltonian with the same energy eigenvalue E.
Indeed,

H
(
U(T ) |E〉

)
= U(T )H |E〉 = U(T )E |E〉 = E

(
U(T ) |E〉

)
. (10.36)
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10.4. Rotations and translations

10.4 Rotations and translations

In this section, we should study symmetry transformations corresponding to
the change of reference frame. This is the requirement that the laws of quan-
tum mechanics should be the same irrespective of where we are performing our
experiment or how we have set up our coordinate system. We should restrict
ourselves to Euclidean changes of reference frame, ignoring special relativity
effects. These transformations preserve the magnitude of space-vectors:

r = (r1, r2, r3)→ r′ = (r′1, r
′
2, r
′
3)

with
|r| = |r′| (10.37)

or, equivalently,

(10.38)δijrirj = δijr
′
ir
′
j .

Differentiating twice the above, we obtain:

(10.39)δk` = δij
∂r′i
∂rk

∂r′j
∂r`

,

from which we conclude that the transformation r → r′ is a linear transfor-
mation:

(10.40)r′i = Rijrj + ai

Notice that the vector ai displaces the center of the coordinate system and
the matrix Rij rotates the coordinates. Substituting into Eq. 10.39, we find

(10.41)δk` = δijRikRj` .

We write this in matrix-notation as

RRT = 1, RTij = Rji. (10.42)

Taking the determinant of the above we have

(10.43)det(RRT ) = 1 ; (detR)
2

= 1 ; detR 6= 0 ,

(10.44)det(RRT ) = 1 ; (detR)
2

= 1 ; detR 6= 0 ,

which proves that there exist the inverse transformation of R. We have

RRT = 1

; R−1RRT = R−1

(10.45); R−1
ij = RTij = Rji .
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10. Symmetries in Quantum Mechanics

Making two successive coordinate transformations we have

(10.46)
r′′i = Rijr

′
j + ai

= Rij
(
R̄j`r` + āj

)
+ ai

=
(
RR̄
)
i`
r` + [Rā+ a]i

Thus, we have the following multiplication rule for the group of coordinate
transformations:

(10.47)T (R, a)T (R̄, ā) = T (RR̄,Rā+ a) .

Notice that rotations alone and translations alone form subgroups:

(10.48)T (R, 0)T (R̄, 0) = T (RR̄, 0) .

and

(10.49)T (1, a)T (1, ā) = T (1, ā+ a) .

10.4.1 Generators

Consider an infinitesimal transformation:

T (δij + ωij , εi), ωij , εi ∈ R

From Eq. 10.41, keeping only linear terms in ω, we have

δk` = δijRikRj`

(10.50a); ωk` = −ω`k

Let’s now look at the transformation of vectors in Hilbert space corresponding
to quantum states in a generic representation of the symmetry group:

|ψ〉 → |ψ′〉 = U(ω, ε) |ψ〉 . (10.51)

Expanding the representation U in the small parameters of the transforma-
tion, we have:

U(ω, ε) = 1 +
i

2
ωijJ

ij − iερP ρ + . . . (10.52)

For U(ω, ε) to be unitary, we have:

UU† = 1 ; (Jk`)† = Jk`, (P ρ)† = P ρ (10.53)

Since ωij = −ωji we can take that

Jk` = −J`k. (10.54)
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10.4. Rotations and translations

We have already identified the generator

(10.55)h̄P ρ ≡ pρ

as the operator of momentum. Similarly, we shall identify the generators of
rotations

(10.56)h̄Jk`

as operators of angular momentum.

How do the expectation values of the generators Jk`, P ρ themselves transform
under a coordinate transformation? Consider the product

(10.57)U(R, a)U(1 + ω, ε)U−1(R, a) = U
(
R(1 + ω)R−1, Rε−RωR−1a

)
where

(10.58)U−1 (R, a) = U
(
R−1,−R−1a

)
and the parameters ω, ε of the small transformation are not related to the large
transformation parameters R, a. Expanding the lhs and rhs of the above in
ω, ε we have:

U(R, a)U(1 + ω, ε)U−1(R, a)

= U

Å
1 +

i

2
ωk`J

k` − iερP ρ
ã
U−1 (10.59)

= 1 +
i

2
ωk`UJ

k`U−1 − iερUP ρU−1 (10.60)

and

U
(
R(1 + ω)R−1, Rε−RωR−1a

)
= 1 +

i

2

(
RωR−1

)
k`
Jk` − i

(
Rε−RωR−1a

)
ρ
P ρ

= 1 +
i

2
ωk`R

−1
kmR

−1
`n (Jmn − amPn + anPm)− iερR−1

ρk P
k. (10.61)

Comparing the two, we obtain:

(10.62)U(R, a)Jk`U−1(R, a) = R−1
kmR

−1
`n (Jmn − amPn + anPm)

and

(10.63)U(R, a)P ρU−1(R, a) = R−1
ρmP

m.

From the above, we can also show that (exercise):

(10.64)U−1(R, a)Jk`U(R, a) = RkmR`n (Jmn − amPn + anPm)
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10. Symmetries in Quantum Mechanics

and

(10.65)U−1(R, a)P ρU(R, a) = RρmP
m.

The expectation value of the generators transforms as follows with a coordi-
nate symmetry transformation:

(10.66)〈ψ|P ρ |ψ〉 → 〈ψ|U−1P ρU |ψ〉 = Rρm 〈ψ|Pm |ψ〉

and

〈ψ| Jk` |ψ〉 → 〈ψ|U−1Jk`U |ψ〉 = RkmR`n 〈ψ| Jk` − amPn + anPm |ψ〉
(10.67)

Therefore, the expectation value of P ρ transforms as a classical vector and
the expectation value of Jk` transforms as a classical tensor with rotations
and translations.

10.4.2 Lie algebra

We now assume further also that the transformation T (R, a) is a small trans-
formation,

T (Rij , ai) = T (δij + ω′ij , ε
′
i). (10.68)

and expand Eqs 10.64-10.65 in ω′ij , ε
′
i. Matching the coefficients of the expan-

sion, we find the following Lie-algebra for symmetry coordinate transforma-
tions:

(10.69a)i
[
J ij , Jk`

]
=
[
δi`J

jk − δikJj` + δjkJ
i` − δj`J ik

]
.

(10.69b)i [Pm, Jrs] = δmrP
s − δmsP r

(10.69c)[P r, P s] = 0 .

We identify the momentum and angular momentum operators as

(10.70)p ≡ (p1, p2, p3) ≡ h̄
(
P 1, P 2, P 3

)
and

(10.71)J ≡ (J1, J2, J3) ≡ h̄
(
J23, J31, J12

)
respectively. In terms of these operators, the Lie algebra takes the form:

(10.72a)[Ji, Jj ] = ih̄εijkJk ,

(10.72b)[Ji, pj ] = ih̄εijkpk ,

(10.72c)[pi, pj ] = 0 .
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Chapter 11

Representations of angular
momentum

In the previous chapter, we identified the generators of rotations with the
angular momentum operators. They satisfy the commutation relations,

[Ji, Jj ] = ih̄εijkJk. (11.1)

11.1 Eigenstates of angular momentum

We observe that the square of the angular momentum vector:

J2 ≡ JkJk = J2
1 + J2

2 + J2
3 (11.2)

commutes with the generators Ji:[
J2, Ji

]
= [JkJk, Ji] = Jk [Jk, Ji] + [Jk, Ji] Jk

= ih̄εki` (JkJ` + J`Jk) = 0. (11.3)

Thus we can find common eigenstates |f,m〉 1 for J2 and one of the generators
Ji, let’s say J3.

(11.4a)J2 |f,m〉 = h̄2f |f,m〉 ,
(11.4b)J3 |f,m〉 = h̄m |f,m〉 .

We have that

0 ≤
∣∣J1 |f,m〉

∣∣2 +
∣∣J2 |f,m〉

∣∣2 +
∣∣J3 |f,m〉

∣∣2
= 〈f,m| J2

1 + J2
2 + J2

3 |f,m〉 = 〈f,m| J2 |f,m〉
= h̄2f 〈f,m|f,m〉

;f ≥ 0. (11.5)

1we shall relabel these states later
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11. Representations of angular momentum

Also, the eigenvalue number m of the third component J3 is bounded:

0 ≤ 〈f,m| J2
1 + J2

2 |f,m〉 = 〈f,m| J2 − J2
3 |f,m〉 = h̄2(f −m2)

; −f ≤ m ≤ f. (11.6)

We can construct linear combinations of the first two components of angular
momentum

J± = J1 ± iJ2 (11.7)

which are ladder operators:

[J3, J±] = ±h̄J±. (11.8)

Then

J3

(
J± |f,m〉

)
=
(
[J3, J±] + J±J3

)
|f,m〉

= (±h̄J± + J±J3) |f,m〉
= (±h̄J± + h̄mJ±) |f,m〉
= h̄(m± 1) (J± |f,m〉) (11.9)

Thus, the state J± |f,m〉 is also an eigenstate of J3 with eigenvalue h̄ (m± 1).
We may write

J± |f,m〉 = c± |f,m± 1〉 ,
; |c±|2 = 〈f,m| J∓J± |f,m〉

= 〈f,m| J2
1 + J2

2 ± i [J1, J2] |f,m〉
= 〈f,m| J2 − J2

3 ∓ h̄J3 |f,m〉 ,
(11.10a); |c±|2 = h̄2

(
f −m(m± 1)

)
.

We then normalize as:

(11.10b)J± |f,m〉 = h̄
»
f −m(m± 1) |f,m± 1〉

Assume j being the maximum value of m. Then,

(11.11)J+ |f, j〉 = 0 ,

(11.12); f − j(j + 1) = 0 ,

(11.13); f = j(j + 1) .

Now, assume that j′ < j is the minimum value of f .

(11.14a)J− |f, j′〉 = 0 ,

(11.14b); j(j + 1)− j′(j′ − 1) = 0 ,

(11.14c); j′ = −j .
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2 representation of angular momentum

The ladder operators span the allowed range −j ≤ m ≤ j by integer steps.
Thus the number (2j) must be an integer and thus:

j = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . (11.15)

We shall relabel the eigenstates |f,m〉 of J2, J3 with the half-integer j instead
of f . The corresponding eigenvalue equations for the angular momentum
operators are:

(11.16a)J2 |j,m〉 = h̄2j(j + 1) |j,m〉
(11.16b)J3 |j,m〉 = h̄m |j,m〉 .

where, we have found that the eigenvalue numbers j,m are quantized. For
the ladder operators we have found:

(11.16c)J± |j,m〉 = h̄
»
j(j + 1)−m(m± 1) |j,m± 1〉 .

11.2 spin-1
2

representation of angular momentum

The simplest representation of the angular momentum operators Ji is the
spin- 1

2 representation, where the operators act on the states of a two-state
system. For the spin- 1

2 representation of angular momentum we have a base
of two angular momentum eigenstates:∣∣∣∣12 ,±1

2

∑
(11.17)

satisfying

(11.18a)J2

∣∣∣∣12 ,±1

2

∑
= h̄2 3

4

∣∣∣∣12 ,±1

2

∑
,

(11.18b)J3

∣∣∣∣12 ,±1

2

∑
= ±h̄1

2

∣∣∣∣12 ,±1

2

∑
,

J+

∣∣∣∣12 , 1

2

∑
= 0, J+

∣∣∣∣12 ,−1

2

∑
= h̄

∣∣∣∣12 , 1

2

∑
, (11.19)

J−

∣∣∣∣12 , 1

2

∑
= h̄

∣∣∣∣12 ,−1

2

∑
, J−

∣∣∣∣12 ,−1

2

∑
= 0. (11.20)

In the representation where∣∣∣∣12 , 1

2

∑
.
=

Å
1
0

ã
,

∣∣∣∣12 ,−1

2

∑
.
=

Å
0
1

ã
(11.21)
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11. Representations of angular momentum

we find:

(11.22a)
J3

.
=

á ≠
1

2
,

1

2

∣∣∣∣ J3

∣∣∣∣12 , 1

2

∑ ≠
1

2
,

1

2

∣∣∣∣ J3

∣∣∣∣12 ,−1

2

∑≠
1

2
,−1

2

∣∣∣∣ J3

∣∣∣∣12 , 1

2

∑ ≠
1

2
,−1

2

∣∣∣∣ J3

∣∣∣∣12 ,−1

2

∑ë
=
h̄

2

Å
1 0
0 −1

ã
.

Similarly,

(11.22b)J−
.
= h̄

Å
0 0
1 0

ã
and,

(11.22c)J+
.
= h̄

Å
0 1
0 0

ã
.

The ladder operators are J± = J1 ± iJ2. From the above we obtain:

J1
.
=
h̄

2

Å
0 1
1 0

ã
, J2

.
=
h̄

2

Å
0 −i
i 0

ã
. (11.23)

The matrices

(11.24)σ1 =

Å
0 1
1 0

ã
, σ2 =

Å
0 −i
i 0

ã
, σ3 =

Å
1 0
0 −1

ã
.

are known as the Pauli matrices.

Notice with an explicit calculation (exercise) that

[σi, σj ] = 2iεijkσk (11.25)

Therefore the representation of angular momentum as

Ji
.
= h̄

σi
2

satisfies the anticipated Lie-algebra of rotations.

Parenthetically, we note the following properties for the Pauli matrices.

{σi, σj} ≡ σiσj + σjσi = 2δij12×2. (11.26)

Combining Eq. 11.25 and Eq. 11.26, we obtain that the product of Pauli
matrices is:

σiσj = δij12×2 + εijkσk (11.27)
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We shall now use the property of angular momentum operators as genera-
tors of rotations. For a rotation of a small angle θ around the z−axis, the
representation of the transformation reads:

U(θ) = 12×2 +
i

2
(ω12J12 + ω21J21)

= 12×2 + θi
J3

h̄
= 12×2 + i

θσ3

2
, (11.28)

where we have used that

ω12 = −ω21 = θ, J12 = −J21 =
J3

h̄
=
σ3

2
.

For a large angle θ we have

U(θ) = lim
N→∞

ï
U

Å
θ

N

ãòN
= exp

Å
iσ3θ

2

ã
. (11.29)

The exponential eaσk , where σk, k = 1, 2 or 3 is a Pauli matrix having the
property

σ2 = 12×2

is given by

exp(aσk) =
∞∑
n=0

(aσk)n

n!

=
∞∑
k=0

(aσk)2k

(2k)!
+
∞∑
k=0

(aσk)2k+1

(2k + 1)!

= 12×2

∞∑
k=0

a2k

(2k)!
+ σk

∞∑
k=0

a2k+1

(2k + 1)!

= 12×2
ea + e−a

2
+ σk

ea − e−a

2
(11.30)

Thus

U(θ) = exp

Å
iσ3θ

2

ã
= 12×2 cos

Å
θ

2

ã
+ iσ3 sin

Å
θ

2

ã
=

Å
cos
(
θ
2

)
+ i sin

(
θ
2

)
0

0 cos
(
θ
2

)
− i sin

(
θ
2

)ã
=

Å
exp

(
i θ2
)

0
0 exp

(
−i θ2

)ã . (11.31)
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A general state for a two-state system

|ψ〉 .=
Å
ψ1

ψ2

ã
(11.32)

under a rotation θ around the z−axis will transform as

|ψ〉 → |ψ′〉 = U(θ) |ψ〉 .=

(
eiθ/2ψ1

e−iθ/2ψ2

)
(11.33)

Notice that a rotation θ = 2π does not bring the system back to the original
state, against common intuition:

U(2π) |ψ〉 = − |ψ〉 . (11.34)

For spin− 1
2 systems a rotation of 4π is required in order to return back to the

original state.

We can generalize our discussion here for a rotation of an angle θ around any
axis n̂. We can prove (exercise) that the corresponding spin- 1

2 representation
is:

U(n̂, θ) = exp

Å
i
σ · n̂

2
θ

ã
, (11.35)

which can also be written as

U(n̂θ) = 12×2 cos
θ

2
+ iσ · n̂ sin

θ

2
, (11.36)

where
σ = (σ1, σ2, σ3) . (11.37)

To prove the above the following are useful.

(11.38a)σ · a =

Å
a3 a1 − ia2

a1 + ia2 a3

ã
.

(11.38b)(σ · a)2 = a2,

and

(11.38c)(σ · a)(σ · b) = a · b + i(a× b) · σ.

11.3 Orbital angular momentum

In this chapter we study the space-representation of the eigenstates of the
angular momentum operators L3, L

2 =
∑
i L

2
i , where we have defined

Li = εijkxjpk, (11.39)
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11.3. Orbital angular momentum

with xi, pj being the position and momentum operators. It is straightforward
to prove that the operators Li

h̄ satisfy the Lie algebra of the generators of
rotations, ï

Li
h̄
,
Lj
h̄

ò
= iεijk

Lk
h̄
. (11.40)

According to the general theory of the generators for rotations, we anticipate
that we can find common eigenstates |`,m〉 for L2 =

∑
i L

2
i and one of the

generators Li with

L2 |`,m〉 = h̄2`(`+ 1) |`,m〉

and

L3 |`,m〉 = h̄m |`,m〉 .

11.3.1 Spherical coordinates

It will be useful to analyze angular momentum using spherical coordinates,
where:

(11.41a)x1 = r sin θ sinφ ,

(11.41b)x2 = r sin θ cosφ ,

(11.41c)x3 = r cos θ .

For the differentials, we have

(11.42a)∂r =
∑
i

∂xi
∂r

∂i ,

(11.42b)∂θ =
∑
i

∂xi
∂θ

∂i ,

(11.42c)∂φ =
∑
i

∂xi
∂φ

∂i ,

which in matrix notation gives,

(11.43)

Ñ
∂r
∂θ
∂φ

é
=

Ñ
sin θ sinφ sin θ cosφ cos θ
r cos θ sinφ r cos θ cosφ −r sin θ
r sin θ cosφ −r sin θ sinφ 0

éÑ
∂1

∂2

∂3

é
.

Inverting, we obtain:

(11.44)

Ñ
∂1

∂2

∂3

é
=

Ü
sin θ sinφ cos θ sinφ

r
cosφ
r sin θ

sin θ cosφ cosφ cos θ
r − sinφ

r sin θ

cos θ − sin θ
r 0

êÑ
∂r
∂θ
∂φ

é
.
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We then calculate, (cot θ = cos θ
sin θ )

(11.45a)x2∂3 − x3∂2 = cot θ sinφ∂φ − cosφ∂θ ,

(11.45b)x3∂1 − x1∂3 = cot θ cosφ∂φ + sinφ∂θ ,

(11.45c)x1∂2 − x2∂1 = −∂φ .

The Laplacian operator is,

(11.46)
∇2 =

∑
i

∂2
i

=
1

r2

ï
∂

∂r

Å
r2 ∂

∂r

ã
+

1

sin θ

∂

∂θ

Å
sin θ

∂

∂θ

ã
+

1

sin2 θ

∂2

∂φ2

ò
.

11.3.2 Orbital angular momentum operators and the
Laplacian

Consider the action of an angular momentum operator on a general state |a〉,

Li |a〉 = εijkx̂ip̂j |a〉 . (11.47)

Acting with a position bra 〈r| = 〈x1, x2, x3|, we have

(11.48)〈r|Li |a〉 = εijk 〈r| x̂j p̂k |a〉
= −ih̄εijkxj∂k 〈r|a〉 .

For example,

(11.49)〈r|L3 |a〉 = 〈r| x̂1p̂2 − x̂2p̂1 |a〉
= −ih̄(x1∂2 − x2∂1) 〈r|a〉 .

Using spherical coordinates introduced in the previous section, we obtain

(11.50)〈r|L3 |a〉 = ih̄ (+∂φ) 〈r|a〉 .

Similarly,

(11.51)〈r|L1 |a〉 = −ih̄ (cot θ sinφ∂φ − cosφ∂θ) 〈r|a〉 .

and

(11.52)〈r|L2 |a〉 = −ih̄ (cot θ cosφ∂φ + sinφ∂θ) 〈r|a〉 .

For the ladder operators,

(11.53)L± = L1 ± iL2 ,
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we obtain

(11.54)〈r|L± |a〉 = ih̄
(
e∓iφ [∂θ ∓ i cot θ ∂φ]

)
〈r|a〉 .

We can write

(11.55)L2 = L2
3 +

1

2
(L+L− + L−L+)

After a little bit of algebra, we arrive at

(11.56)〈r|L2 |a〉 = −h̄2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

Ç
sin θ

∂

∂θ

å]
〈r|a〉 .

We notice that the representation of the operator L2 in position-space yields
the angular part of the Laplacian operator, which, in turn, represents the
square of the momentum. Explicitly,

(11.57)
〈r| p2 |a〉 = −h̄2∇2 〈r|a〉

= −h̄2

[
1

r2

∂

∂r

Ç
r2 ∂

∂r

å]
〈r|a〉+

1

r2
〈r|L2 |a〉 .

11.3.3 Spherical harmonics

The eigenstates |`,m〉 of L2, L3 satisfy

(11.58)ih̄∂φ 〈r|`,m〉 = h̄m 〈r|`,m〉 ,

and admit the general solution

(11.59)〈r|`,m〉 = η(r, θ)e−imφ.

For the maximum value ` of m, we have that

(11.60)〈r|L+ |`, `〉 = 0,

which yields the differential equation,

(11.61)e−iφ [∂θ − i cot θ ∂φ] η(r, θ)e−i`φ = 0

(11.62); [∂θ − ` cot θ] η(r, θ) = 0 .

This admits the solution,

(11.63)η(r, θ) = ψ(r)(sin θ)`.

We then have

(11.64)〈r|`, `〉 = ψ(r)Y `` (θ, φ),
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11. Representations of angular momentum

where

(11.65)Y `` (θ, φ) = c``e
−i`φ(sin θ)`

contains the angular dependence on the variables (θ, φ) of 〈r|`, `〉. This func-
tion is a so called spherical harmonic. We fix the normalization constant as
follows,

(11.66)

1 = 〈`, `|`, `〉

=

∫
d3r 〈`, `|r〉 〈r|`, `〉

=

∫ ∞
0

dr r |ψ(r)|2
∫

dΩ
∣∣∣Y `` ∣∣∣2 .

We require that the angular integral and the radial integral are normalized
to the unity independently:

(11.67)

∫ ∞
0

dr r |ψ(r)|2 = 1

and

(11.68)

∫
dΩ

∣∣∣Y `` ∣∣∣2 = 1 .

The angular normalization condition yields,

|c``|2
∫ 2π

0

dφ

∫ π

0

dθ sin θ
(
sin2 θ

)`
= 1

(11.69); 2πB

Å
`+ 1,

1

2

ã
= |c``|−2

(11.70)

 
4π

4`(`! )2

(2`+ 1)!
= |c``|−1

.

We can obtain spherical harmonics for |`,m〉 with a lower value of m < `
by means of the ladder operators. Acting with the L− operator on a general
|`,m〉 state, we obtain

(11.71)〈r|`,m− 1〉 =
〈r|L− |`,m〉√

(`+m)(`+ 1−m)
,

or equivalently,

(11.72)〈r|`,m− 1〉 = ih̄eiφ (∂θ + i cot θ ∂φ)
〈r|`,m〉√

(`+m)(`+ 1−m)h̄
.
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11.3. Orbital angular momentum

It is obvious that the application of this operator does not mix the radial
and angular parts in producing 〈r|`,m〉 of a different m than `. So, we can
decompose

〈r|`,m〉 = ψ`m(r)Y m` (θ, φ). (11.73)

The spherical harmonics Y m` depend purely on the direction of the vector r.
We can think of them as

(11.74)〈r̂|`,m〉 = Y m` (θ, φ), r̂ = r
|r| .

For the spherical harmonics Y m` (θ, φ), we obtain,

(11.75)Y m−1
` (θ, φ) = i

Ä
eiφ
[
∂θ + i cot θ ∂φ

]ä Y m` (θ, φ)√
(`+m)(`+ 1−m)

According to our general theory for the eigenvalues of the generators of ro-
tations, we anticipate that the maximum value ` of m is a half-integer and
that m = −`,−` + 1, . . . , ` − 1, `. Here we shall find a little surprise. While
the operators L = r×p furnish a representation of rotations in Hilbert-space
it is not necessary that their eigenvalues take all values permitted by the Lie
algebra. In fact, for orbital angular momentum only integer values of `,m are
allowed. Assume that ` = 1

2 . Then, we find that

(11.76)Y
1
2

1
2

(θ, φ) = c 1
2

1
2
e−iφ/2

√
sin θ .

With the application of the lowering operator, we obtain:

(11.77)
Y
− 1

2
1
2

(θ, φ) = i
Ä
eiφ
[
∂θ + i cot θ ∂φ

]ä
c 1

2
1
2
e−iφ/2

√
sin θ

= ic 1
2

1
2
eiφ/2

cos θ√
sin θ

.

For a consistent spherical harmonic, we must have that the application of the
lowering operator one more time yields zero. Notice also that the derived
spherical harmonic gives an infinite value for θ = 0.

Spherical harmonics are only defined for ` = 0, 1, 2, 3 integer values of the
indices for the angular momentum eigenvalues. Starting for a generic m = `
value, repeated application of Eq. 11.75 `−m times we can obtain the spherical
harmonic Y m` . Let’s denote the differential operator of Eq. 11.75 as

(11.78)D− ≡ i
Ä
eiφ
[
∂θ + i cot θ ∂φ

]ä
and define

(11.79)ω` ≡ e−i`φ sin` θ.
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11. Representations of angular momentum

We find that

(11.80)ω` = e−iφ sin θ ω`−1 ,

(11.81)D−ω` = (2i` cos θ)ω`−1 ,

(11.82)D−
(
f (θ)

)
= −ieiφ sin θ

d

d (cos θ)
f(θ) ,

(11.83)

d

d (cos θ)

î
(sin θ)

2`
f(θ)
ó

= − (sin θ)
2(`−1)

Å
2` cos θf(θ)

− sin2 θ
d

d (cos θ)
f(θ)

ã
.

and that

(11.84)
D−

(
f(θ)ω`

)
= f (θ)D−ω` + ω`D−

(
f(θ)

)
= ω`−1

−i
(sin θ)2(`−1)

d

d cos θ

î
(sin θ)2`f(θ)

ó
,

where f(θ) an arbitrary function of the polar angle θ. It is now straightforward
to compute the repeated application of the differential operator on ω`, For
example,

(11.85)

D−(D−ω`) = 2i`D−( cos θ︸︷︷︸
f(θ)

ω`−1)

= ω`−2
(−i)2

(sin θ)2(`−2)

d2

d (cos θ)
2

[
(sin θ)2`

]
,

and in general,

(11.86)D−
nω` = ω`−n

(−i)n

(sin θ)2(`−n)

dn

d (cos θ)
n

[
(sin θ)2`

]
.

We are now ready to determine the spherical harmonics Y m` for positive values
of m, using the recurrence identity of Eq. 11.75 on

(11.87)Y `` (θ, φ) = c``ω` .

`−m times, we find

Y m` (θ, φ) = (−i)`c``

 
(2`)! (`+m)!

(`−m)!

e−im(φ−π2 )

(sin θ)m
d`−m

d (cos θ)
`−m (sin θ)2`.

(11.88)
The normalization c`` can be determined up to a phase. We conventionally
choose this phase to be

c`` = |c``| (−i)`. (11.89)
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11.3. Orbital angular momentum

With this normalization we obtain,

Y m` (θ, φ) =

 
(2`+ 1)

4π

(`+m)!

(`−m)!

e−im(φ−π2 )

(sin θ)m
(−1)`

2``!

d`−m

d (cos θ)
`−m (sin θ)2`.

(11.90)

The derivatives above for the case m = 0 are related to the Legendre polyno-
mials, defined as,

P`(x) =
(−1)`

2``!

d`

dx`
(1− x2)`. (11.91)

As one can check easily, they satisfy the differential equation,

d

dx

Å
(1− x2)

d

dx
P`(x)

ã
+ `(`+ 1)P`(x) = 0. (11.92)

For x = cos θ, we have

d

d cos θ
sin2 θ

d

d cos θ
P`(cos θ) + `(`+ 1)P`(cos θ) = 0. (11.93)

or, equivalently,

1

sin θ

d

dθ
sin θ

d

dθ
+ `(`+ 1)P`(cos θ) = 0. (11.94)

For m = 0, the spherical harmonics become:

Y 0
` (θ, φ) =

 
(2`+ 1)

4π
P`(cos θ). (11.95)

To obtain the spherical harmonics for negative values of m we have to repeat
a completely analogous study starting from Y −ll as derived from

L− |`,−`〉 = 0,

and using that

L+ |`,m〉 =
»

(`−m)(`+m+ 1) |`,m+ 1〉 .

We find that (exercise):

Y −m` (θ, φ) = (−1)m [Y m` (θ, φ)]
∗
. (11.96)
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11. Representations of angular momentum

11.3.4 Space-representations of rotations

An arbitrary rotation of coordinates xi → x′i = Rijxj is represented by a
unitary operator

|ψ〉 → U(R) |ψ〉 , (11.97)

where the operator U(R) is a function of the generators Ji with i = 1, 2, 3.
Since the square of the angular momentum commutes with all generators Ji,
we should also have that [

J2, U(R)
]

= 0. (11.98)

Thus, the states |`,m〉 and U(R) |`,m〉 have the same eigenvalues for the J2

operator. The U(R) |`,m〉 can only be a superposition of |`,m′〉 states with
the same value `: In a general decomposition,

U(R) |`,m〉 =
∑
`′m′

c`′m′ |`′,m′〉 (11.99)

only the terms with `′ = ` are present. We can write that:

U(R) |`,m〉 =
∑
m′

cm′ |`,m′〉 (11.100)

Physically, this result is anticipated since a rotation should not change the
total angular momentum.

Consider a position state |ẑ〉, corresponding to the unit vector in the z−direction.
A position state |r̂〉 with

r̂ = (sin θ sinφ, sin θ cosφ, cos θ), (11.101)

can be produced by a rotation as for,

|r̂〉 = U(θ, φ) |ẑ〉 . (11.102)

We then have

|r̂〉 =
∑
`′,m′

U(θ, φ)|`′,m′〉〈`′,m′| |ẑ〉

; 〈`,m|r̂〉 =
∑
`′,m′

〈`,m|U(θ, φ) |`′,m′〉 〈`′,m′|ẑ〉

; 〈`,m|r̂〉 =
∑
m′

〈`,m|U(θ, φ) |`,m′〉 〈`,m′|ẑ〉 (11.103)

The matrix-element 〈ẑ|`,m〉 is zero unless m = 0. Indeed, if m 6= 0,

L3 |ẑ〉 = (x̂1p̂2 − x̂2p̂1) |ẑ〉 = 0,
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11.4. Potentials with spherical symmetry

since the position operators x̂1,2 yield a zero eigenvalue for a position ket in
the orthogonal z−direction. Also,

0 = 〈ẑ|L3 |`,m〉 = h̄m 〈ẑ|`,m〉 .

For m 6= 0, we must have that 〈ẑ|`,m〉 = 0. Therefore,

〈ẑ|`,m〉 = 〈ẑ|`, 0〉 δ0m = Y 0
` (θ = 0, φ)δ0m

=

 
(2`+ 1)

4π
P`(cos θ)|θ=0 δ0m

; 〈ẑ|`,m〉 =

 
(2`+ 1)

4π
δ0m

Substituting in Eq. 11.103, we obtain:

Y m` (θ, φ)∗ = 〈`,m|U(θ, φ) |`, 0〉

 
(2`+ 1)

4π
. (11.104)

11.4 Potentials with spherical symmetry

We have proven that systems with a spherical symmetry have a Hamiltonian
which commutes with the generators of rotations. The common eigenstates
of J2 and J3 should also be eigenstates of the Hamiltonian, satisfying:

(11.105a)H |E, `,m〉 = E |E, `,m〉 ,
(11.105b)L2 |E, `,m〉 = h̄2`(`+ 1) |E, `,m〉 ,
(11.105c)L3 |E, `,m〉 = h̄m |E, `,m〉 .

The Hamiltonian of a particle inside a spherically symmetric potential

H =
p2

2M
+ V (r), (11.106)

where the potential V (r) is a function only of the magnitude of a spatial
distance, is invariant under rotations. Indeed, we can easily compute that:

(11.107a)[ri, Lj ] = ih̄εijkrk

(11.107b)[pi, Lj ] = ih̄εijkpk

(11.107c)
[
p2, Li

]
= 0

(11.107d)
[
r2, Li

]
= 0
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11. Representations of angular momentum

from which we conclude that

[H,Li] = 0. (11.108)

Recall that

(11.109)〈r|E, `,m〉 = ψE,`,m(r)Y m` (θ, φ) .

and from Eq. 11.57, we also obtain that

〈r| p2 |E, `,m〉 = −h̄2

ï
1

r2

∂

∂r

Å
r2 ∂

∂r

ã
− `(`+ 1)

r2

ò
ψE,`,m(r)Y m` (θ, φ).

(11.110)

From Eq. 11.105a we obtain a differential equation for the radial part of the
wave-functionï

1

r2

∂

∂r

Å
r2 ∂

∂r

ã
− `(`+ 1)

r2
− 2M(V (r)− E)

h̄2

ò
ψE,`,m(r) = 0. (11.111)

Notice that the “radial” wavefunction does not depend on the eigenvalue m
of L3,

(11.112)ψE,`,m(r) ≡ ψE,`(r) .

We write,

(11.113)ψE,`(r) =
R(r)

r
,

which yields

(11.114)0 = R′′(r)−
ï
`(`+ 1)

r2
+

2M(V (r)− E)

h̄2

ò
R(r) .

Exercise 11.1. Solve this equation in the case of a free particle V (r) = 0.

Exercise 11.2. Solve this equation for a spherical well V (r) = V0Θ(r < r0).

11.5 The hydrogen atom

We are now in position to discuss a simplified version of the hydrogen atom,
where we ignore the spin of the electron. The potential is given by

V (r) = −Ze
2

r
. (11.115)
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11.5. The hydrogen atom

Exercise 11.3. Solve Eq. 11.114 for the hydrogen atom potential.

In this section, we shall determine algebraically the energy spectrum of the
hydrogen atom. Consider the operator

R = −Ze
2r

r
+

1

2m
(p× L− L× p) (11.116)

where

L = r× p.

This is the quantum mechanics analogue of the Runge-Lenz vector, a con-
served quantity in classical mechanics for the Coulomb potential. Note that

(11.117a)
[
ri, L

2
]

= iεijk(Ljrk − rjLk)

(11.117b)
[
pi, L

2
]

= iεijk(Ljpk − pjLk)

or equivalently,

(11.118a)
[
r, L2

]
= i(L× r− r× L)

(11.118b)
[
p, L2

]
= i(L× p− p× L)

We can then rewrite,

Ri = −Ze
2ri
r

+

[
L2, pi

]
2mi

. (11.119)

The vector operator Ri can be easily shown from above to be Hermitian,

R†i = Ri.

As anticipated from our experience with classical mechanics, it commutes
with the Hamiltonian (exercise).

[H,Ri] = 0, (11.120)

with

H =
p2

2m
− Ze2

r
. (11.121)

The Runge-Lenz vector is orthogonal to the angular momentum:

L ·R = R · L = 0. (11.122)

145



11. Representations of angular momentum

Also, we can prove the following identities (exercise):

(11.123a)L× p = −p× L + 2ih̄p .

(11.123b)

r · (p× L) = riεijkpjLk

= (εkijripj)Lk

= LkLk

= L2,

(11.123c)

(p× L) · r = εijkpjLkri

= εijkpj ([Lk, ri] + riLk)

= ih̄εkijεki`pjr` + L2

= L2 + ih̄2δj`pjr`

= L2 + 2ih̄p · r .

Similarly,

(11.124a)(p× L)
2

= p2L2 ,

(11.124b)p · (p× L) = 0 ,

(11.124c)(p× L) · p = 2ih̄p2 ,

and [ri
r
, pi

]
=

2ih̄

r
. (11.125)

For the square of the Runge-Lenz vector we find,

(11.126)
R2 =

Å
−Ze

2r

r
+

p× L

m
− ih̄

m
p

ã2

= . . .

= Z2e4 + 2

Å
p2

2m
− Ze2

r

ã (
h̄2 + L2

)
.

Thus,

(11.127)R2 = Z2e4 +
2H

m

(
h̄2 + L2

)
.

We can then determine the eigenvalues of the hydrogen-atom Hamiltonian if
we know the eigenvalues of R2. We shall do this by means of an algebraic
method.

We find (exercise) the following commutation relations:

(11.128a)[Ri, Rj ] =
−2H

m
ih̄εijkLk

(11.128b)[Li, Rj ] = ih̄εijkRk .

146



11.5. The hydrogen atom

We also recall,

(11.128c)[Li, Lj ] = ih̄εijkLk .

We now define,

A±i =
1

2

Å
Li ±

…
m

−2H
Ri

ã
(11.129)

The new operators satisfy the algebra,

(11.130a)
î
A±i , A

±
j

ó
= ih̄εijkA

±
k

and

(11.130b)
î
A±i , A

∓
j

ó
= 0 .

which is our familiar algebra of angular momentum. Notice that the operators
A± are Hermitian if the Hamiltonian has negative eigenvalues, i.e. for negative
energies. For the squares (A±)2, we find that

(A±)2 =
1

4

[
L2 − m

2H
R2
]
,

=
1

4

ï
L2 − m

2H

Å
Z2e4 +

2H

m

(
h̄2 + L2

)ãò
; (A±)2 = − h̄

2

4
− m

8H
Z2e4. (11.131)

According to the Lie-algebra for the A± operators, the eigenvalues of the
(A±)2 are,

h̄2j(j + 1), j = 0,
1

2
, 1,

3

2
, . . . (11.132)

Thus, for the energy eigenvalues E, we must have

h̄2j(j + 1) = − h̄
2

4
− m

8Ej
Z2e4 (11.133)

or, equivalently,

En = −Z2me
4

2h̄2

1

n2
(11.134)

with
n = (2j + 1)2 = 1, 2, . . . (11.135)

Notice that we have obtained only negative eigenvalues. For states with pos-
itive energy eigenvalues, the operators A±i are not Hermitian and our deriva-
tion of the selection rules based on the Lie algebra does not go through.
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11. Representations of angular momentum

Both (A±)
2

operators have a 2j+1 = n-fold degeneracy which can be revealed

by the action of the A±3 operators on them. Since the (A±)
2

operators are
independent, an eigenstate of the Hamiltonian will have a (2j+1)2 = n2−fold
degeneracy.

11.5.1 SO(4) symmetry of hydrogen atom

The Lie algebra for group the group of rotations SO(N) in N dimensions is
given by:

[Jab, Jcd] = −ih̄ (δadJbc − δacJbd + δbcJad − δbdJac) (11.136)

with a, b, c, d = 1 . . . N and Jab = −Jba. Obviously, this group contains
rotations in three-dimensions as a subgroup. For J12 ≡ L3, J23 = L1, J31 =
L2, the commutation relation above takes the familiar form:

(11.137a)[Li, Lj ] = ih̄εijkLk.

where i, j, k = 1, 2, 3. For the remaining three generators: J14, J24, J34, the
commutation relations yield:

(11.137b)[J14, Jj4] = ih̄εijkLk, i, j = 1 . . . 3 .

and

(11.137c)[Li, Jj4] = ih̄εijkJk4 .

Setting,

Ri ≡
…
−2H

m
Ji4, (11.138)

we recognize the Lie algebra of Eqs (11.128a)-(11.128c). The hydrogen atom
has an SO(4) symmetry, which is a larger symmetry than rotation invariance
in three dimensions SO(3).
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Chapter 12

Addition of angular momenta

A particle such as an electron in an atom, can have more than one type of
angular momentum: For example, spin and orbital angular momentum. These
two types will be described by independent generators of angular momenta
living in different representations: Ja, Jb with

(12.1a)[Jai, Jbj ] = 0, i, j = 1 . . . 3 .

As is required for such generators, they satisfy the same Lie algebra:

(12.1b)[Jai, Jaj ] = ih̄εijkJak

(12.1c)[Jbi, Jbj ] = ih̄εijkJbk

Therefore, there exist common eigenstates of the operators: J2
a , J

2
b , Ja3, Jb3,

with eigenvalues:

(12.2a)J2
a |ja,ma, jb,mb〉 = h̄2ja(ja + 1) |ja,ma, jb,mb〉

(12.2b)J2
b |ja,ma, jb,mb〉 = h̄2jb(jb + 1) |ja,ma, jb,mb〉

(12.2c)Ja3 |ja,ma, jb,mb〉 = h̄ma |ja,ma, jb,mb〉
(12.2d)Jb3 |ja,ma, jb,mb〉 = h̄mb |ja,ma, jb,mb〉

12.1 Addition of angular momenta

The sum of the two angular momenta,

Ji = Jai + Jbi, (12.3)

satisfies the same Lie algebra,

(12.4)[Ji, Jj ] = ih̄εijkJk

Notice that the operators J2
a and J2

b commute with all the components of the
total angular momentum:

(12.5)
[
J2
a , Ji

]
=
[
J2
b , Ji

]
= 0
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12. Addition of angular momenta

We can then find common eigenstates of the J2, J3, J
2
a , J

2
b operators:

|j,m, ja, jb〉

with
(12.6a)J2

a |j,m, ja, jb〉 = h̄2ja(ja + 1) |j,m, ja, jb〉
(12.6b)J2

b |j,m, ja, jb〉 = h̄2jb(jb + 1) |j,m, ja, jb〉
(12.6c)J2 |j,m, ja, jb〉 = h̄2j(j + 1) |j,m, ja, jb〉
(12.6d)J3 |j,m, ja, jb〉 = h̄m |j,m, ja, jb〉

The states |j,m, ja, jb〉 can be written as a linear superposition of states:
|ja,ma, jb,mb〉:

(12.7)|j,m, ja, jb〉 =
∑
ma,mb

|ja,ma, jb,mb〉 〈ja,ma, jb,mb|j,m, ja, jb〉 .

The coefficients
〈ja,ma, jb,mb|j,m, ja, jb〉

are known as Clebsch-Gordan coefficients.

From Eq. 12.7, it is easy to infer that

(12.8)
∑
ma,mb

|〈ja,ma, jb,mb|j,m, ja, jb〉|2 = 1 .

From the definition of the total angular momentum, we have that

(12.9)0 = 〈ja,ma, jb,mb| J3 − Ja3 − Jb3 |j,m, ja, jb〉
= (m−ma −mb) 〈ja,ma, jb,mb|j,m, ja, jb〉 .

This leads to the conclusion that,

(12.10)〈ja,ma, jb,mb|j,m, ja, jb〉 = 〈ja,ma, jb,mb|j,m, ja, jb〉 δm,ma+mb .

Finally, we recall that
(12.11a)J± = J1 ± iJ2 ,

(12.11b)Ja± = Ja1 ± iJa2 ,

(12.11c)Jb± = Jb1 ± iJb2 ,

with

(12.11d)J± = Ja± + Jb± ,
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12.1. Addition of angular momenta

are rising/lowering operators of the m,ma,mb eigenvalues respectively. We
then obtain, from the last equation,

(12.12)〈ja,ma, jb,mb| J± |j,m, ja, jb〉 = 〈ja,ma, jb,mb| Ja± |j,m, ja, jb〉
+ 〈ja,ma, jb,mb| Jb± |j,m, ja, jb〉

which yields:

(12.13)

〈ja,ma, jb,mb|j,m± 1, ja, jb〉

=

 
ja(ja + 1)−ma(ma ± 1)

j(j + 1)−m(m± 1)
〈ja,ma ± 1, jb,mb|j,m, ja, jb〉

+

 
jb(jb + 1)−mb(mb ± 1)

j(j + 1)−m(m∓ 1)
〈ja,ma, jb,mb ± 1|j,m, ja, jb〉

The maximum value for j is ,
jmax = ja + jb

and there is only one such state

|j = ja + jb,m = ja + jb, ja, jb〉 = |ja,ma = ja, jb,mb = jb〉 , (exercise) .

Therefore,

(12.14)〈ja, ja, jb, jb|j,m, ja, jb〉 = δj,ja+jbδm,ja+jb .

Acting with an J− on both sides, we obtain a state with j = ja + jb and
m = ja + jb − 1,

(12.15)
|ja + jb, ja + jb − 1, ja, jb〉 =

 
ja

ja + jb
|ja, ja − 1, jb, jb〉

+

 
jb

ja + jb
|ja, ja, jb, jb − 1〉 .

There is only one more state with m = ja + jb − 1. This must have j =
ja + jb − 1. Since it has a different quantum number j it must be orthogonal
to the previous state:

(12.16)0 = 〈ja + jb, ja + jb − 1, ja, jb|ja + jb − 1, ja + jb − 1, ja, jb〉 = 0 .

This condition allows us to determine the state (up to a phase):

(12.17)
|ja + jb − 1, ja + jb − 1, ja, jb〉 =

 
jb

ja + jb
|ja, ja − 1, jb, jb〉

−
 

ja
ja + jb

|ja, ja, jb, jb − 1〉 .
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12. Addition of angular momenta

We can repeat this procedure until it is not possible to create a new state due
to exhausting the range of ma and mb. We find a number of (2ja+1)(2jb+1)
and the quantum numbers of the total angular momentum take discrete values
in the range: j = |ja − jb| . . . ja + jb, m =− j . . . j.
The above conventions lead to real-valued Clebsch-Gordan coefficients. Clebsch-
Gordan coefficients are the coefficients for the linear transformation from a
complete set of states

|j1,m1, j2,m2〉

to another complete set
|j,m, j1, j2〉 .

Consider in general two complete sets of states:

{|ψi〉} and {|φi〉}

with

〈φi|φj〉 = 〈ψi|ψj〉 = δij ,

and the sets are related by a linear transformation with real coefficients:

(12.18)|φi〉 =
∑
j

Cij |ψj〉 .

Then

(12.19)

δkl = 〈φk|φl〉
=
∑
jm

CkmClj 〈ψj |ψm〉

=
∑
j

CkjClj

=
∑
j

CkjC
T
jl

which leads to
detC = 1

and

C−1 = CT .

From the above,

CTC = 1

;
∑
j

CjiCjk = δik
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We can then invert Eq 12.18 to read,

|ψi〉 =
∑
j

Cji |φj〉

Applying the above for the Clebsch-Gordan coefficients, we derive that:

(12.20)

∑
j,m

〈j1,ma, j2,mb|j,m, j1, j2〉 〈j1,mc, j2,md|j,m, j1, j2〉

= δma,mcδmb,md .

and we can also invert to write:

(12.21)|j1,m1, j2,m2〉 =
∑
j,m

|j,m, j1, j2〉 〈j1,m1, j2,m2|j,m, j1, j2〉 .

12.2 Application: Hydrogen atom

The hydrogen atom has an n2 degeneracy as we have found earlier. The
general solution for the wave-function is of the form:

ψ(r) =
Rn`(r)

r
Y m` (θ, φ). (12.22)

The degeneracy in this form is due to the fact that the energy levels depend
only on n but not not `,m. Given that the number of degenerate states is
finite, the value of ` must be bounded:

` = 0, . . . , `max.

The number of degenerate states is then

n2 =

`max∑
`=0

(2`+ 1) = (`max + 1)2. (12.23)

From the above we conclude that the range of ` is

` = 0, . . . , n− 1. (12.24)

The total angular momentum of the electron in the hydrogen atom is the sum
of its spin and the orbital angular momentum:

J = L+ S (12.25)
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12. Addition of angular momenta

In the ground state, n = 1, the orbital angular momentum is zero. The only
possibility for j is j = 1

2 . A general hydrogen state is denoted by:

n`j ,

where ` = 0, 1, 2, 3, 4, . . . , n− 1 is represented by the letters

s, p, d, f, g, and then alphabetically.

The hydrogen states are

1s 1
2
, 2p 3

2
, 2p 1

2
, 2s 1

2
, 3d 5

2
, 3d 3

2
, 3p 3

2
, 3p 1

2
, 3s 1

2
, . . . (12.26)

The interaction L · S splits the energy levels with same n, ` but different
j. This splitting is known as the fine structure of the hydrogen atom. An
even finer splitting (hyperfine splitting) is found by combining the spin of the
electron with the spin of the proton and the interaction is due to the magnetic
field of the proton.

12.3 Wigner-Eckart theorem

A set of (2j + 1) operators Omj is said to have spin-j if

(12.27)
[
J3, O

m
j

]
= h̄mOmj

and

(12.28)
[
J±, O

m
j

]
= h̄
»
j(j + 1)−m(m± 1)Om±1

j

Notice that

(12.29)〈j,m′| J3 |j,m〉 = h̄mδm′,m

and

(12.30)〈j,m| J± |j,m′〉 = h̄
»
j(j + 1)−m(m± 1)δm′,m±1 .

The coefficients are expressed in terms of the (j)−dimensional representation
of the angular momentum generators. We cast the above algebra as:

(12.31a)

[
J3, O

m
j

]
=
∑
m′

[
J3, O

m
j

]
δmm′

=
∑
m′

〈j,m| J3 |j,m′〉Om
′

j .

(12.31b)
[
J±, O

m
j

]
=
∑
m′

〈j,m| J± |j,m′〉Om
′

j .
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12.3. Wigner-Eckart theorem

or, in general,

(12.31c)
[
Ji, O

m
j

]
=
∑
m′

〈j,m| Ji |j,m′〉Om
′

j .

For example, a scalar spin-0 operator, for which

(12.32)〈0, 0| Ji |0, 0〉 = 0, ∀ i = 1, 2, 3

commutes with the angular momentum operators:[
Ji, O

0
0

]
= 0. (12.33)

A “vector” operator Vm ≡ Om1 satisfies,

[Ji, Vj ] = ih̄εijkVk. (12.34)

We can define spherical components of such a vector according to:

(12.35a)V +1 =
V1 + iV2√

2
,

(12.35b)V −1 =
V1 − iV2√

2
,

(12.35c)V 0 = V3 .

Exercise 12.1. Show that

[J3, V
m] = h̄mV m

[J±, V
m] = h̄

»
1(1 + 1)−m(m± 1)V m .

Exercise 12.2. Prove that a spherical harmonic Y m` (r̂) where r̂ is treated as
an operator is such an operator.

Consider a state: ∣∣∣Ωm1m2
j1j2

∂
= Om1

j1
|a, j2,m2〉 . (12.36)

Acting on it with a rotation generator Ji we obtain:

(12.37)

Ji

∣∣∣Ωm1m2
a,j1j2

∂
=
î
Ji, O

m1
j1

ó
|a, j2,m2〉+Om1

j1
Ji |a, j2,m2〉

=
∑
m′

〈j1,m1| Ji |j1,m′〉
∣∣∣Ωm′m2
j1j2

∂
+
∑
m′

〈j2,m′| Ji |j2,m2〉
∣∣∣Ωm1m

′

j1j2

∂
.
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12. Addition of angular momenta

We can compare this with the action of the rotation generators on a state
which is a common eigenstate of two types of angular momentum in the j-th
and j′-th representation:

(12.38)

Ji |j1,m1, j2,m2〉 = J
(j)
i |j1,m1, j2,m2〉+ J

(j′)
i |j1,m1, j2,m2〉

=
∑
m′

〈j2,m′| Ji |j2,m2〉 |j1,m1, j2,m
′〉

+
∑
m′

〈j1,m′| Ji |j1,m1〉 |j1,m′, j2,m2〉 .

We observe from Eqs. 12.37-12.38 that the state
∣∣∣Ωm1m2
j1j2

∂
transforms as a

common eigenstate of two different types of angular momenta. We can

then change basis from
∣∣∣Ωm1,m2

j1,j2

∂
to a basis

∣∣∣Ωmj1,j2;j

〉
with quantum num-

bers j,m, j1, j2. The coefficients of the linear transformation are our known
Clebsch-Gordan coefficients according to Eq. 12.21. We write:

Om1
j1
|a, j2,m2〉 =

∑
jm

〈j1,m1, j2,m2|j,m, j1, j2〉
∣∣Ωmj1,j2;j

〉
. (12.39)

From the above, we have that

(12.40a)
〈a′, j3,m3|Om1

j1
|a, j2,m2〉

=
∑
jm

〈j1,m1, j2,m2|j,m, j1, j2〉
〈
a′, j3,m3

∣∣Ωmj1,j2;j

〉
.

and, by using orthonormality,

〈a′, j,m|Om1
j1
|a, j2,m2〉 = 〈j1,m1, j2,m2|j,m, j1, j2〉

〈
a′, j,m

∣∣Ωmj1,j2;j

〉
.

(12.40b)

The matrix element 〈
a′, j,m

∣∣Ωmj1,j2;j

〉
is independent of the quantum number m. Indeed, for two states with the
same j,m quantum numbers we have

〈a, j,m± 1|b, j,m± 1〉 =
»
j(j + 1)−m(m± 1)

−2

〈a, j,m| J∓J± |b, j,m〉
= 〈a, j,m|b, j,m〉 .

Therefore, their scalar product is independent of the quantum number m. We
have thus proven the Wigner-Eckart theorem :
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12.3. Wigner-Eckart theorem

Theorem 12.1 (Wigner-Eckart theorem). The matrix-elements of spin-
operators satisfy,

〈a′, j3,m3|Om2
j2
|a, j1,m1〉 = 〈j2,m2, j1,m1|j3,m3, j2, j1〉 〈a′| ||O|| |a〉 ,

where the term 〈a′| ‖O‖ |a〉 is independent of the quantum numbers m1,m2,m3

and is known as the reduced matrix-element.

The coefficient
〈j2,m2, j1,m1|j3,m3, j2, j1〉

is a Clebsch-Gordan coefficient. The Wigner-Eckart theorem is of paramount
importance for the understanding ot atomic transitions by absorbing and
emitting light.
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Chapter 13

Discrete symmetries

In this chapter, we shall discuss symmetry transformations which cannot be
connected to the unity by varying a continuous parameter. Such symmetries
are space inversion (mirror symmetry/parity) and time reversal.

13.1 Parity

Under a parity transformation in classical physics, the position vector changes
sign

(13.1)r→ −r .

We would like to preserve this property for the expectation value of the po-
sition operator

(13.2)〈ψ| r̂ |ψ〉 → −〈ψ| r̂ |ψ〉

Under a parity transformation, a state changes as:

(13.3)|ψ〉 → |ψ′〉 = Π |ψ〉 ,

which suggest that we can achieve of our requirement of Eq. 13.2 if

(13.4)Π†r̂Π = −r̂.

According to the above,

(13.5)r̂
(
Π |r〉

)
= −Π

(
r̂ |r〉

)
= −r(Π |r〉) .

Therefore, the state Π |r〉 describes the same physics as the state |−r〉. We
then have:

(13.6)Π |r〉 = eiδ |−r〉 .

Conventionally, we shall choose the phase to be zero:

(13.7)Π |r〉 = |−r〉 .

159



13. Discrete symmetries

Acting twice on a position state, the parity operator has no effect:

(13.8)Π2 |r〉 = Π |−r〉
= |r〉 .

Given that the position eigenkets form a complete basis, we have that:

(13.9)Π2 = 1 .

Thus, the representation Π of the parity transformation is unitary and her-
mitian, satisfying

(13.10)Π† = Π−1 = Π .

Let’s consider a space-translation operator

U(∆r) = 1− ip ·∆r

h̄

acting on a position eigenket |r〉. We have

(13.11)ΠU(∆r) |r〉 = |−r−∆r〉

Also,

(13.12)U(−∆r)Π |r〉 = |−r−∆r〉 .

Equating the lhs of the last equations we have

(13.13)ΠU(∆r) = U (−∆r) Π ,

(13.14); ΠU(∆r)Π = U(−∆r) .

This leads to the following transformation for the momentum operator under
parity:

(13.15)Π p̂ Π = −p̂ .

We can repeat this analysis for angular momentum, the generators of rota-
tions. An infinitesimal rotation is represented by

(13.16)U(ωij) = 1 +
i

2h̄
ωijJ

ij

and

(13.17)U(ωij) |ri〉 = |ri + ωijrj〉 .

We find that

(13.18)

ΠU(ωij)Π |ri〉 = ΠU(ωij) |−ri〉
= Π |−ri − ωijrj〉
= |ri + ωijrj〉
= U(ωij) |ri〉 .
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13.2. Time reversal

Therefore,

(13.19)ΠU(ωij)Π = U(ωij) .

For the angular momentum operators the above equation implies that

(13.20)ΠJiΠ = Ji .

(recall that h̄J12 = J3, . . .).

For a system which is symmetric under parity, the energy eigenstates are also
parity eigenstates:

(13.21)Π |π〉 = π |π〉 .

The parity operator satisfies,

(13.22)Π2 = 1 .

The same identity must be fulfilled by the eigenvalues. Therefore, we have
two parity eigenstates |π〉 = |±〉 with eigenvalues ±1:

(13.23)Π |±〉 = ± |±〉 .

Multiplying with a position bra, we find

(13.24)〈r|Π |±〉 = ±〈r|±〉 ,
(13.25)〈−r|±〉 = ±〈r|±〉 .

As we have remarked above in a parity conserving system partity eigenstates
are also energy eigenstates. Therefore, the wavefunctions

ψ±(r) ≡ 〈r|±〉 ,

are either even or odd under r→ −r:

(13.26)ψ±(r) = ±ψ±(−r) .

13.2 Time reversal

Let’s consider a system which is symmetric under time reversal:

t→ −t .

In this section, we shall explore the properties of the representation Θ of
time-reversal on quantum states:

|ψ〉 → Θ |ψ〉 .

The time translation operator, for infinitessimal time intervals, is:

(13.27)U(δt) = 1− iH
h̄
δt
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13. Discrete symmetries

Acting on a generic state |ψ, t〉, we have

(13.28)

Θ−1U(−δt)Θ |ψ, t〉 = Θ−1U(−δt) |ψ,−t〉
= Θ−1 |ψ,−t− δt〉
= |ψ, t+ δt〉
= U(δt) |ψ, t〉 .

Therefore,

(13.29)Θ−1U(−δt)Θ = U(δt) .

Substituting the expression for the operator of an infinitesimaly small time
evolution, we have:

(13.30)Θ−1(−iH)Θ = iH.

The representation Θ cannot be unitary and linear. If it were the case, we
would derive that

(13.31)Θ−1HΘ = −H

and, equivalently,

(13.32)ΘH = −HΘ.

Assume that there is a state |E〉 which is an eigenstate of the Hamiltonian:

(13.33)H |E〉 = E |E〉 .

Then, for the state Θ |E〉, we find that is also an energy eigenstate, however
with an energy eigenvalue −E:

(13.34)H
(
Θ |E〉

)
= −Θ

(
H |E〉

)
= −E

(
Θ |E〉

)
.

This is in contradiction with observations. For free particles it predicts erro-
neously negative energies.
The above problem is solved if Θ is antilinear and antiunitary. Eq. 13.30 gives

Θ(−iH)Θ = iH .

; iΘHΘ = iH

(13.35); ΘHΘ = H

Equivalently,

(13.36)ΘH = HΘ .

Classically, time reversal changes:

(13.37a)r→ r ,

(13.37b)p→ −p .
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The classical transformation rules should also hold for the expectation values
of the corresponding quantum operators. Thus, we must have

(13.38)Θ−1r̂Θ = r̂

and

(13.39)Θ−1p̂Θ = −p̂

This is consistent with the commutation relations:

Θ−1 [ri, pj ] Θ = Θ−1ih̄δijΘ[
Θ−1riΘ,Θ

−1pjΘ
]

= −ih̄δij
[ri,−pj ] = −ih̄δij

(13.40)[ri, pj ] = ih̄δij .

The Lie-algebra of angular momentum is

(13.41)[Ji, Jj ] = iεijkJk .

This leads to

(13.42)
[
−Θ−1JiΘ,−Θ−1JjΘ

]
= iεijk

(
−Θ−1JkΘ

)
,

which implies that

(13.43)Θ−1JiΘ = −Ji .
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