Quantum Mechanics I

Babis Anastasiou

Institute for Theoretical Physics,
ETH Zurich,
8093 Zurich, Switzerland

E-mail: babis@phys.ethz.ch

August 7, 2017
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>1</td>
</tr>
<tr>
<td>Bibliography</td>
<td>5</td>
</tr>
<tr>
<td>1 Quantum behavior</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Atomic mechanics</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Basic two slit experiments</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1 An experiment with bullets</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2 An experiment with waves</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3 An experiment with electrons</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Watching electrons</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Back to the bullet experiment</td>
<td>14</td>
</tr>
<tr>
<td>1.5 First principles of quantum mechanics</td>
<td>14</td>
</tr>
<tr>
<td>1.6 Heisenberg’s uncertainty principle</td>
<td>16</td>
</tr>
<tr>
<td>1.6.1 Estimating the size of the atoms</td>
<td>17</td>
</tr>
<tr>
<td>1.7 The laws for combining amplitudes</td>
<td>18</td>
</tr>
<tr>
<td>1.7.1 Revisiting the two-slit experiment</td>
<td>19</td>
</tr>
<tr>
<td>1.7.2 A subatomic travel from Zurich to China?</td>
<td>20</td>
</tr>
<tr>
<td>2 Quantum measurement and quantum states</td>
<td>23</td>
</tr>
<tr>
<td>2.1 Stern-Gerlach experiment</td>
<td>23</td>
</tr>
<tr>
<td>2.2 The Stern-Gerlach filter</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1 Experimental setup</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2 Successive aligned Stern-Gerlach filters</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Successive rotated Stern-Gerlach filters</td>
<td>27</td>
</tr>
<tr>
<td>2.2.4 Three filters</td>
<td>28</td>
</tr>
<tr>
<td>2.3 Base states</td>
<td>30</td>
</tr>
<tr>
<td>2.4 Rules of quantum mechanics at work</td>
<td>31</td>
</tr>
<tr>
<td>3 Quantum Mechanics and Linear Algebra</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Ket-space</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Operators</td>
<td>34</td>
</tr>
<tr>
<td>3.3 Dual space</td>
<td>34</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>3.4</td>
<td>Inner product</td>
</tr>
<tr>
<td>3.5</td>
<td>Properties of operators and their duals</td>
</tr>
<tr>
<td>3.6</td>
<td>Hermitian operators</td>
</tr>
<tr>
<td>3.7</td>
<td>Matrix representation of states and operators</td>
</tr>
<tr>
<td>3.8</td>
<td>Compatible and incompatible observables</td>
</tr>
<tr>
<td>3.9</td>
<td>Expectation value and uncertainty of Hermitian operators</td>
</tr>
<tr>
<td>3.10</td>
<td>The uncertainty principle</td>
</tr>
<tr>
<td>3.11</td>
<td>Change of basis</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Transformation matrix</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Trace of operators</td>
</tr>
<tr>
<td>3.12</td>
<td>Eigenstates and eigenvalues</td>
</tr>
<tr>
<td>3.13</td>
<td>Unitary equivalent observables</td>
</tr>
<tr>
<td>4</td>
<td>Time evolution</td>
</tr>
<tr>
<td>4.1</td>
<td>Schrödinger equation</td>
</tr>
<tr>
<td>4.2</td>
<td>Eigenstates of the Hamiltonian operator</td>
</tr>
<tr>
<td>4.3</td>
<td>Spin precession</td>
</tr>
<tr>
<td>4.4</td>
<td>Heisenberg and Schrödinger picture of time evolution</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Shift in picture</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Recapitulation</td>
</tr>
<tr>
<td>5</td>
<td>Two-state systems</td>
</tr>
<tr>
<td>5.1</td>
<td>The ammonia molecule</td>
</tr>
<tr>
<td>5.2</td>
<td>The ammonia molecule inside an electric field</td>
</tr>
<tr>
<td>5.3</td>
<td>Ammonia in an oscillating electric field</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Transitions at resonance</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Microwave amplification with stimulated emission of radiation</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Transition off resonance</td>
</tr>
<tr>
<td>6</td>
<td>Position and momentum</td>
</tr>
<tr>
<td>6.1</td>
<td>Continuous spectra</td>
</tr>
<tr>
<td>6.2</td>
<td>Position operator and eigenstates</td>
</tr>
<tr>
<td>6.3</td>
<td>Translation operator</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Properties of the translation operator</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Generator of translations</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Momentum operator</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Translations of arbitrary length</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Commutator of momentum operators</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Commutation relations</td>
</tr>
<tr>
<td>6.4</td>
<td>Wave-function</td>
</tr>
<tr>
<td>6.5</td>
<td>Representation of momentum in position space</td>
</tr>
</tbody>
</table>
12.1 Addition of angular momenta .. 149
12.2 Application: Hydrogen atom 153
12.3 Wigner-Eckart theorem ... 154

13 Discrete symmetries ... 159
13.1 Parity ... 159
13.2 Time reversal .. 161
Bibliography

[1] Modern Quantum Mechanics, Sakurai
[2] The Feynman Lectures in Physics, Feynman
[3] Lectures on Quantum Mechanics, Weinberg
Preface

This script is based on the Feynman Lectures, Sakurai’s Modern Quantum Mechanics and Weinberg’s Lectures on Quantum Mechanics. These books are great and students are encouraged to study them as a first priority. The purpose of the present notes, which do not contain original material, is to facilitate the author for his lecture presentations. Students are of course welcome to read the script if they find it useful. However, the script should not replace the study of the recommended and other literature.
Chapter 1

Quantum behavior

1.1 Atomic mechanics

For a long time, light was thought to behave like waves and electrons were thought to behave like particles. There are phenomena which violate these main “rules”. So they behave neither like particles nor like waves. However, it is true that light, electrons, protons and all subatomic particles behave the same. This common subatomic behavior is very different from our intuition of large objects. We will demonstrate the difference of the quantum and classic behavior by a thought “two-slit” experiment first with macroscopic bullets, second with waves and third with subatomic particles such as electrons.

1.2 Basic two slit experiments

1.2.1 An experiment with bullets

We have a gun firing very hard indestructible bullets towards a wall. The wall has two slits which are at a close distance and are big enough so that they can pass through.

Behind the wall there is a “detector”, a material which can stop the bullets. We can take a look at it afterwards and see how the bullets are distributed in space after they have gone through the holes. We perform the experiment in three stages:

- First, we leave open “Hole 1” and cover up the second hole. We find that the bullets are distributed according to P_1, a Gaussian centered around the Hole 1.

- Then, we leave open “Hole 2” while we cover up “Hole 1”. We find a similar Gaussian P_2 centered around Hole 2.

- Finally, we leave open both holes. We find a distribution which

$$ P_{12} = P_1 + P_2. \quad (1.1) $$
The probability that a bullet goes through the holes is the sum of the probabilities that it passes either through hole 1 or through hole 2.

1.2.2 An experiment with waves

We now perform a different experiment where we create a spherical wave at some distance in front of the wall with the two holes. The detector measures the intensity of the wave arriving at it, which is proportional to the square of the amplitude:

\[I \sim |A|^2. \]

We perform the experiment in three stages:

- First, we leave open “Hole 1” and cover up the second the second hole. We find that the intensity \(I_1 \) is a function centered around the Hole 1.
- Then, we leave open “Hole 2” while we cover up “Hole 1”. We find a similar function intensity \(I_2 \) centered around Hole 2.
- Finally, we leave open both holes. We find a distribution \(I_{12} \neq I_1 + I_2 \).

There is a simple explanation why the intensity \(I_{12} \) is not equal to the sum of the intensities when either one of the two holes is covered. The amplitude.
1.2. Basic two slit experiments

The wave of the wave is given by the sum of the amplitudes,

\[A_{12} = A_1 + A_2 \]

where \(A_1 \) and \(A_2 \) can be both positive or negative. The total intensity,

\[I_{12} = |A_1|^2 + |A_2|^2 + 2 |A_1||A_2| \cos \delta \]

includes an interference term, giving the characteristic interference pattern of Fig 1.2.

1.2.3 An experiment with electrons

We now shoot electrons at the wall. What happens is pictured in Fig 1.3. This is a surprising result. If an electron went through either hole 1 or hole 2, we would not have found \(P_{12} \neq P_1 + P_2 \). Are electrons waves? Well, no. We always detect one “full” electron at the time at the detector. For example, we can reconstruct the full energy of an electron as it dissipates it in the detector, or if the detector is inside a magnetic field, the electron track has the curvature of charge one, etc.
1. Quantum behavior

![Image of a two-slit experiment with electrons with wave behavior.]

Figure 1.3: A two-slit experiment with electrons with wave behavior.

So, the electron arrives at the detector as a particle and the probability of arrival is distributed like the intensity of a wave.

1.3 Watching electrons

Let’s put a light source behind the two holes. Deflected light from the vicinity of hole 1 or hole 2 can tell us where the electron passed through. What happens? Indeed, we can see a flash coming from the hole every time that an electron passes through. However, we find the following probability pattern. The interference pattern is destroyed when we can verify experimentally that the electrons go through either hole 1 or hole 2. If we switch off the light, the interference leading to $P_{12} \neq P_1 + P_2$ is restored.

Let’s now try to understand how the light affects our measurement. Before going ahead with modifying the light characteristics, we equip our detector with a sound system. Each time an electron hits on the detector we also hear a click.

What happens with a dimmer light? We observe two types of events.

i) Events where a flash comes from hole 1 or hole 2 and we hear a click immediately after coming from the detector.
ii) Events where we only hear a click from the detector without seeing any flash.

We plot the probability distribution for the above categories of the events. For the events where we have seen a light, we find a distribution as in Fig. 1.4 with no interference. For the events where we have not seen the light but we have heard the sound we get a probability distribution as in Fig. 1.3 with an interference pattern. The interference pattern gets destroyed if we are able to observe the hole from where the electrons passed.

The intensity of the light is not its only physical characteristic. When we dim it, we reduce the amplitude of the electromagnetic wave. This means that there is a smaller density of “light particles” (photons) and therefore some electrons can pass through the holes without crashing onto one of them. It is then when we only hear a sound at the moment the electron arrives at the detector without having seen a flash from a hole before. But we can also tune the wavelength of the light. There is a simple relation between the momentum of the photons and the wavelength,

\[p = \frac{h}{\lambda}, \]

where \(h \) is a (the Planck) constant. Photons are less energetic and the light
1. Quantum behavior

is “gentler” if we increase the wavelength using infrared light or even radio waves.

So, let’s start increasing gradually the wavelength without changing the intensity. We find that at the beginning there is no change in the type of probability distribution for the electrons arriving at the detector. As long as the wavelength is shorter than the distance of the two holes, we can tell whether a flash light came from one or the other hole and we find no interference pattern

\[P_{12}(\lambda) = P_1(\lambda) + P_2(\lambda), \quad \lambda \sim \text{small}. \]

If we increase the wavelength to a size comparable to the distance of the two holes, we find something dramatic. The flash becomes fuzzy and it is not possible to tell anymore whether it comes from the first or the second hole. Then, we find that an interference is restored.

\[P_{12}(\lambda) \neq P_1(\lambda) + P_2(\lambda), \quad \lambda \sim \text{hole distance or larger}. \]

In conclusion, there is no configuration of our apparatus for which we can determine which hole the electrons went through without destroying the interference pattern.

1.4 Back to the bullet experiment

If the laws of quantum mechanics are universal, for light particles, electrons, protons and macroscopic objects, why then did we not observe an interference pattern for the experiment with the bullets? The reason is that the wavelength of a large object is very short. The minima and maxima of the interference pattern are very dense and they cannot be discerned by the resolution of our detectors. Instead, we measure a smooth average over the distance of several wavelengths as in Fig. 1.5.

1.5 First principles of quantum mechanics

Let’s define an “ideal” experiment as one in which all initial and final conditions are completely specified. An event is a set of such initial and final conditions. (For example, a bullet leaves the gun, arrives at the detector and nothing else happens.)

i) The probability of an event in an ideal experiment is given by the square of the absolute value of a complex number, which is called the probability
1.5. First principles of quantum mechanics

Figure 1.5: A two slit experiment with bullets.

amplitude

\[P = |\phi|^2, \quad \begin{cases} \phi \equiv \text{probability amplitude} \\ P \equiv \text{probability} \end{cases} \] \hspace{1cm} (1.3)

ii) If an event can occur in several ways, there is interference

\[\phi = \phi_1 + \phi_2 \]

\[P = |\phi_1 + \phi_2|^2. \] \hspace{1cm} (1.4)

iii) If an experiment can determine whether one or another alternative happened the interference is destroyed

\[P = P_1 + P_2. \] \hspace{1cm} (1.5)

Note that we compute probabilities. We cannot know what an electron does at any given instance.
1.6 Heisenberg’s uncertainty principle

The most famous statement of quantum mechanics is Heisenberg’s uncertainty principle. According to this, the product of the uncertainties in the position and momentum of a particle in a certain direction cannot be smaller than

\[(\Delta x)(\Delta p_x) = h,\] (1.6)

where \(h \approx 6.63 \times 10^{-34}\) J s is Planck’s constant. This principle puts a limit on how well we can determine the position of a particle if we know its momentum and vice versa. The uncertainty principle is a natural consequence of our more general principle that we cannot observe one of the alternatives of an event without destroying the interference. Let’s see why.

Figure 1.6: A two slit experiment with electrons where the electron-momenta are measured.

Consider the following modification of the two-slit experiment, where we mount the wall of the two slits with rollers such that it can move up and down freely. When an electron passes through a slit, it deflects against the wall and sets it in motion. From measuring the momentum of the wall before and after the electron going through a hole, we can know which hole the electron chose. But then, according to our principle, we must have destroyed
the interference. How does this happen? This is feasible if we cannot know the position of the wall precisely, as suggested by the uncertainty principle. Then, we cannot know the position of the hole which will be different from one electron to the other, smearing out the interference pattern.

The uncertainty principle, i.e. inability to determine both momentum and position with an arbitrary precision simultaneously, preserves the quantum behavior of destroying the interference when one can determine the alternatives which lead to a single event with an experimental apparatus.

1.6.1 Estimating the size of the atoms

The uncertainty principle protects matter from a catastrophic collapse. Classically, an electron rotating around a positively charged nucleus would radiate off energy and it would eventually lose all of its kinetic energy. Thus, it would end up at a defined position on top of the nucleus with a zero (also defined) momentum. This cannot happen in quantum mechanics.

From the uncertainty principle, we can get an estimate of the size of the atom. The electron has a probability amplitude to be somewhere in the vicinity of the nucleon. Everytime that we look at the electron we find it at a certain position, but the probability amplitude for the electron to be somewhere has a spread of the order of the size of the atom \(R \).

From the uncertainty principle, the momentum of the atom has a spread of the order

\[
p \approx \frac{h}{R}
\]

and the energy of the electron is

\[
E \approx \frac{\hbar^2}{2mR^2} - \frac{e^2}{R},
\]

where \(e \) is the charge of the electron. For a stable atom, the energy needs to be minimal

\[
\left. \frac{dE}{dR} \right|_{R=R_0} = 0 \sim R_0 \approx 0.528 \times 10^{-10} \text{ m}.
\]

This value of the atom radius is called the Bohr radius. The energy of the electron is

\[
E \approx \frac{\hbar^2}{2mR_0^2} - \frac{e^2}{R_0} = \frac{-me^4}{2\hbar^2} = -13.6 \text{ eV}
\]

The energy is negative since the electron is in a bound state. It has less energy than when it is free. In order to free the electron from the hydrogen atom, we need to kick it with an ionization energy of 13.6 eV. This number, 13.6 eV, is called the Rydberg energy.
1.7 The laws for combining amplitudes

This is a good point to formalize and develop further the principles of section 1.5. We will denote the probability amplitude of an event using the “bra-ket” notation of Dirac:

\[
\langle \text{final condition} | \text{initial condition} \rangle
\]

For example, we can write the amplitude for an electron leaving the source \(s \) and arriving at the point \(x \) of the detector as

\[
\langle \text{arrives at } x | \text{leaves from } s \rangle
\]

or, shortly,

\[
\langle x | s \rangle,
\]

and the corresponding probability is

\[
P = |\langle x | s \rangle|^2.
\]

According to our second principle, if an event can occur in more than one way, then we must add the amplitudes for all alternatives and we have interference. For example, in our two slit experiment where the electron could pass through either of the slits, we write

\[
\langle x | s \rangle = \langle x | s \rangle_{\text{through } \text{slit 1}} + \langle x | s \rangle_{\text{through } \text{slit 2}}.
\]

We now introduce a new rule for amplitudes (which leads to the third principle of the previous section). If an event can be expressed as a sequence of other events then the amplitude factorizes. For example, we can write

\[
\langle \text{arrives at } x | \text{leaves source } s \rangle_{\text{through slit 1}} = \langle \text{arrives at } x | \text{leaves slit 1} \rangle \langle \text{arrives at slit 1} | \text{leaves source } s \rangle
\]

or, shortly,

\[
\langle x | s \rangle_{\text{through slit 1}} = \langle x | 1 \rangle \langle 1 | s \rangle.
\]

Then

\[
\langle x | s \rangle = \langle x | 1 \rangle \langle 1 | s \rangle + \langle x | 2 \rangle \langle 2 | s \rangle.
\]
1.7. The laws for combining amplitudes

Figure 1.7: A two slit experiment with waves.

1.7.1 Revisiting the two-slit experiment

Let us now revisit the two-slit experiment where we throw electrons at them and use a light source behind the slits in an attempt to see which slit is chosen by an electron before it arrives at the detector. For the purpose of “seeing” the flashes we place two photon-detectors one to the left of the left hole and one to the right of the right hole. Let’s focus at the events which will be seen by the detector D_1. The amplitude is

$$
\mathcal{M}_1 = \langle \text{electron arrives at } x \mid \text{electron leaves } D_1 \rangle \\
= \langle x | 1 \rangle A_{1 \rightarrow 1} (\lambda) \langle 1 | s \rangle + \langle x | 2 \rangle A_{2 \rightarrow 1} (\lambda) \langle 2 | s \rangle.
$$

$A_{1 \rightarrow 1} (\lambda)$ is the amplitude that a photon strikes an electron in hole 1 and it is deflected into the detector D_1. Similarly, $A_{2 \rightarrow 1} (\lambda)$ is the amplitude that a photon strikes an electron in hole 2 and it is deflected into the detector D_1. The detector D_1 is placed closer to hole 1 and for small wavelengths $A_{2 \rightarrow 1}$ is much smaller than $A_{1 \rightarrow 1}$. The interference term in the probability $P_1 = |\mathcal{M}_1|^2$ vanishes for $A_{2 \rightarrow 1} = 0$. Instead, for large wavelength λ the photon cannot be localized precisely enough and $A_{2 \rightarrow 1} \sim A_{1 \rightarrow 1}$; then, there is interference.
Similarly, we can write an expression for the amplitude where the photon scattered from the electron strikes detector D_2:

$$\mathcal{M}_2 = \left\langle \text{electron arrives at } x \bigg| \text{ electron leaves} \right\rangle \right. \left. \text{ photon strikes } D_2 \right| \text{ source } s \right) \right. \left. \sum \right) = \langle x|1 \rangle A_{1\rightarrow 2}(\lambda) \langle 1|s \rangle + \langle x|2 \rangle A_{2\rightarrow 2}(\lambda) \langle 2|s \rangle \right).$$

What is then the probability for the photon to strike either D_1 or D_2? Notice that we now ask for the combined probability of two different events with different final conditions. We should not combine the two amplitudes into a common amplitude ($\mathcal{M} \neq \mathcal{M}_1 + \mathcal{M}_2$). Our rule of combining amplitudes applies to alternative ways of a single event (where the initial and final conditions are the same for all alternatives). If the events differ, for their combined probability we add up the probabilities of each separate event. In our specific case,

$$P \left(\text{light in } D_1 \text{ or } D_2 \right) = P \left(\text{light in } D_1 \right) + P \left(\text{light in } D_2 \right) = |\mathcal{M}_1|^2 + |\mathcal{M}_2|^2.$$

1.7.2 A subatomic travel from Zurich to China?

Our product rule for amplitudes can puzzle our physics intuition from macroscopic physics. Think of a particle at a position x_1 which transitions to a position x_2. The corresponding amplitude is

$$\langle x_2|x_1 \rangle.$$

Let y be an intermediate position in the journey of the particle. According to our rules for combining amplitudes we must have:

$$\langle x_2|x_1 \rangle = \langle x_2|y \rangle \langle y|x_1 \rangle.$$

However, if we have no knowledge of which point exactly the particle passed through (e.g. by putting up a wall with only a hole open) we must sum up all positions.

$$\langle x_2|x_1 \rangle = \sum_y \langle x_2|y \rangle \langle y|x_1 \rangle.$$

In the sum, we are supposed to include all positions y no matter how far they reside from x_1, x_2 or how improbable they appear to us from our knowledge of classical physics.

It turns out that amplitudes for classically improbable transitions are suppressed. Up to some normalization, the transition amplitude of a free particle
The laws for combining amplitudes (no forces are exerted on it) from a position \mathbf{x} to a position \mathbf{y} is

$$
\mathcal{M}_{\mathbf{x}\rightarrow\mathbf{y}} \sim \frac{e^{-\frac{i}{\hbar} \mathbf{p} \cdot (\mathbf{x} - \mathbf{y})}}{|\mathbf{x} - \mathbf{y}|},
$$

(1.13)

where \mathbf{p} is the classical momentum of the particle and $\hbar = \frac{\hbar}{2\pi}$ (Planck’s) constant. We note that the amplitude is suppressed for large distances and that the motion along the direction of the momentum produces a maximum phase in the exponential.

Probability amplitudes depend in general both in space and time. The time evolution of the amplitudes is determined by the equation of Schrödinger, which we shall see in the future.
In this chapter we shall explore further the basic rules of probability amplitudes and introduce quantum states.

2.1 Stern-Gerlach experiment

Let’s think of a magnetic dipole/loop current localized in a small volume, with a magnetic moment μ. The potential energy when the current is inside a magnetic field is

$$U = -\mu \cdot B.$$ \hfill (2.1)

Inside a inhomogeneous magnetic field a force will be exerted in the magnetic dipole so that it minimizes its energy. The force will be

$$F = -\nabla U = \nabla (\mu \cdot B).$$ \hfill (2.2)

For a magnetic field which varies, for example, in the z–direction there is a force exerted on the magnetic dipole in the same direction,

$$F_z = \mu_z \frac{\partial B_z}{\partial z}. \hfill (2.3)$$

In classical physics, we can attempt to describe atoms as dipoles, i.e. currents which are localized in a tiny space. We now perform a conceptually very simple experiment, the Stern-Gerlach experiment. We produce a beam of atoms and we direct the beam towards a magnet with a inhomogeneous magnetic field. In classical physics we expect that the value of μ_z is a continuous variable. The effect of the gradient magnetic field should then be to spread out the beam along the z–direction as in Fig. 2.1. This is not what really happens. Instead, we find that the beam of atoms is split as in Fig. 2.2 in a number of beams which the original beam is split into depends on the
2. Quantum measurement and quantum states

kind of the atoms and a property of them called “spin” \(^{1}\). Atoms with spin-\(\frac{1}{2}\) split into two beams, atoms with spin-1 split into three beams and so on; in general atoms with spin-\(j\) split into \(2j + 1\) beams.

2.2 The Stern-Gerlach filter

2.2.1 Experimental setup

In the following, we shall take a beam of atoms with spin-1 and examine further experimentally the three separated beams which originate from a Stern-Gerlach apparatus. We construct a Stern-Gerlach filter. This filter takes a beam of atoms and passes it first through a magnetic field with a gradient in a certain direction, as in the Stern-Gerlach experiment, splitting the beam into three. The split beams are channeled through gates which we can decide at will to keep them open or have them closed. Afterwards, magnets re-unite the beams which pass through the gates and let them come out from an exit point as a single beam.

\(^{1}\)It is not yet time to describe spin. We will only say for now that it is a intrinsic angular momentum of subatomic particles which can be detected even when these particles are motionless.
2.2. The Stern-Gerlach filter

The beam of atoms N in an inhomogeneous magnetic field μ splits into a number of separated beams. The magnetic moments of the atoms assume discrete values.

Figure 2.2: Stern-Gerlach experiment: The beam splits into a number of separated beams. The magnetic moments of the atoms assume discrete values.

The filter serves the purpose of selecting atoms of a certain state out of the Stern-Gerlach experiment. We can produce three types of “pure” beams with our Stern-Gerlach filter.

i) Atom beams in the state $|\hat{z},+\rangle$, where we close the lower two gates and allow only the “upper” beam to go through.

ii) Atom beams in the state $|\hat{z},0\rangle$, where we block the upper and lower beams and let the non-deflected central beam to go through.

iii) Atom beams in the state $|\hat{z},-\rangle$, where we close the upper two gates and allow only the “lower” beam to go through.

The unit vector \hat{z} denotes the orientation of the magnetic field gradient in the Stern-Gerlach apparatus.

2.2.2 Successive aligned Stern-Gerlach filters

We shall now perform experiments passing atom beams through two successive Stern-Gerlach filters (Filter 1 and Filter 2), both having the same gradient for the magnetic field.

In a first experiment, we block the middle and lower gates of both filters. Filter 1 gives a beam of atoms at the state $|\hat{z},+\rangle$. We observe that the full beam passes through the second filter, which is also designed to select the
same $|\hat{z}, +\rangle$ state. We then conclude that the probability amplitude for the transition from a state $|\hat{z}, +\rangle$ to the same state $|\hat{z}, +\rangle$ is unity \(^2\)

$$\langle \hat{z}, + | \hat{z}, + \rangle = 1. \tag{2.4}$$

In a second experiment, we close the middle and lower gates of Filter 1 and the upper and lower gates of Filter 2. Filter 1 selects atoms in the state $|\hat{z}, +\rangle$ and Filter 2 selects atoms in the state $|\hat{z}, 0\rangle$. We observe that no beam passes through the second filter. Therefore the probability amplitude for the transition from the state $|\hat{z}, +\rangle$ to the state $|\hat{z}, 0\rangle$ vanishes,

$$\langle \hat{z}, 0 | \hat{z}, + \rangle = 0. \tag{2.5}$$

\(^2\)up to a phase $\exp(i\alpha)$ which drops out when computing the modulus square of the amplitude.
2.2. The Stern-Gerlach filter

The following equations summarize our results for the transitions among the “pure” states \(|\hat{z},+\rangle, |\hat{z},-\rangle, |\hat{z},0\rangle \):

\[
\langle \hat{z},+|\hat{z},+\rangle = \langle \hat{z},0|\hat{z},0\rangle = \langle \hat{z},-|\hat{z},-\rangle = 1
\]

(2.7a)

and

\[
\langle \hat{z},+|\hat{z},0\rangle = \langle \hat{z},0|\hat{z},+\rangle = \langle \hat{z},+|\hat{z},-\rangle = 0,
\]

(2.7b)

\[
\langle \hat{z},-|\hat{z},+\rangle = \langle \hat{z},0|\hat{z},-\rangle = \langle \hat{z},-|\hat{z},0\rangle = 0.
\]

(2.7c)

2.2.3 Successive rotated Stern-Gerlach filters

We now perform a more interesting experiment with two Stern-Gerlach filters in a row, where the second filter is rotated by an angle \(\theta \). Specifically, in Filter 1 the magnetic field \(B \) varies along the \(\hat{z} \) direction and in Filter 2 \(B \) varies along the \(\hat{n} \) direction, with \(\hat{n} \cdot \hat{z} = \cos \theta \). The first filter splits a beam of spin-1 atoms along the \(\hat{z} \)-axis and it can select atoms in the “pure” states

\[
|\hat{z},+\rangle, |\hat{z},-\rangle, |\hat{z},0\rangle.
\]
2. Quantum measurement and quantum states

Figure 2.7: Two Stern-Gerlach filters with their directions of B–field variation rotated at an angle θ.

The second filter splits a beam of spin-1 atoms along the \hat{n}–axis and it can select atoms in the “pure” states $|\hat{n}, +\rangle, |\hat{n}, -\rangle, |\hat{n}, 0\rangle$.

In our sequential experiments, we can find the probability that an atom transitions from a definite $|\hat{z}, \{+, 0, -\}\rangle$ state to a definite $|\hat{n}, \{+, 0, -\}\rangle$ state. We find that all such transitions are indeed possible and therefore the probability amplitudes

$$\langle \hat{n}, a | \hat{z}, b \rangle, \quad a, b \in \{+, 0, -\}$$

are different from zero.

We also observe that a transition from a $|\hat{z}, a\rangle$ state to any state $|\hat{n}, b\rangle$ takes always place with a 100% certainty. This gives that

$$|\langle \hat{n}, + | \hat{z}, + \rangle|^2 + |\langle \hat{n}, 0 | \hat{z}, + \rangle|^2 + |\langle \hat{n}, - | \hat{z}, + \rangle|^2 = 1, \quad (2.8a)$$

$$|\langle \hat{n}, + | \hat{z}, - \rangle|^2 + |\langle \hat{n}, 0 | \hat{z}, - \rangle|^2 + |\langle \hat{n}, - | \hat{z}, - \rangle|^2 = 1, \quad (2.8b)$$

$$|\langle \hat{n}, + | \hat{z}, 0 \rangle|^2 + |\langle \hat{n}, 0 | \hat{z}, 0 \rangle|^2 + |\langle \hat{n}, - | \hat{z}, 0 \rangle|^2 = 1. \quad (2.8c)$$

2.2.4 Three filters

We now consider an experiment with three Stern-Gerlach filters. The first and the third apparatus have a direction of B–field variation along the positive \hat{z}
2.2. The Stern-Gerlach filter

Figure 2.8: Three Stern-Gerlach filters in a row. The first and the third apparatus have a direction of \mathbf{B}–field variation along the positive \hat{z} axis. The second apparatus is rotated at an angle θ with a \mathbf{B}–field variation pointing along \hat{n}.

axis. The second apparatus is rotated at an angle θ with a \mathbf{B}–field variation pointing along \hat{n}. We arrange that the first filter sets the atoms in the state $|\hat{z},+\rangle$ and that the second filter puts them at a state $|\hat{n},0\rangle$. What happens when the atoms pass through the third filter? Do the atoms have a memory that they have been before in a $|\hat{z},+\rangle$ state? No! The atoms can transition to any of the three states $|\hat{z},\{+,-,0\}\rangle$ despite the fact that they have once been made to be in a pure $|\hat{z},+\rangle$ state.

Indeed, we can easily show that the fraction of atoms that ends up in any of the $|\hat{z},\{+,-,0\}\rangle$ states through the last filter is independent of the transition through the first filter. The amplitudes for the transition through the second and third filter from the $|\hat{z},+\rangle$ to, say, either a $|\hat{z},+\rangle$ or a $|\hat{z},-\rangle$ state are

$$\langle \hat{z},+|\hat{n},0 \rangle \langle \hat{n},0|\hat{z},+ \rangle$$

and

$$\langle \hat{z},-|\hat{n},0 \rangle \langle \hat{n},0|\hat{z},+ \rangle$$

respectively. The ratio of probabilities for the two transitions is

$$\frac{|\langle \hat{z},+|\hat{n},0 \rangle \langle \hat{n},0|\hat{z},+ \rangle|^2}{|\langle \hat{z},-|\hat{n},0 \rangle \langle \hat{n},0|\hat{z},+ \rangle|^2} = \frac{|\langle \hat{z},+|\hat{n},0 \rangle|^2}{|\langle \hat{z},-|\hat{n},0 \rangle|^2}$$

and it does not depend on the state of the beam prior to the second filter.
2. Quantum measurement and quantum states

2.3 Base states

The previous results illustrate one of the basic principles of quantum mechanics: Atomic systems can be decomposed through a filtering process into base states. The evolution of the system in any of these states is independent of the past and depends solely on the nature of the base state. The base states depend on the filtering process. For example, the states $|\hat{z}, \{+, 0, -\}\rangle$ are one set of base states and the states $|\hat{n}, \{+, 0, -\}\rangle$ are another.

Let’s now go back to our three-filter experiment and do the following:

i) open only the $\hat{z} - "+"$ gate in the first filter

ii) open only the $\hat{n} - "0"$ gate in the second filter

iii) open only the $\hat{z} - "-"$ gate in the second filter

If the beam exiting the first filter has N atoms, there will be $N \times |\langle \hat{z}, -|\hat{n}, 0\rangle|^2$ atoms exiting the last filter.

Now, let’s open all the gates in the second filter. How many atoms will go through this time? The result of this experiment is very intriguing. No atom exits our apparatus! It is so, that our filter has no effect if none of the base-states are selected. We can then write

$$\sum_{\text{all } i} \langle \hat{z}, -|i\rangle \langle i|\hat{z}, +\rangle = 0, \quad i \in |\hat{n}, \{+, 0, -\}\rangle. \quad (2.9)$$

To verify that this is a generic property of a “wide open” filter we check with a third Stern-Gerlach filter which filter in a completely different direction \hat{r} than the other two filters. If the first filter is set to prepare the atoms in a state $|\phi\rangle$ and the third filter is set to prepare the atoms in a state $|\chi\rangle$, we find that the open second filter does not affect at all the transition from $|\phi\rangle$ to $|\chi\rangle$:

$$\langle \chi|\phi \rangle = \sum_{\text{all } i} \langle \chi|i\rangle \langle i|\phi \rangle. \quad (2.10)$$

Let us list here the properties of base states:

i) If a system is in a base state then the future evolution is independent of the past.

ii) Base states satisfy equation 2.10

iii) Base states are completely different from each other

$$\langle i|j \rangle = \delta_{ij}. \quad (2.11)$$
2.4 Rules of quantum mechanics at work

Base states are not unique and they depend on the filtering method. For example, a Stern-Gerlach filter in the \hat{n} direction and a Stern-Gerlach experiment in a different \hat{r} direction yield a different set of base states.

Let us now compare equation 2.10 and equation 2.8a. In order for both of them to be valid, we require one more rule for the conjugation of probability amplitudes. Namely,

$$\langle \phi | \chi \rangle^* = \langle \chi | \phi \rangle .$$

(2.12)

2.4 Rules of quantum mechanics at work

Quantum mechanics is a predictive theory, allowing us to calculate the probability for the outcomes of experiments. The general properties of probability amplitudes and base states as we established them in the previous section, allow us to systematize the calculation of such probability amplitudes.

Consider an atom which is prepared at a state $|\chi\rangle$ and it is subjected to an experiment or a physical process A. The atom will transition to a different state $|\phi\rangle$ at the end of the experiment. We denote the probability amplitude for such a transition with

$$\langle \phi | A | \chi \rangle$$

(2.13)

The above has to be read from left to right,

$$\langle \text{final} | \text{through} | \text{start} \rangle .$$

(2.14)

The experimental apparatus or physical process A can modify the initial state $|\chi\rangle$, but it is not necessary that this happens in all situations. For example, A can be a Stern-Gerlach apparatus with all channels open. Then,

$$A = 1,$$

and we have

$$\langle \phi | 1 | \chi \rangle = \langle \phi | \chi \rangle .$$

In order to understand the physics of the experiment or the physical process, we would need to compute all the amplitudes (an infinite number) for arbitrary $|\phi\rangle, |\chi\rangle$.

Figure 2.10: Transition from a state $|\chi\rangle$ to a state $|\phi\rangle$ through an experimental apparatus or a physical process A and Stern-Gerlach apparatus with all filters open.

Suppose now that we place two Stern-Gerlach apparatus so that the atom passes through them before it enters apparatus A and after it exits it. We arrange that the Stern-Gerlach apparatus have all their filters open, so that their presence does not alter the transition. We denote with $|i\rangle$, $|j\rangle$ the base states of the Stern-Gerlach apparatus at the entry and exit of A respectively. We then must have

$$
\langle \phi | A | \chi \rangle = \sum_{i,j} \langle \phi | j \rangle \langle j | A | i \rangle \langle i | \chi \rangle .
$$

We realize that we can just describe the apparatus A in terms of nine numbers $\langle j | A | i \rangle$

Suppose now that we have to analyze a more complicated experiment C for which we realize that it can be decomposed into two successive apparatus, A and B. We can again insert “unit” experiments in between the steps of the experiment, leading to

$$
\langle \phi | C | \chi \rangle = \sum_{i,j} \langle \phi | j \rangle \langle j | AB | i \rangle \langle i | \chi \rangle = \sum_{i,j,k} \langle \phi | j \rangle \langle j | A | k \rangle \langle k | B | i \rangle \langle i | \chi \rangle .
$$

(2.16)
In quantum mechanics, we are interested in computing the probability amplitudes \(\langle b | a \rangle \) for transitions from an initial state \(|a\rangle \) to a final state \(|b\rangle \). In this chapter, we will postulate that such amplitudes are the inner products of vectors in a space of physical states:

\[
\langle b | a \rangle \leftrightarrow b \cdot a.
\]

All physical information for a physical system, e.g., a particle, an atom, a system of many particles, etc., is encoded in these vectors.

\section{Ket-space}

Physical states are represented by vectors in a complex vector space. We call such a vector state a \textit{ket}. Kets possess complete information about the physical system. The dimensionality of the ket space is equal to the number of base states which we can obtain with a filtering experiment, such as our Stern-Gerlach experiment.

i) Two kets can be added yielding a new ket for another physical state

\[
|\alpha\rangle + |\beta\rangle = |\gamma\rangle.
\]

(3.1)

ii) The multiplication of a ket with a complex number yields a new ket which corresponds however to the same physical state as the original

\[
c |\chi\rangle \text{ and } |\chi\rangle \rightarrow \text{same physical state.}
\]

(3.2)
3.2 Operators

The state of a physical system can change during an experiment or by letting the system evolve with time. We represent mathematically changes in physical states by the action of operators on kets:

$$A |\psi\rangle = |\phi\rangle$$ \hspace{1cm} (Operator $|\text{state}\rangle = |\text{new state}\rangle$). (3.3)

For a given operator A, there are some special states, $|i\rangle$, which are not changed, up to a multiplicative factor λ_i, by the action of the operator,

$$A |i\rangle = \lambda_i |i\rangle.$$ (3.4)

The values λ_i are called the eigenvalues of the operator. The eigenstates of a physical operator are postulated to correspond to base states: Any other physical state $|\phi\rangle$ can be written as a superposition of the base states.

$$\forall |\phi\rangle \exists \{c_i\} : |\phi\rangle = \sum_i c_i |i\rangle.$$ (3.5)

3.3 Dual space

We define a dual space of “bra” states $\langle \phi |$,

$$|\phi\rangle \leftrightarrow \langle \phi |.$$ (3.5)

By dual we mean that all information about the bra $\langle \phi |$ is already encoded in the ket $|\phi\rangle$ and we only need to use it for a different purpose. We can think of kets as states of an “initial condition” and bras as states of a “final condition”. The duality means that all states are eligible as starting or ending states of an experiment. For a general superposition of ket states, the bra dual reads

$$c_1 |a_1\rangle + \ldots + c_n |c_n\rangle \leftrightarrow c_1^* \langle a_1 | + \ldots + c_n^* \langle c_n |,$$ (3.6)

where we conjugate the multiplicative factors in front of every bra component.

3.4 Inner product

The dual bra-space serves to define probability amplitudes as inner products:

$$\langle a|b \rangle \quad \text{(inner product)}.$$ (3.7)

We postulate that

$$\langle a|b \rangle = \langle b|a \rangle^*,$$ (3.8)
and that the “square” of a state is positive definite:
\[\langle \phi | \phi \rangle \geq 0, \quad \forall |\phi\rangle. \quad (3.9) \]
We call \(\sqrt{\langle \phi | \phi \rangle} \) the norm of the state \(|\phi\rangle \). We can normalize all states to have a unit norm without altering the physics,
\[|\phi\rangle \rightarrow |\tilde{\phi}\rangle = \frac{|\phi\rangle}{\sqrt{\langle \phi | \phi \rangle}}, \quad (3.10) \]
where \(\langle \tilde{\phi} | \tilde{\phi} \rangle = 1 \).

3.5 Properties of operators and their duals

i) Two operators are said to be equal, \(X = Y \), if
\[X |\phi\rangle = Y |\phi\rangle, \quad \forall |\phi\rangle. \quad (3.11) \]

ii) An operator is zero, \(X = 0 \), if
\[X |\phi\rangle = 0, \quad \forall |\phi\rangle. \quad (3.12) \]

iii) Operators can be added together, with properties
\[X + Y = Y + X, \quad (3.13) \]
\[X + (Y + Z) = X + (Y + Z) = X + Y + Z. \quad (3.14) \]

iv) Operators can be multiplied together with the property
\[X(YZ) = (XY)Z \]
\[= XYZ. \quad (3.15) \]

v) However, the multiplication order is important and, in general,
\[XY \neq YX. \]

The dual of an operator acting on a ket \(X |\phi\rangle \) is in general a different operator
\[X |\phi\rangle \leftrightarrow \langle \phi | X^\dagger, \quad (3.16) \]
with
\[X^\dagger \neq X. \]
X^\dagger is called the “Hermitian adjoint” of X. Operators with the special property that $X^\dagger = X$ are called hermitian operators.

The dual of a product of operators is

$$ (XY)^\dagger = Y^\dagger X^\dagger. \quad (3.17) $$

Proof. Let’s write

$$ Y |a\rangle = |b\rangle, $$

where the dual is

$$ \langle b| = \langle a| Y^\dagger. $$

Then

$$ XY |a\rangle = X(Y |a\rangle) = X |b\rangle \leftrightarrow \langle b| X^\dagger = \langle a| Y^\dagger X^\dagger, $$

which proves our assertion. \qed

We can define an outer product $|b\rangle \langle a|$, which is an operator turning a generic state $|\phi\rangle$ to a state $|b\rangle$

$$ (|b\rangle \langle a|) |\phi\rangle = |b\rangle (\langle a|\phi\rangle) = (\langle a|\phi\rangle) |b\rangle, \quad (3.18a) $$

$$ \text{(operator) } |\text{state} = \ldots = \text{(number) } |\text{new state}. \quad (3.18b) $$

The dual of an outer product is also an outer product

$$ (|\phi\rangle \langle \psi|)^\dagger = |\psi\rangle \langle \phi|. \quad (3.19) $$

Indeed,

$$ (|\phi\rangle \langle \psi|) |a\rangle = |\phi\rangle (\langle \psi|a\rangle) \leftrightarrow \langle \phi| (\langle \psi|a\rangle)^* = (\langle a|\psi\rangle) \langle \phi| = \langle a| (|\psi\rangle \langle \phi|). $$

3.6 Hermitian operators

For a general operator, X, we can prove that

$$ \langle a| X |b\rangle = \langle b| X^\dagger |a\rangle^* \quad (3.20) $$

Proof.

$$ \langle a| X |b\rangle = \langle a| (X |b\rangle) = \left((\langle b| X^\dagger) |a\rangle \right)^* = \langle b| X^\dagger |a\rangle^*. \quad \Box $$

36
Hermitian operators $H^\dagger = H$ have the special property that
\[\langle a | H | b \rangle = \langle b | H | a \rangle^*. \]

We can prove the following:

i) The eigenvalues of a Hermitian operator are real.

Proof. For a Hermitian operator H with eigenstates $|i\rangle$,
\[H |i\rangle = \lambda_i |i\rangle. \]
The dual of the above equation is
\[\langle i | H = \lambda_i^* \langle i |, \]
where we have exploited the hermiticity of H ($H^\dagger = H$). Multiplying the first equation with $\langle i |$ from the left and the second equation with $|i\rangle$ from the right, we obtain that
\[\langle i | H |i\rangle = \lambda_i = \lambda_i^*, \]
which proves that the eigenvalue λ_i is real. \qed

ii) The eigenstates of a Hermitian operator with non-degenerate eigenvalues are orthogonal.

Proof. Following the same reasoning as above, we can easily show that for two eigenstates $|i\rangle , |j\rangle$ of a Hermitian operator H we can write the quantity $\langle i | A |j \rangle$ in two alternative ways:
\[\langle i | A |j \rangle = \lambda_i \langle i |j \rangle = \lambda_j \langle i |j \rangle \]
which leads to
\[(\lambda_i - \lambda_j) \langle i |j \rangle = 0. \]
For non-degenerate eigenvalues, i.e.
\[\lambda_i \neq \lambda_j, \; \forall |i\rangle \neq |j\rangle \]
we conclude that
\[\langle i |j \rangle = 0, \; \forall |i\rangle \neq |j\rangle \]
and the eigenstates are orthogonal. \qed
We typically normalize eigenstates of Hermitian operators to be orthonormal:

\[\langle i | j \rangle = \delta_{ij}. \]

We postulate that a Hermitian operator \(A \) which corresponds to a physical observable has a “complete” set of eigenstates \(\{|i\rangle\} \). Every other physical state can be written as a superposition:

\[\forall |\phi\rangle \exists \{|c_i\} : |\phi\rangle = \sum_i c_i |i\rangle. \]

The coefficients \(c_i \) can be determined to be the transition amplitude from the state \(|\phi\rangle \) to the eigenstate \(|i\rangle \):

\[c_i = \langle i | \phi \rangle. \]

Indeed,

\[\sum_j c_j |j\rangle = |\phi\rangle \]
\[\sim \sum_j c_j \langle i | j \rangle = \langle i | \phi \rangle \]
\[\sim \sum_j c_j \delta_{ij} = \langle i | \phi \rangle \]
\[\sim c_i = \langle i | \phi \rangle. \]

From Eq. 3.22 and Eq. 3.23 we obtain that for every state \(|\phi\rangle \),

\[|\phi\rangle = \sum_i (\langle i | \phi \rangle) |i\rangle, \]

which we can re-arrange into.

\[|\phi\rangle = \left(\sum_i |i\rangle \langle i | \right) |\phi\rangle, \]

Thus, for base-states \(|i\rangle \) which are eigenstates of a non-degenerate Hermitian operator, we have that:

\[1 = \sum_{\text{all } i} |i\rangle \langle i |. \]
For a normalized state $|\phi\rangle$ we have that

$$1 = \langle \phi | \phi \rangle = \sum_i \langle \phi | i \rangle \langle i | \phi \rangle$$

(3.27)

$$\sim 1 = \sum_i |\langle i | \phi \rangle|^2.$$ \hspace{1cm} (3.28)

This is consistent with the probabilistic interpretation of the inner product, associating the probability $P(|\phi \rangle \rightarrow |i\rangle)$ for a transition from a state $|\phi\rangle$ to an eigenstate with the square of the inner product

$$P(|\phi \rangle \rightarrow |i\rangle) = |\langle i | \phi \rangle|^2.$$ \hspace{1cm} (3.29)

In a filtering experiment (corresponding to the operator A with eigenstates $|i\rangle$) of a quantum mechanical system (such as an atom in a state $|\phi\rangle$) the probability that the system passes through one of the filters (the state ϕ collapses to one of the eigenstates $|i\rangle$) is one

$$\sum_{\text{all } i} P(|\phi \rangle \rightarrow |i\rangle) = 1.$$ \hspace{1cm} (3.30)

The operator $\Lambda_i \equiv |i\rangle \langle i|$ projects a general state onto the eigenstate $|i\rangle$ of the Hermitian operator A. Indeed,

$$\Lambda_i |\phi\rangle = (|i\rangle \langle i|) |\phi\rangle = (\langle i | \phi \rangle) |i\rangle$$

$$= [\text{amplitude}(|\phi \rangle \rightarrow |i\rangle)] \times |i\rangle.$$ \hspace{1cm} (3.31)

This operator has the defining property of a projector,

$$\Lambda_i \Lambda_j = (|i\rangle \langle i|) (|j\rangle \langle j|) = |i\rangle \langle i| j \rangle \langle j|$$

$$= |i\rangle \delta_{ij} \langle j| = |i\rangle \langle i| \delta_{ij}$$

$$= \Lambda_i \delta_{ij}.$$

For $i = j$, we find that $\Lambda_i^2 = \Lambda_i$, which tells us that filtering a quantum system onto a pure state $|i\rangle$ successively does induce any further change to the system after the filtering of the first time. For $i \neq j$, we find that $\Lambda_i \Lambda_j = 0$. A system which is already filtered onto a pure state $|i\rangle$ cannot transition directly into a different pure state of the same observable.
3.7 Matrix representation of states and operators

Consider a Hermitian operator A with a set of eigenstates $\{|i\rangle\}, i = 1 \ldots N$. These satisfy the orthonormality condition $\langle j|i \rangle = \delta_{ij}$. We can represent these eigenstates as vectors,

$$|1\rangle = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad |2\rangle = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \cdots, \quad |N\rangle = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}. \quad (3.32a)$$

We represent the dual bra-eigenstates as

$$\langle 1| = (1, 0, \ldots, 0), \quad \langle 2| = (0, 1, \ldots, 0), \quad \cdots, \quad \langle N| = (0, 0, \ldots, 1). \quad (3.32b)$$

The above representations of the bra and ket eigenstates are consistent with their orthonormality condition. For example,

$$\langle 1|2 \rangle = (1, 0, \ldots, 0) \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} = 0$$

and

$$\langle 2|2 \rangle = (0, 1, \ldots, 0) \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} = 1$$

etc.

A general state $|\phi\rangle$ must satisfy

$$|\phi\rangle = \sum_i \langle i|\phi \rangle |i\rangle \quad (3.33)$$

This can be represented as

$$|\phi\rangle \doteq \langle 1|\phi \rangle \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \langle 2|\phi \rangle \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \cdots + \langle N|\phi \rangle \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \quad (3.34)$$
yielding,
\[|\phi\rangle \doteq \begin{pmatrix} \langle 1|\phi \rangle \\ \langle 2|\phi \rangle \\ \vdots \\ \langle N|\phi \rangle \end{pmatrix}. \]

For a bra state \(\langle \phi | \) we write
\[\langle \phi | = \langle \phi | \sum_i |i\rangle \langle i| = \sum_i \langle i|\phi \rangle \langle i| = \sum_i \langle i|\phi \rangle^* \langle i|. \] (3.35)

This is represented as
\[\langle \phi | \doteq (\langle 1|\phi \rangle^*, \langle 2|\phi \rangle^*, \ldots, \langle N|\phi \rangle^*). \] (3.36)

The inner product of two general states is
\[\langle a|b \rangle = \langle a| \left(\sum_i |i\rangle \langle i| \right) |b\rangle = \sum_j \langle a|i\rangle \langle i|b \rangle = \sum_i \langle i|a \rangle^* \langle i|b \rangle. \] (3.37)

This is consistent with the result that we obtain by using our representation,
\[\langle a|b \rangle \doteq (\langle 1|a \rangle^*, \langle 2|a \rangle^*, \ldots, \langle N|a \rangle^*) \begin{pmatrix} \langle 1|b \rangle \\ \langle 2|b \rangle \\ \vdots \\ \langle N|b \rangle \end{pmatrix}. \] (3.38)

A general operator \(X \) can be written as
\[X = \left(\sum_i |i\rangle \langle i| \right) X \left(\sum_j |j\rangle \langle j| \right) = \sum_{ij} \langle i|X|j \rangle \langle j|. \] (3.39)

The operator is represented as an \(N \times N \) matrix,
\[X \doteq \begin{pmatrix} \langle 1|X|1 \rangle & \langle 1|X|2 \rangle & \ldots & \langle 1|X|N \rangle \\ \langle 2|X|1 \rangle & \langle 2|X|2 \rangle & \ldots & \langle 2|X|N \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle N|X|1 \rangle & \langle N|X|2 \rangle & \ldots & \langle N|X|N \rangle \end{pmatrix}. \] (3.40)

For the case of the outer product operator, we obtain the following representation
\[|a\rangle\langle b| \doteq \begin{pmatrix} \langle 1|a \rangle \langle 1|b \rangle^* & \langle 1|a \rangle \langle 2|b \rangle^* & \ldots & \langle 1|a \rangle \langle N|b \rangle^* \\ \langle 2|a \rangle \langle 1|b \rangle^* & \langle 2|a \rangle \langle 2|b \rangle^* & \ldots & \langle 2|a \rangle \langle N|b \rangle^* \\ \vdots & \vdots & \ddots & \vdots \\ \langle N|a \rangle \langle 1|b \rangle^* & \langle N|a \rangle \langle 2|b \rangle^* & \ldots & \langle N|a \rangle \langle N|b \rangle^* \end{pmatrix}. \] (3.41)
3. Quantum Mechanics and Linear Algebra

3.8 Compatible and incompatible observables

Two Hermitian operators which commute with each other,

\[
[A, B] \equiv AB - BA = 0, \quad (3.42)
\]

are called compatible. If they do not commute, \([A, B] \neq 0\), they are incompatible. We shall prove a couple of theorems which elucidate the meaning of this terminology.

Theorem 3.1. For two hermitian operators \(A, B : [A, B] = 0\), where \(A\) has a spectrum of eigenstates \(|i⟩\) with non-degenerate eigenvalues,

\[
A|i⟩ = \lambda_i |i⟩, \tag{3.43}
\]

i) \(B\) is a diagonal matrix in the representation of the \(|i⟩\) basis,

ii) The set of \(|i⟩\) states is also a set of eigenstates of the \(B\) operator.

Proof. For any two eigenstates \(|i⟩, |j⟩\) of \(A\) we have that

\[
0 = [A, B] \\
= 0 = ⟨i| AB - BA |j⟩ = ⟨i| AB |j⟩ - ⟨i| BA |j⟩ \\
= (\lambda_i - \lambda_j) ⟨i| B |j⟩ \tag{2}
\]

For \(|i⟩ \neq |j⟩\), given that the eigenvalues are not degenerate, we have that \(\lambda_i \neq \lambda_j\). Thus, it must be that \(⟨i| B |j⟩ = 0\). Only the diagonal elements, \(i = j\), are allowed to be different than zero. We write:

\[
⟨i| B |j⟩ = \delta_{ij} ⟨i| B |i⟩, \tag{3.43}
\]

which is the first statement of our theorem.

The \(B\) operator can be written as

\[
B = \left(\sum_i |i⟩⟨i| \right) B \left(\sum_j |j⟩⟨j| \right) \\
= \sum_{ij} |i⟩⟨i| B |j⟩ ⟨j| \\
= \sum_{ij} |i⟩ \delta_{ij} ⟨j| (⟨i| B |i⟩) \\
= \sum_i (⟨i| B |i⟩) |i⟩⟨i|.
\]

\(2⟨i| AB - BA |j⟩\) can be seen as \(⟨i| (AB - BA) |j⟩\).
Acting on an eigenstate $|m\rangle$ of the A operator, we have
\[
B |m\rangle = \sum_i (\langle i | B | i \rangle) |i\rangle \langle i | m\rangle \\
= \sum_i (\langle i | B | i \rangle) |i\rangle \delta_{im} \\
= (\langle m | B | m \rangle) |m\rangle
\]
which proves that the eigenstates $|m\rangle$ of A are also eigenstates of the commuting operator B.

Theorem 3.2. If two operators do not commute, $[A, B] \neq 0$, their common eigenstates do not form a complete set.

Proof. We can prove the above by assuming the opposite, i.e. the common eigenstates of A, B, denoted by $|a, b\rangle$ and satisfying
\[
A |a, b\rangle = a |a, b\rangle , \\
B |a, b\rangle = b |a, b\rangle ,
\]
form a complete set. Then a general state can be written as
\[
|\phi\rangle = \sum_{a, b} c_{ab} |a, b\rangle . \quad (3.44)
\]
Acting with the commutator on an arbitrary state $|\phi\rangle$, we obtain that
\[
[A, B] |\phi\rangle = \sum_{a, b} c_{ab} (AB - BA) |a, b\rangle = \sum_{a, b} c_{ab} (ab - ba) |a, b\rangle = 0. \quad (3.45)
\]
From the above we conclude that the commutator vanishes, $[A, B] = 0$, which is in contradiction to our hypothesis.

3.9 Expectation value and uncertainty of Hermitian operators (measurements)

Consider a Hermitian operator A which corresponds to a physical observable, such as energy, momentum, position, spin magnetic moment, etc. We associate the average value measured in an experiment (which is repeated infinitely many times) for the quantity corresponding to A with the expectation value of the operator with respect to the system’s state $|\phi\rangle$:
\[
\langle A \rangle = \langle \phi | A | \phi \rangle . \quad (3.46)
\]
Let’s use the eigenstates $|i⟩$ of the operator A as a basis of physical states. These have eigenvalues $λ_i$, where

$$A |i⟩ = λ_i |i⟩. \quad (3.47)$$

The expectation value of A can be written as

$$⟨A⟩ = ⟨φ| \left(∑_i |i⟩⟨i| \right) A \left(∑_j |j⟩⟨j| \right) |φ⟩,$$ \quad (3.48)

which yields

$$⟨A⟩ = ∑_i λ_i |⟨i|φ⟩|^2. \quad (3.49)$$

We can re-write this expression as

$$⟨A⟩ = ∑_i λ_i \text{Prob}(|φ⟩ → |i⟩) \quad (3.50)$$

The expectation value is a sum over all possible eigenvalues weighted by the probability that the state of the system collapses to the corresponding eigenstate. If $|φ⟩$ is itself an eigenstate of A, e.g. $|φ⟩ = |j⟩$ the expectation value of the measurement is simply the eigenvalue $λ_j$:

$$⟨A⟩ = ⟨j| A |j⟩ = ∑_i λ_i |⟨i|j⟩|^2 = ∑_i λ_i δ_{ij} = λ_j. \quad (3.51)$$

In addition to the average of measurements for an observable in a quantum mechanical system, we can compute the uncertainty in these measurements. This is defined as

$$⟨(ΔA)^2⟩ \equiv ⟨(A − ⟨A⟩ 1)^2⟩. \quad (3.52)$$

Indeed,

$$⟨(ΔA)^2⟩ = ⟨A^2⟩ − ⟨A⟩^2, \quad (3.53)$$

which we can easily prove,

$$⟨(A − ⟨A⟩)^2⟩ = ⟨A^2⟩ − 2 ⟨A ⟨A⟩⟩ + ⟨A⟩^2 = ⟨A^2⟩ − 2 ⟨A⟩^2 + ⟨A⟩^2$$ \quad (3.54)

$$= ⟨A^2⟩ − ⟨A⟩^2,$$

\footnote{3From now on we will drop the 1.}
where
\[
\langle A \langle A \rangle \rangle = \langle \phi | A \langle \phi | A | \phi \rangle | \phi \rangle = \langle \phi | A | \phi \rangle \langle \phi | A | \phi \rangle = \left(\langle \phi | A | i \rangle \right)^2 \tag{3.55}
\]
\[= \langle A \rangle^2. \]

Notice that the uncertainty for a system in an eigenstate of \(A \) is zero,
\[
\langle (\Delta A)^2 \rangle = \langle i | A^2 | i \rangle - \langle i | A | i \rangle^2 = \lambda_i^2 - \lambda_i^2 = 0. \tag{3.56}
\]

3.10 The uncertainty principle

In this section, we shall derive Heisenberg’s uncertainty principle for any pair of incompatible (non-commuting) Hermitian (physical) operators \(A, B \).

We start with
\[
\langle (A - \langle A \rangle)(B - \langle B \rangle) \rangle = \langle AB - A \langle B \rangle - \langle A \rangle B + \langle A \rangle \langle B \rangle \rangle
\]
\[= \langle AB \rangle - \langle A \rangle \langle B \rangle
\]
\[= \frac{1}{2} \langle [A, B] \rangle + \frac{1}{2} \langle AB + BA \rangle - \langle A \rangle \langle B \rangle
\]
\[= \frac{1}{2} \langle [A, B] \rangle
\]
\[+ \frac{1}{2} \left\langle (A - \langle A \rangle) (B - \langle B \rangle) + (B - \langle B \rangle) (A - \langle A \rangle) \right\rangle
\]
\[= \frac{1}{2} \langle [A, B] \rangle + \frac{1}{2} \langle \{ A - \langle A \rangle, B - \langle B \rangle \} \rangle \tag{3.57}
\]
where the anti-commutator is defined as
\[
\{ X, Y \} \equiv XY + YX. \tag{3.58}
\]

The anti-commutator of Hermitian operators is also a Hermitian operator. Indeed,
\[
\{ X, Y \}^\dagger = (XY)^\dagger + (YX)^\dagger = Y^\dagger X^\dagger + X^\dagger Y^\dagger
\]
\[= YX + XY = XY + YX = \{ X, Y \}
\]

On the other hand, the commutator of two Hermitian operators is anti-Hermitian. Indeed,
\[[A, B]^\dagger = [B^\dagger, A^\dagger] = [B, A] = -[A, B]. \]

Now we can prove an important theorem:

\[^4\text{(an operator } Z \text{ is anti-Hermitian if its adjoint is } Z^\dagger = -Z)\]
Theorem 3.3. The expectation value of a Hermitian operator is real, while the expectation value of an anti-Hermitian operator is imaginary.

Proof. Indeed, the real and imaginary parts of the expectation value for an operator A are

$$
\Re \left(\langle A \rangle \right) = \frac{\langle A \rangle + \langle A \rangle^*}{2} = \frac{1}{2} \langle \phi | A + A^\dagger | \phi \rangle
$$

(3.59)

$$
\Im \left(\langle A \rangle \right) = \frac{\langle A \rangle - \langle A \rangle^*}{2i} = \frac{1}{2i} \langle \phi | A - A^\dagger | \phi \rangle
$$

(3.60)

The real part vanishes if A is anti-Hermitian, $A^\dagger = -A$, while the imaginary part vanishes if A is Hermitian, $A^\dagger = A$.

In the rhs of Eq. 3.57, the first term is then purely imaginary while the second term is real. Both give an independent positive definitive contribution in the absolute value square of the lhs, and we can write

$$
\left| \langle (A - \langle A \rangle) (B - \langle B \rangle) \rangle \right|^2 = \left| \frac{1}{2} \langle [A, B] \rangle \right|^2 + \left| \frac{1}{2} \langle \{ A - \langle A \rangle, B - \langle B \rangle \} \rangle \right|^2.
$$

(3.61)

This leads to the inequality,

$$
\left| \langle (A - \langle A \rangle) (B - \langle B \rangle) \rangle \right|^2 \geq \left| \frac{1}{2} \langle [A, B] \rangle \right|^2.
$$

(3.62)

Now we shall use a Schwarz inequality,

$$
|\langle ab \rangle|^2 \leq \langle a|a \rangle \langle b|b \rangle,
$$

(3.63)

which we can prove easily by the postulate $\langle \phi | \phi \rangle \geq 0$ for

$$
|\phi \rangle = |a \rangle - \frac{\langle b|a \rangle}{\langle b|b \rangle} |b \rangle.
$$

Applying Schwarz’s inequality to

$$
|a \rangle = (A - \langle A \rangle) |\phi \rangle
$$

and

$$
|b \rangle = (B - \langle B \rangle) |\phi \rangle
$$

we obtain,

$$
|\langle (A - \langle A \rangle)(B - \langle B \rangle) \rangle|^2 \leq \langle (A - \langle A \rangle)^2 \rangle \langle (B - \langle B \rangle)^2 \rangle
$$

(3.64)

Combining the inequalities 3.57 - 3.62 we obtain the “uncertainty principle”:

$$
\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \geq \frac{1}{4} |\langle [A, B] \rangle|^2
$$

(3.65)
3.11 Change of basis

Incompatible operators offer different sets of base-kets to describe the states of a quantum mechanical system (furnishing a different “representation” for each one of such operators).

Given two sets of base-kets there is a unitary operator which can transform general states and operators from one basis to the other. Consider two Hermitian operators A, B and their corresponding sets of eigenstates $\{|a_i\rangle\}, \{|b_i\rangle\}$ where,

$$A |a_i\rangle = a_i |a_i\rangle, \quad (3.66)$$
$$B |b_i\rangle = b_i |b_i\rangle, \quad (3.67)$$

and

$$\langle a_i|a_j\rangle = \langle b_i|b_j\rangle = \delta_{ij}. \quad (3.68)$$

There is a unitary operator U which transforms a state $|a_i\rangle$ into a state $|b_i\rangle$:

$$|b_i\rangle = U |a_i\rangle, \quad (3.69)$$

with

$$UU^\dagger = U^\dagger U = 1. \quad (3.70)$$

Explicitly, we can easily verify that

$$U = \sum_k |b_k\rangle \langle a_k|. \quad (3.71)$$

Indeed,

$$U |a_i\rangle = \sum_k |b_k\rangle \langle a_k|a_i\rangle = \sum_k |b_k\rangle \delta_{ki} \quad (3.72)$$

$$= |b_i\rangle.$$

Similarly,

$$U^\dagger |b_i\rangle = \sum_k (|b_k\rangle \langle a_k|)^\dagger |b_i\rangle = \sum_k (|a_k\rangle \langle b_k|) |b_i\rangle = \sum_k |a_k\rangle \delta_{ki} \quad (3.73)$$

$$= |a_i\rangle.$$

Finally,

$$U^\dagger U = \left(\sum_j |a_j\rangle \langle b_j| \right) \left(\sum_k |b_k\rangle \langle a_k| \right) = \sum_{jk} |a_j\rangle \langle b_j| |b_k\rangle \langle a_k| \quad (3.74)$$

$$= \sum_{jk} |a_j\rangle \delta_{jk} |a_k| = \sum_j |a_j\rangle \langle a_j| = 1,$$
and

\[
UU^\dagger = \left(\sum_j |b_j\rangle \langle a_j| \right) \left(\sum_k |a_k\rangle \langle b_k| \right) = \sum_{jk} |b_j\rangle \langle a_j| a_k \rangle \langle b_k| = \sum_{jk} |b_j\rangle \delta_{jk} \langle b_k| = \sum_j |b_j\rangle \langle b_j| = 1. \tag{3.75}
\]

3.11.1 Transformation matrix

The transformation matrix

\[
U = \sum_k |b_k\rangle \langle a_k|
\]

is represented in the basis of \{|a_i\}\ as

\[
\langle a_j| U |a_i\rangle = \sum_k \langle a_j| b_k\rangle \langle a_k| a_i\rangle = \sum_k \langle a_j| b_k\rangle \delta_{ki} = \langle a_j| b_i\rangle. \tag{3.77}
\]

An arbitrary state \(|\phi\rangle\) is written as

\[
|\phi\rangle = \sum_k c_k |a_k\rangle = \sum_k \langle a_k| \phi\rangle |a_k\rangle = \begin{pmatrix}
\langle a_1| \phi\rangle \\
\langle a_2| \phi\rangle \\
\vdots \\
\langle a_N| \phi\rangle
\end{pmatrix} \tag{3.78}
\]

and in the \{|a_i\}\ basis it is represented as a column vector with elements \langle a_i| \phi\rangle. Similarly, in the \{|b_i\}\ basis it is represented as a column vector with elements \langle b_i| \phi\rangle.

\[
|\phi\rangle = \sum_k d_k |b_k\rangle = \sum_k \langle b_k| \phi\rangle |b_k\rangle = \begin{pmatrix}
\langle b_1| \phi\rangle \\
\langle b_2| \phi\rangle \\
\vdots \\
\langle b_N| \phi\rangle
\end{pmatrix} \tag{3.79}
\]

The two column vectors are related as follows:

\[
\langle b_i| \phi\rangle = \sum_k \langle b_i| a_k\rangle \langle a_k| \phi\rangle = \sum_k \langle a_i| U^\dagger |a_k\rangle \langle a_k| \phi\rangle. \tag{3.80}
\]
3.11. Change of basis

In matrix form

\[
\begin{pmatrix}
\langle b_i | \phi \rangle \\
\vdots \\
\langle b_i | \phi \rangle
\end{pmatrix}
= \begin{pmatrix}
\vdots & \cdots & \cdots & \cdots \\
\langle a_i | U^\dagger | a_k \rangle & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots \\
\langle a_k | \phi \rangle
\end{pmatrix}
\begin{pmatrix}
\langle a_i | U^\dagger | a_k \rangle \\
\vdots \\
\langle a_k | \phi \rangle
\end{pmatrix}
\]
(3.81)

\newcommand{\newbasis}{\text{new basis}}
\newcommand{\oldbasis}{\text{old basis}}
\newcommand{\U}{\text{U}}

Let’s now look at changing representations for operators. In the two bases, \{ |a_i\rangle \} and \{ |b_i\rangle \}, an operator \(X \) is represented by the matrices

\[
\langle a_j | X | a_i \rangle \quad \text{and} \quad \langle b_j | X | b_i \rangle,
\]

respectively. We write:

\[
\langle b_j | X | b_i \rangle = \sum_{k\ell} \langle b_j | a_k \rangle \langle a_k | X | a_\ell \rangle \langle a_\ell | b_i \rangle
\]
(3.82)

\[
= \sum_{k\ell} \langle a_j | U^\dagger | a_k \rangle \langle a_k | X | a_\ell \rangle \langle a_\ell | U | a_i \rangle
\]

Which, in matrix notation is written as \(^5\)

\[
\begin{pmatrix}
\langle b_j | X | b_i \rangle \\
\vdots \\
\langle b_j | X | b_i \rangle
\end{pmatrix}
= \begin{pmatrix}
\langle a_j | U^\dagger | a_k \rangle & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots \\
\langle a_k | X | a_\ell \rangle & \cdots & \cdots & \cdots \\
\langle a_\ell | U | a_i \rangle
\end{pmatrix}
\begin{pmatrix}
\langle a_j | U^\dagger | a_k \rangle \\
\vdots \\
\langle a_k | X | a_\ell \rangle \\
\langle a_\ell | U | a_i \rangle
\end{pmatrix}
\]
(3.83)

3.11.2 Trace of operators

The trace of an operator is defined as

\[
\text{tr}(X) = \sum_i \langle a_i | X | a_i \rangle,
\]
(3.84)

\(^5\text{In the same manner as Eq. 3.81}\)
and it is independent of the representation. Indeed, for two representation \(\{|a_i\}\), \(\{|b_i\}\), we have:

\[
\sum_i \langle a_i | X | a_i \rangle = \sum_{ijk} \langle a_i | b_j \rangle \langle b_j | X | b_k \rangle \langle b_k | a_i \rangle
\]

\[
= \sum_{jk} \langle b_k | \left(\sum_i \langle a_i | a_i \rangle \right) b_j \rangle \langle b_j | X | b_k \rangle
\]

\[
= \sum_{jk} \langle b_k | b_j \rangle \langle b_j | X | b_k \rangle
\]

\[
= \sum_{jk} \delta_{jk} \langle b_j | X | b_k \rangle
\]

\[
= \sum_i \langle b_i | X | b_i \rangle .
\]

It is easy to prove the typical properties for traces, such as

\[
\text{tr}(XY) = \text{tr}(YX). \quad (3.85)
\]

We also note that the trace of an outer product is an inner product,

\[
\text{tr}(c \langle b |) = \sum_i \langle a_i | c \rangle \langle b | a_i \rangle = \langle b | \left(\sum_i | a_i \rangle \langle a_i | \right) | c \rangle = \langle b | c \rangle . \quad (3.86)
\]

3.12 Eigenstates and eigenvalues

Suppose that we know the representation \(\langle a_i | X | a_j \rangle\) of an operator \(X\) in a basis \(\{|a_i\}\). We would like to compute the eigenstates of \(X\) in the same representation. We have

\[
X | b_i \rangle = b_i | b_i \rangle
\]

\[
\Rightarrow X \sum_l | a_l \rangle \langle a_l | b_i \rangle = b_i | b_i \rangle
\]

\[
\Rightarrow \langle a_\lambda | X \sum_l | a_l \rangle \langle a_l | b_i \rangle = b_i \langle a_\lambda | b_i \rangle
\]

\[
\Rightarrow \sum_l \langle a_\lambda | X | a_l \rangle \langle a_l | b_i \rangle = b_i \langle a_\lambda | b_i \rangle
\]

which, in matrix notation, is cast as

\[
\begin{pmatrix}
\langle a_1 | X | a_1 \rangle & \ldots & \langle a_1 | X | a_N \rangle \\
\vdots & \ddots & \vdots \\
\langle a_N | X | a_1 \rangle & \ldots & \langle a_N | X | a_N \rangle
\end{pmatrix}
\begin{pmatrix}
\langle a_1 | b_i \rangle \\
\vdots \\
\langle a_N | b_i \rangle
\end{pmatrix} =
\begin{pmatrix}
\langle a_1 | b_i \rangle \\
\vdots \\
\langle a_N | b_i \rangle
\end{pmatrix}
\]

(3.87)
We can find the eigenvalues \(b_i \) and eigenstates
\[
\begin{pmatrix}
\langle a_1 | b_i \rangle \\
\vdots \\
\langle a_N | b_i \rangle
\end{pmatrix}
\]
(3.88)
as eigenvalues and eigenstates of the matrix in the lhs of Eq. \(3.87 \). The eigenvalues satisfy,
\[
\det(X - b_i 1) = 0.
\]
(3.89)
Knowing the eigenvalues the eigenstates can be constructed as usual in linear algebra by substituting \(b_i \) explicitly in Eq. \(3.87 \) and solving for the \(\langle a_i | b_i \rangle \)'s.

3.13 Unitary equivalent observables

Two operators \(A, B \) are equivalent if they can be related by a unitary transformation.
\[
B = U A U^\dagger, \quad U^\dagger = U^{-1}.
\]
(3.90)
These operators have the same eigenvalues and their eigenstates are related by the same unitary transformation.
\[
A |a\rangle = a |a\rangle \\
\leadsto A U_{1}^\dagger U_{1} |a\rangle = a U_{1}^\dagger U_{1} |a\rangle \\
\leadsto (U A U^\dagger) (U |a\rangle) = a U U^\dagger U |a\rangle \\
\leadsto B (U |a\rangle) = a (U |a\rangle).
\]
(3.91)
The operator \(B \) satisfies an eigenvalues equation
\[
B |b\rangle = b |b\rangle.
\]
Comparing with the above, we conclude that the eigenstates of the operator \(B \) are
\[
|b\rangle = U |a\rangle,
\]
and the eigenvalues are
\[
b = a.
\]
States evolve with time. In this chapter we will postulate how this happens in nature. Our description of time evolution needs to be consistent with the mathematical language of kets, bras and operators upon which we have formulated the principle of quantum mechanics. This language is very restrictive and leads to an elegant and austere formalism for time evolution. Consider a state which evolves as:

$$|\phi,t_0\rangle \rightarrow |\phi,t\rangle, \quad t \geq t_0. \quad (4.1)$$

We introduce a time evolution operator and write a relation of the two states at times t_0 and t as

$$|\phi,t\rangle = U(t-t_0) |\phi,t_0\rangle. \quad (4.2)$$

The operator $U(t-t_0)$ is a time evolution operator which as for now we have only defined its purpose and name. We can guess some of the properties of the time evolution operation easily.

i) Let us consider a normalized state $|\phi,t_0\rangle$. We would like that the time evolution operator does not destroy the normalization of the states:

$$\langle \phi,t | \phi,t \rangle = 1. \quad (4.3)$$

This is satisfied if the time evolution operator is unitary:

$$U^\dagger(t-t_0)U(t-t_0) = 1, \quad t > t_0. \quad (4.4)$$

ii) We also expect that a time evolution $t_0 \rightarrow t_1 > t_0$ followed by a time evolution $t_1 \rightarrow t_2 > t_1$ is equivalent to a time evolution $t_0 \rightarrow t_2$

$$U(t_2-t_1)U(t_1-t_0) = U(t_2-t_0). \quad (4.5)$$

iii) Finally, we anticipate that

$$\lim_{t \rightarrow t_0} U(t-t_0) = 1. \quad (4.6)$$
4. Time evolution

For small times, all of the above are satisfied if

\[U(\Delta t) = 1 - i\Omega\Delta t + \mathcal{O}((\Delta t)^2), \]

(4.7)

with

\[\Omega^\dagger = \Omega. \]

(4.8)

We postulate that

\[\Omega = \frac{H}{\hbar}, \]

(4.9)

where \(H \) is the Hamiltonian operator. This is inspired by classical mechanics, where time translations are generated by the Hamiltonian.

4.1 Schrödinger equation

We start by the product property for a time translation in the interval

\[(t_0 = 0, t + \Delta t) \]

(4.10)

with \(\Delta t \) being infinitesimal.

\[
U(t + \Delta t) = U(\Delta t)U(t) \\
\sim U(t + \Delta t) = \left(1 - i\frac{H}{\hbar}\Delta t\right)U(t) \\
\sim U(t) + \Delta t \frac{\partial}{\partial t}U(t) = \left(1 - i\frac{H}{\hbar}\Delta t\right)U(t) \\
\sim \frac{i\hbar}{\Delta t} \frac{\partial}{\partial t}U(t) = HU(t).
\]

(4.11)

The operators of the left and right sides of the last equation acting on a state at the starting time \(t_0 = 0 \) give

\[
i\hbar \frac{\partial}{\partial t}U(t)|\phi, t_0 = 0\rangle = HU(t)|\phi, t_0 = 0\rangle
\]

(4.12)

Recalling that

\[U(t)|\phi, t_0 = 0\rangle = |\phi, t\rangle, \]

(4.13)

we obtain the equation of Schrödinger

\[
i\hbar \frac{\partial}{\partial t}|\phi, t\rangle = H|\phi, t\rangle.
\]

(4.14)
4.2. Eigenstates of the Hamiltonian operator

For a constant Hamiltonian, $H(t) = H$, the solution of Schrödinger’s equation is

$$|\phi, t\rangle = e^{-\frac{i}{\hbar}(t-t_0)\cdot H} |\phi, t_0\rangle .$$ \hspace{1cm} (4.15)

For a time-dependent Hamiltonian with

$$[H(t_1), H(t_2)] = 0, \quad \forall t_1, t_2 \in [t_0, t]$$ \hspace{1cm} (4.16)

we have that

$$|\phi, t\rangle = e^{-\frac{i}{\hbar} \int_{t_0}^{t} dt' H(t')} |\phi, t_0\rangle .$$ \hspace{1cm} (4.17)

The exponential of an operator X is defined through its series expansion

$$e^X = 1 + X + \frac{X^2}{2!} + \ldots$$ \hspace{1cm} (4.18)

4.2 Eigenstates of the Hamiltonian operator and time evolution

Consider a constant Hamiltonian operator H with eigenstates $|n\rangle$ and eigenvalues E_n

$$H |n\rangle = E_n |n\rangle .$$ \hspace{1cm} (4.19)

A general state at an initial time t_0 is written as

$$|\psi, t_0\rangle = \left(\sum_n |n\rangle \langle n| \right) |\psi, t_0\rangle .$$ \hspace{1cm} (4.20)

Acting with the time evolution operator we obtain

$$U(t-t_0) |\psi, t_0\rangle = U(t-t_0) \left(\sum_n |n\rangle \langle n| \right) |\psi, t_0\rangle$$

$$\sim |\psi, t\rangle = e^{-\frac{i}{\hbar}(t-t_0)\cdot H} \left(\sum_n |n\rangle \langle n| \right) |\psi, t_0\rangle$$

$$\sim |\psi, t\rangle = \sum_n |n\rangle e^{-\frac{i}{\hbar}(t-t_0)\cdot E_n} \langle n| \psi, t_0\rangle .$$ \hspace{1cm} (4.21)

For the special situation where the initial state is also an eigenstate,

$$|\psi, t_0\rangle = |m\rangle ,$$
we obtain
\[|\psi, t\rangle = \sum_n |n\rangle e^{-\frac{i}{\hbar} (t-t_0) \cdot E_n} \langle n|m \rangle \]
\[\sim |\psi, t\rangle = \sum_n |n\rangle e^{-\frac{i}{\hbar} (t-t_0) \cdot E_n} \delta_{nm} \]
\[\sim |\psi, t\rangle = |m\rangle e^{-\frac{i}{\hbar} (t-t_0) \cdot E_m} \]

(4.22)

The time evolved state is the original eigenstate up to a phase factor unimportant for physics. Once a physical system is in an eigenstate of the Hamiltonian, it will always remain in this eigenstate.

Assuming again that the system is in an eigenstate of the Hamiltonian, the expectation value of a physical observable \(A \) at a later time \(t \) will be
\[\langle A \rangle_t = \langle \phi, t | A | \phi, t \rangle \]
\[= \langle m | e^{+\frac{i}{\hbar} (t-t_0) \cdot H} A e^{-\frac{i}{\hbar} (t-t_0) \cdot H} | m \rangle \]
\[= \langle m | e^{+\frac{i}{\hbar} (t-t_0) \cdot E_m} A e^{-\frac{i}{\hbar} (t-t_0) \cdot E_m} | m \rangle \]
\[= \langle m | A | m \rangle . \]

(4.23)

Therefore, expectation values of physical observables remain unchanged if the system is in an eigenstate of the Hamiltonian.

Otherwise, we anticipate that expectation values “oscillate” among various values. For an initial state (at \(t_0 = 0 \))
\[|\phi\rangle = \sum_m |m\rangle \langle m|\phi\rangle , \]
we have that at a later time the expectation value becomes
\[\langle A \rangle_t = \langle \phi, t | A | \phi, t \rangle \]
\[= \langle \phi | e^{+\frac{i}{\hbar} (t-t_0) \cdot H} A e^{-\frac{i}{\hbar} (t-t_0) \cdot H} | \phi \rangle \]
\[= \sum_{n,m} \langle \phi | m \rangle \langle m | e^{+\frac{i}{\hbar} (t-t_0) \cdot H} A e^{-\frac{i}{\hbar} (t-t_0) \cdot H} | n \rangle \langle n | \phi \rangle \]
\[= \sum_{n,m} \langle \phi | m \rangle \langle m | e^{+\frac{i}{\hbar} (t-t_0) \cdot E_m} A e^{-\frac{i}{\hbar} (t-t_0) \cdot E_m} | n \rangle \langle n | \phi \rangle \]
\[= \sum_{n,m} e^{-i(t-t_0)\omega_{nm}} \langle m | \phi \rangle^* \langle n | \phi \rangle \langle n | A | m \rangle , \]

(4.24)

where the “oscillation” frequencies are
\[\omega_{nm} = \frac{E_n - E_m}{\hbar}. \]

(4.25)
4.3 Spin precession

Consider an electron, which is a spin-\(\frac{1}{2}\) particle, inside a magnetic field. The potential energy of a classical magnetic dipole is given by

\[U = -\mu \cdot B, \]

where \(\mu\) is the dipole magnetic moment, proportional to the angular momentum of the rotating electric charge. Inspired by this, we define a quantum mechanical Hamiltonian operator

\[H = -\left(\frac{e}{m_e c} \right) \mathbf{S} \cdot \mathbf{B}, \quad (4.26) \]

where \(\mathbf{S}\) is the spin operator and \(\mathbf{B}\) is the magnetic field. Let us take the magnetic field to be along the \(\hat{z}\) direction,

\[\mathbf{B} = B\hat{z}. \]

Thus

\[H = -\left(\frac{eB}{m_e c} \right) S_z \equiv \omega S_z, \quad (4.27) \]

with

\[\omega \equiv \frac{|e|B}{m_e c}. \quad (4.28) \]

The Hamiltonian and the operator of spin in the \(z\)-direction, \(S_z\), commute. Therefore, they must have a common set of eigenvalues. The spin operator has two eigenstates

\[S_z |\pm\rangle = \pm \frac{\hbar}{2} |\pm\rangle, \quad (4.29) \]

which are also energy eigenstates with eigenvalues

\[H |\pm\rangle = E_\pm |\pm\rangle, \quad E_\pm = \pm \frac{\hbar \omega}{2}. \quad (4.30) \]

The time evolution operator is

\[U(t) = e^{\frac{-iHt}{\hbar}} = e^{-\frac{i\omega t S_z}{\hbar}}. \quad (4.31) \]

Acting on an initial state

\[|\phi\rangle = c_+ |+\rangle + c_- |-\rangle, \quad (4.32) \]

we obtain

\[|\phi, t\rangle = c_+ e^{-i\omega t/2} |+\rangle + c_- e^{i\omega t/2} |-\rangle. \quad (4.33) \]
The coefficients c_{\pm} are such that

$$
\langle \phi | \phi \rangle = 1, \quad (4.34)
$$

$$
\sim |c_+|^2 + |c_-|^2 = 1. \quad (4.35)
$$

Let’s study the case of real c_{\pm} coefficients and parametrize them in terms of an “angle” θ, such that

$$
c_+ = \cos \theta, \quad c_- = \sin \theta. \quad (4.36)
$$

Exercise 4.1. generalize the following to arbitrary complex coefficients.

The state can be written as

$$
|\phi\rangle = \cos \theta |+\rangle + \sin \theta |-\rangle. \quad (4.37)
$$

Note that there is an orthogonal state $|\psi\rangle$ to $|\phi\rangle$,

$$
|\psi\rangle = -\sin \theta |+\rangle + \cos \theta |-\rangle, \quad (4.38)
$$

such that

$$
\langle \phi | \psi \rangle = 0.
$$

The probability that the electron is found again at the same state $|\phi\rangle$ after some time t is given by

$$
P_1(t) = |\langle \phi | \phi, t \rangle|^2 = \ldots = 1 - \sin^2 \left(\frac{\omega t}{2} \right) \sin^2 (2\theta). \quad (4.39)
$$

Notice that for $\theta = 0, \frac{\pi}{2}$, which corresponds to $|\phi\rangle$ being an eigenstate $|\pm\rangle$ of the Hamiltonian, the probability that the electron remains in the same state is 100% at all times. For all other states, $\theta \neq 0, \frac{\pi}{2}$, the probability oscillates with time. There exist, however, periodic times,

$$
t = n \frac{2\pi}{\omega}, \quad n = 0, 1, 2, \ldots
$$

for which the probability is always one,

$$
P_1 \left(t = \frac{2\pi}{\omega} \right) = 1.
$$

The probability to transition to the orthogonal state ψ after some time t is

$$
P_2(t) = |\langle \psi | \phi, t \rangle|^2 = \ldots = \sin^2 \left(\frac{\omega t}{2} \right) \sin^2 (2\theta). \quad (4.40)
$$

As you can observe, the total probability is conserved

$$
P_1 + P_2 = 1.
4.4 Heisenberg and Schrödinger picture of time evolution

A physical system described by $|b\rangle$ which evolves in time

$$|b, t_0\rangle \rightarrow |b, t\rangle = U(t, t_0) |b, t_0\rangle,$$

with

$$U^\dagger U = 1$$

$$i\hbar \frac{dU}{dt} = HU.$$

Remember that if H is time independent $\sim U = e^{-iHt/\hbar}$

Let’s set $t_0 = 0$ and talk about

$$U(t) \equiv U(t, t_0 = 0).$$

Information about the system comes from objects like

$$\langle b| X |a\rangle,$$

where X is an operator corresponding to an observable. How does this quantity evolve with time?

$$\langle b| X |a\rangle \rightarrow (\langle b| U^\dagger) X (U |a\rangle) = \langle b| U^\dagger X U |a\rangle.$$
Up to now information about time evolution was carried by the state kets.

4.4.1 Shift in picture:

Define

\[|a\rangle_H = |a, 0\rangle_S, \]

that does not evolve in time. Now define

\[X_H = U^\dagger X_S U, \]

which does evolve in time. In this picture (Heisenberg) the time evolution information is carried by the operators!

So physical observables correspond to operators that might be changing in time, like in classical mechanics. How do the operators change?

\[
\frac{dX_H}{dt} = \frac{d}{dt} (U^\dagger X_S U) = \frac{dU^\dagger}{dt} X_S U + U^\dagger X_S \frac{dU}{dt}.
\]

\[
\sim \frac{dX_H}{dt} = \frac{1}{i\hbar} U^\dagger [X_H, H] U = \frac{1}{i\hbar} [X_S, H],
\]

which is known as the *Heisenberg equation of motion*. Notice the analogy with classical mechanics and the Poisson equation

\[
\frac{dX}{dt} = \{X, H\}_{\text{Poisson}}.
\]
4.4.2 Recapitulation

<table>
<thead>
<tr>
<th>Schrödinger</th>
<th>Heisenberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S\rangle_S$ evolves:</td>
</tr>
<tr>
<td>$</td>
<td>S\rangle \rightarrow U</td>
</tr>
<tr>
<td>A_S doesn’t evolve</td>
<td>A_H evolves</td>
</tr>
<tr>
<td>$A_H \rightarrow U^\dagger A_H U$</td>
<td>$A_H \rightarrow U^\dagger A_H U$</td>
</tr>
<tr>
<td>Eigenstates don’t evolve:</td>
<td>Eigenstates evolve:</td>
</tr>
<tr>
<td>$A_S</td>
<td>a\rangle_S = a</td>
</tr>
<tr>
<td>$\rightarrow A_S</td>
<td>a\rangle_S = a</td>
</tr>
<tr>
<td>so $</td>
<td>a\rangle_H \rightarrow U^\dagger</td>
</tr>
<tr>
<td>This means that</td>
<td>$\frac{d</td>
</tr>
</tbody>
</table>

Expansion coefficients

$c_a(0) = \langle a, 0 |S, 0 \rangle$

$c_a(t) = \langle a |S, t \rangle_S$ \hspace{1cm} $c_a(t) = \langle a, t |S, t \rangle_H$

$= \langle a, 0 |U |S, 0 \rangle_S$ \hspace{1cm} $= \langle a, 0 |U |S, 0 \rangle_H$

Transition amplitude

base bra $\rightarrow \langle b, 0 |a, 0 \rangle \leftarrow$ state

$\langle b, t |a, t \rangle_S$ \hspace{1cm} $\langle b, t |a, t \rangle_H$

$\langle b, 0 |U |a, 0 \rangle_S$ \hspace{1cm} $\langle b, 0 |U |a, 0 \rangle_H$
Two-state systems

Consider a system with only two base states

\[
|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad |2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.
\]

The Hamiltonian of the system represented in this basis is

\[
H = \begin{pmatrix} H_{11} & H_{12} \\ H_{12}^* & H_{22} \end{pmatrix},
\]

(5.1)

where

\[
H_{ij} = H_{ji} = \langle i | H | j \rangle,
\]

so that

\[
H^\dagger = H.
\]

We shall assume for now that the Hamiltonian is independent of time,

\[
H(t) = H, \quad \forall t.
\]

(5.2)

The Hamiltonian has two energy eigenstates with eigenvalues \(E \) satisfying

\[
det \begin{pmatrix} H_{11} - E & H_{12} \\ H_{12}^* & H_{22} - E \end{pmatrix} = 0.
\]

(5.3)

This yields the solutions

\[
E_{\pm} = \frac{H_{11} + H_{22} \pm \sqrt{\Delta}}{2}, \quad \Delta = (H_{11} - H_{22})^2 + 4|H_{12}|^2.
\]

(5.4)

The energy eigenstates, \(|E_\pm\rangle\), satisfy

\[
(H - E_{\pm} \mathbf{1}) |E_\pm\rangle = 0.
\]

(5.5)

63
We find (exercise) that

$$|E_{\pm}\rangle = \frac{1}{\sqrt{|H_{12}|^2 + (E_{\pm} - H_{11})^2}} \left(\begin{array}{c} H_{12} \\ E_{\pm} - H_{11} \end{array} \right),$$

(5.6)

where we have normalized so that $\langle E_{\pm} | E_{\pm} \rangle = 1$. They also satisfy (exercise)

$$\langle E_{\pm} | E_{\mp} \rangle = 0.$$

5.1 The ammonia molecule

In this section we will describe a simplified model of the ammonia molecule NH$_3$. The molecule consists of three hydrogen and one nitrogen atoms and can be depicted as in Fig 5.1. Let us make the simplifying assumption that the collective motion of the molecule is not important and focus only on the spinning motion of the molecule around its axis. The molecule can spin in two different ways; the nitrogen atom is “above” the plane of the hydrogen atoms or “below” that plane. We denote the two states corresponding to the two types of rotations as $|1\rangle, |2\rangle$. Ignoring all other motions, we can consider
5.1. The ammonia molecule

these kets as base kets:

\[|1\rangle \doteq \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |2\rangle \doteq \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \]

(5.7)

We assume that the system is completely symmetric under exchanging the states \(|1\rangle, |2\rangle\). Specifically, the expectation value for the energy in the two states is the same:

\[\langle 1| H |1\rangle = \langle 2| H |2\rangle = E_0. \]

(5.8)

We also allow for a probability that with time the nitrogen atom can push the hydrogen plane and flip its state:

\[\langle 1| H |2\rangle = \langle 2| H |1\rangle = -A. \]

(5.9)

The Hamiltonian of the system can be written as

\[H \doteq \begin{pmatrix} E_0 & -A \\ -A & E_0 \end{pmatrix}. \]

(5.10)

The energy eigenvalues are

\[E_\pm = E_0 \pm A \]

(5.11)

and the corresponding eigenstates are

\[|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad |-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \]

(5.12)

The time evolution operator is a function of the Hamiltonian:

\[U(t) = e^{-\frac{iHt}{\hbar}}. \]

(5.13)

Exercise 5.1. Show that the matrix \(U(t) \) is a polynomial with no quadratic or higher order terms in \(H \).

In the \(|+\rangle, |-\rangle\} basis

\[U(t) \doteq \begin{pmatrix} \langle +| U(t) |+\rangle & \langle +| U(t) |-\rangle \\ \langle -| U(t) |+\rangle & \langle -| U(t) |-\rangle \end{pmatrix} \]

(5.14)

\[= \begin{pmatrix} \exp\left(-\frac{i(E+A)t}{\hbar}\right) & 0 \\ 0 & \exp\left(-\frac{i(E-A)t}{\hbar}\right) \end{pmatrix}. \]

(5.15)
We now compute the transformation matrix,
\[|b\rangle \langle a|, \quad |a\rangle \in \{|+, |-\}\}, \quad |b\rangle \in \{|1\}, |2\}\}.

To obtain the representation of \(U(t) \) in the \{ |1\}, |2\} basis, we use that
\[\langle i_1 | U(t) | i_2 \rangle = \sum_{kl} \langle i_1 | e_k \rangle \langle e_k | U(t) | e_l \rangle \langle e_l | i_2 \rangle, \quad i_{1,2} \in \{1,2\}, e_{1,2} \in \{+, |-\}. \] (5.16)

In matrix notation we have

\[
\begin{pmatrix}
\langle 1| U(t) | 1 \rangle & \langle 1| U(t) | 2 \rangle \\
\langle 2| U(t) | 1 \rangle & \langle 2| U(t) | 2 \rangle
\end{pmatrix} = \begin{pmatrix}
\langle 1| U(t) | + \rangle & \langle 1| U(t) | - \rangle \\
\langle 2| U(t) | + \rangle & \langle 2| U(t) | - \rangle
\end{pmatrix} \begin{pmatrix}
\langle +| 1 \rangle & \langle +| 2 \rangle \\
\langle -| 1 \rangle & \langle -| 2 \rangle
\end{pmatrix},
\]

which yields the time evolution operator in the \{ |1\}, |2\} basis
\[U(t) \doteq \exp \left(-\frac{iE_0 t}{\hbar} \right) \begin{pmatrix}
\cos \left(\frac{At}{\hbar} \right) & i \sin \left(\frac{At}{\hbar} \right) \\
i \sin \left(\frac{At}{\hbar} \right) & \cos \left(\frac{At}{\hbar} \right)
\end{pmatrix}. \] (5.18)

It is easy to verify (exercise) that the evolution operator does not change (except up to a phase) the energy eigenstates:
\[U(t) |\pm\rangle = \exp \left(-\frac{iE_{\pm}}{\hbar} \right) |\pm\rangle. \] (5.19)

Unsurprisingly, we also find that if we start from any other state at \(t = 0 \) the system changes. For a general state, \(|\psi, t_0 = 0\rangle\) with norm \(\langle \psi, t_0 | \psi, t_0 \rangle \)
\[|\psi, t_0 = 0\rangle \doteq e^{i\phi} \begin{pmatrix}
\cos \theta \\
\sin \theta
\end{pmatrix}, \] (5.20)

we find that it evolves as
\[|\psi, t \rangle \doteq e^{i(\phi - E_0 t/\hbar)} \begin{pmatrix}
\cos \theta \cos \left(\frac{At}{\hbar} \right) + i \sin \theta \sin \left(\frac{At}{\hbar} \right) \\
\sin \theta \cos \left(\frac{At}{\hbar} \right) + i \cos \theta \sin \left(\frac{At}{\hbar} \right)
\end{pmatrix}. \] (5.21)
The probability P_1 that the ammonia molecule is found to be at the same state $|\psi, t_0 = 0\rangle$ after some time t has elapsed is

$$P_1 = |\langle \psi, t_0 = 0 | \psi, t \rangle|^2 = 1 - \sin^2 \left(\frac{At}{\hbar} \right) \cos^2 (2\theta). \quad (5.22)$$

We notice that for times

$$t = \frac{n\pi\hbar}{A}, \quad n = 0, 1, 2, \ldots \quad (5.23)$$

the molecule is certainly $P_1 = 1$ back to the original state. For values of θ corresponding to the energy eigenstates, $\theta = \pm \frac{\pi}{4}$, the molecule remains in the original state at all times.

At $t_0 = 0$ we can find a state $|\xi, t_0 = 0\rangle$ which is orthogonal to $|\psi, t_0 = 0\rangle$, satisfying

$$\langle \psi, t_0 = 0 | \xi, t_0 = 0 \rangle = 0.$$

Namely,

$$|\xi, t_0 = 0\rangle = e^{i\phi} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}. \quad (5.24)$$

The probability P_2 that the ammonia molecule transitions after some time t from the state $|\psi, t_0 = 0\rangle$ to its orthogonal $|\xi, t_0 = 0\rangle$ is

$$P_2 = |\langle \xi, t_0 = 0 | \psi, t \rangle|^2 = \sin^2 \left(\frac{At}{\hbar} \right) \cos^2 (2\theta), \quad (5.25)$$

and we find that

$$P_1 + P_2 = 1.$$

The time evolution is completely analogous to the evolution of a spin-1/2 particle inside a magnetic field which we have studied earlier.

5.2 The ammonia molecule inside an electric field

The distribution of the electric charges in the ammonia molecule is not spatially symmetric; it has a non-zero electric dipole moment with a vertical direction from the hydrogen plane to the nitrogen atom. When the molecule is placed inside an electric field E, the energy of the molecule in the states $|1\rangle$, $|2\rangle$ is not the same anymore since in one state the dipole moment d is in the direction of the electric field and in the other against it. We then have the Hamiltonian

$$H \doteq \begin{pmatrix} E_0 + dE & -A \\ -A & E_0 - dE \end{pmatrix} \quad (5.26)$$
Two-state systems

Figure 5.2: The molecule inside an electric field develops an electric dipole moment with a vertical direction from the nitrogen atom to the plane of the hydrogen atoms.

The energy eigenvalues are

\[E_\pm = E_0 \pm \sqrt{A^2 + d^2 \mathcal{E}^2}. \]

(5.27)

For weak electric fields, \(d\mathcal{E} \ll E_0 \), we can approximate

\[E_\pm \approx E_0 \pm A \pm \frac{d^2 \mathcal{E}^2}{2A}. \]

(5.28)

In an inhomogeneous electric field, the molecules will move to the regions of the field where they can minimize their energy. The force acting on a molecule in a \(|\pm\rangle \) state is,

\[\mathbf{F}_\pm = -\nabla E_\pm = \mp \frac{d^2}{2A} \nabla \mathcal{E}^2. \]

(5.29)

The electric force acts opposite to the molecules in the two energy eigenstates and separates them.

\(^1\) Second order Taylor approximation
5.3 Ammonia in an oscillating electric field

Let us put the ammonia molecule in a time varying electric field

\[\mathcal{E} \cos(\omega t). \]

The Hamiltonian is

\[H(t) = \begin{pmatrix} E_0 + d\mathcal{E} \cos(\omega t) & -A \\ -A & E_0 - d\mathcal{E} \cos(\omega t) \end{pmatrix}. \] (5.30)

Notice (exercise) that the Hamiltonian at one time \(t_1 \) does not commute with the Hamiltonian at a later time \(t_2 \):

\[[H(t_1), H(t_2)] \neq 0. \]

We now need to solve Schrödinger’s equation

\[i\hbar \frac{\partial}{\partial t} |\psi, t\rangle = H(t) |\psi, t\rangle \] (5.31)

in a complicated time-varying situation. Without loss of generality, we write

\[|\psi, t\rangle = \exp \left(-\frac{iH_0 t}{\hbar} \right) |\phi, t\rangle, \] (5.32)

where

\[H_0 = \begin{pmatrix} E_0 & -A \\ -A & E_0 \end{pmatrix}, \] (5.33)

is the Hamiltonian in the absence of the electric field. Schrödinger’s equation becomes

\[i\hbar \frac{\partial}{\partial t} |\phi, t\rangle = H_1(t) |\phi, t\rangle, \] (5.34)
with
\[H_I(t) = \exp \left(+ \frac{iH_0 t}{\hbar} \right) [H(t) - H_0] \exp \left(- \frac{iH_0 t}{\hbar} \right). \] (5.35)
We have already computed the exponential of \(H_0 \) in Eq. 5.18. After a bit of calculation (exercise) we find
\[H_I(t) = dE \cos(\omega t) \begin{pmatrix} \cos(\omega_0 t) & i \sin(\omega_0 t) \\ -i \sin(\omega_0 t) & -\cos(\omega_0 t) \end{pmatrix} \] (5.36)
with
\[\omega_0 = \frac{2A}{\hbar}. \] (5.37)
Now, we make one last trick and rewrite
\[|\phi, t\rangle = V |\rho, t\rangle, \] (5.38)
where \(V \) is the transformation matrix from the \(\{ |1\rangle, |2\rangle \} \) basis to the basis of energy eigenkets \(\{ |+\rangle, |-\rangle \} \) of the free ammonia molecule.
\[V = \begin{pmatrix} \langle + | 1 \rangle & \langle - | 1 \rangle \\ \langle + | 2 \rangle & \langle - | 2 \rangle \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}. \] (5.39)
We obtain,
\[i\hbar \frac{\partial}{\partial t} |\rho, t\rangle = (V^\dagger H_I(t)V) |\rho, t\rangle. \] (5.40)
In components
\[i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \end{pmatrix} = \frac{dE}{2} \begin{pmatrix} 0 & e^{+i(\omega_0 - \omega)t} + e^{+i(\omega_0 + \omega)t} \\ e^{-i(\omega_0 - \omega)t} + e^{-i(\omega_0 + \omega)t} & 0 \end{pmatrix} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \end{pmatrix}. \] (5.41)
Now, we will assume that the electric field is small \((dE \ll E_0) \). The \(|\rho, t\rangle \) ket should not change very fast in comparison to the rapidly oscillating exponential terms with frequency \(\omega + \omega_0 \). These oscillations average to a zero value and do not contribute much to the change of the \(\rho_i \) coefficients. We make an approximation and ignore them. The exponentials with frequency \(\omega - \omega_0 \) are also rapidly oscillating unless the two frequencies are very close to each other. We write
\[i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \end{pmatrix} \approx \frac{dE}{2} \begin{pmatrix} 0 & e^{+i(\omega_0 - \omega)t} \\ e^{-i(\omega_0 - \omega)t} & 0 \end{pmatrix} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \end{pmatrix}. \] (5.42)
5.3. Ammonia in an oscillating electric field

5.3.1 Transitions at resonance

Let’s consider the situation where the frequency of the electric field is tuned to be $\omega = \omega_0$.

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \end{pmatrix} \approx \frac{dE}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \end{pmatrix}$$

(5.43)

Combining the two equations, we obtain a second order differential equation for the coefficients ρ_i:

$$\rho_i'' = -\omega_e^2 \rho_i, \quad \omega_e = \frac{dE}{2\hbar}$$

(5.44)

which are the equations of a harmonic oscillator. The solution of our system of differential equations is

$$\rho_1(t) = a \cos(\omega_e t) + a \sin(\omega_e t)$$

(5.45)

$$\rho_2(t) = ib \sin(\omega_e t) - ib \cos(\omega_e t)$$

(5.46)

We then find

$$|\psi, t\rangle = U(t) |\phi, t\rangle = U(t) V |\rho, t\rangle = U(t) \begin{pmatrix} \frac{(a+ib)}{\sqrt{2}} e^{-i\omega_e t} \\ \frac{(a-ib)}{\sqrt{2}} e^{+i\omega_e t} \end{pmatrix}.$$

(5.47)

Let’s assume that at $t = 0$ the molecule is in the $|\rangle$ energy eigenstate (of H_0), where

$$|\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

This fixes the values of the coefficients

$$a = 1, b = 0,$$

and we have

$$|\psi, t\rangle = \frac{U(t)}{\sqrt{2}} \begin{pmatrix} e^{-i\omega_e t} \\ e^{+i\omega_e t} \end{pmatrix}.$$

(5.48)

The probability that the molecule is found at the other energy eigenstate (of H_0)

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

71
after some time t is

$$P \left(|- \rangle \rightarrow |+ \rangle \right) = \left| \langle + | \psi, t \rangle \right|^2 = \left| \langle + | U(t) | \phi, t \rangle \right|^2 = \left| \langle + | \phi, t \rangle \right|^2$$

(5.49)

In the above we have used that the time-evolution operator $U(t)$ does not change the energy eigenstate $|+ \rangle$ except up to an overall phase which drops out in taking the modulus for the probability. Substituting, we find

$$P \left(|- \rangle \rightarrow |+ \rangle \right) = \sin^2 (\omega_e t).$$

(5.50)

Similarly, the probability for the molecule to be found again in the state $|- \rangle$ is

$$P \left(|- \rangle \rightarrow |- \rangle \right) = \cos^2 (\omega_e t).$$

(5.51)

5.3.2 Microwave amplification with stimulated emission of radiation

We now discuss the ammonia maser which is based on the quantum behavior of the two-state molecule. By means of a static inhomogeneous electric field in a Stern-Gerlach type of apparatus, we can separate molecules in the two energy eigenstates. Molecules in the upper state are directed into a cavity with an oscillating electric field having the resonance frequency $\omega = \omega_0 = 2A/\hbar$. After time $T = \frac{2\pi}{\omega_e}$ the molecules will transition to the lower energy eigenstate,
5.3. Ammonia in an oscillating electric field

losing energy equal to the difference of the two energy eigenvalues. This energy feeds back to the oscillating electric field. To avoid that the molecules transition back to the original state, thus recapturing the released energy, we arrange the length of the cavity such that the molecules exit the cavity in time \(T \).

Exercise: Prove that

\[
\int_{-\infty}^{+\infty} dx \frac{\sin^2 x}{x^2} = \pi. \tag{5.52}
\]

5.3.3 Transition off resonance

We now solve the differential equation for very small times \(t \) and \(\omega \sim \omega_0 \).

\[
i \hbar \frac{\partial}{\partial t} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \end{pmatrix} \approx \frac{d\xi}{2} \begin{pmatrix} 0 & e^{i(\omega_0 - \omega)t} \\ e^{-i(\omega_0 - \omega)t} & 0 \end{pmatrix} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \end{pmatrix}. \tag{5.53}
\]

Assuming that we start from a \(|+\rangle \) state corresponding to \(\rho_1(0) = 1, \rho_2(0) = 0 \), for very small times the coefficient \(\rho_1(t) \) will remain very close to 1. Then, we have

\[
i \hbar \frac{\partial}{\partial t} \rho_2(t) = \frac{d\xi}{2} e^{-i(\omega_0 - \omega)t} \tag{5.54}
\]

which yields

\[
\rho_2(t) = \frac{d\xi}{2\hbar} \frac{1 - e^{-i(\omega - \omega_0)t}}{\omega - \omega_0} \tag{5.55}
\]

The probability for a transition is

\[
P(|+\rangle \rightarrow |-\rangle) = \left[\frac{d\xi}{\hbar} \right]^2 \frac{\sin^2 \left[(\omega - \omega_0)t/2 \right]}{[\omega - \omega_0]^2} \tag{5.56}
\]

This is a function peaked very much around \(\omega = \omega_0 \).

Exercise: Plot it! Unless we are spot-on on the frequency of the MASER, a transition does not occur.
Chapter 6

Position and momentum

6.1 Continuous spectra

For operators with a continuous spectrum of eigenvalues, such as the position and momentum operators, we need some generalizations. Consider such a Hermitian operator Ξ with eigenstates $|\xi\rangle$ and eigenvalues ξ

$$\Xi |\xi\rangle = \xi |\xi\rangle,$$
(6.1)

where ξ is a continuous variable. We postulate the properties of the states $|\xi\rangle$ in complete analogy to the discrete case, turning summations into integrations and Kronecker δ symbols into Dirac delta functions:

<table>
<thead>
<tr>
<th>Discrete</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kronecker δ_{ij}</td>
<td>Dirac $\delta(\xi - \xi')$</td>
</tr>
<tr>
<td>$\langle i</td>
<td>j \rangle = \delta_{ij}$</td>
</tr>
<tr>
<td>$</td>
<td>\phi\rangle = \sum_i</td>
</tr>
</tbody>
</table>

Proofs are very similar in the continuous and discrete cases. For example, for a general state $|\phi\rangle$ which can be written as a superposition of eigenstates $|i\rangle$ of an operator with a discrete set of of eigenvalues, we have:

$$\langle \phi|\phi \rangle = 1 \sim \sum_i |\langle i|\phi\rangle|^2 = 1.$$
(6.2)

If it can be written as a superposition of an operator with a continuous spectrum of eigenstates

$$1 = \langle \phi|\phi \rangle = \int d\xi \langle \phi| (|\xi\rangle \langle \xi|) |\phi\rangle$$

$$\sim 1 = \int d\xi |\langle \xi|\phi\rangle|^2$$
(6.3)
6.2 Position operator and eigenstates

We define position operators $\hat{x}, \hat{y}, \hat{z}$ which commute with each other:

$$\left[\hat{x}, \hat{y}\right] = \left[\hat{y}, \hat{z}\right] = \left[\hat{z}, \hat{x}\right] = 0.$$ \hspace{1cm} (6.4)

These operators have a common set of eigenstates, $|x, y, z\rangle$, with

$$\hat{x} |x, y, z\rangle = x |x, y, z\rangle,$$ \hspace{1cm} (6.5)

$$\hat{y} |x, y, z\rangle = y |x, y, z\rangle,$$ \hspace{1cm} (6.6)

$$\hat{z} |x, y, z\rangle = z |x, y, z\rangle.$$ \hspace{1cm} (6.7)

We identify the eigenvalues x, y, z with the positions in the $x-$, $y-$, $z-$directions accordingly. Employing a compact notation, we can write

$$|\mathbf{r}\rangle \equiv |x, y, z\rangle.$$

Also, when there is no risk of confusion of the position operators and their eigenstates, we may drop the $\hat{}$ notation for the operators.

A quantum state $|\phi\rangle$ can be expressed as a superposition of position eigenstates.

$$|\phi\rangle = \int d^3\mathbf{r} \ |\mathbf{r}\rangle \langle \mathbf{r}|\phi\rangle.$$ \hspace{1cm} (6.8)

An experimental measurement of the position will collapse a general state $|\phi\rangle$ to a state $|\mathbf{r}\rangle$:

$$|\phi\rangle \rightarrow |\mathbf{r}\rangle$$

with a probability amplitude $\langle \mathbf{r}|\phi\rangle$. This is amplitude is the so-called wavefunction. In practice, a measurement to a single point is impossible and a region $d^3\mathbf{r}$ around a point \mathbf{r} needs to be considered. The probability density for such a transition is the squared modulus of the wave-function. The probability is then

$$P\left(|\phi\rangle \rightarrow (d^3\mathbf{r} \text{ around } \mathbf{r})\right) = d^3\mathbf{r} \ |\langle \mathbf{r}|\phi\rangle|^2.$$ \hspace{1cm} (6.9)

6.3 Translation operator

Let's start with a position state $|x\rangle$ and define an operator P such that it transforms the state into a new position eigenket $|x + \Delta x\rangle$:

$$P |x\rangle = |x + \Delta x\rangle,$$ \hspace{1cm} (6.10)
The action of the operator P on a general state $|\phi\rangle$,

$$|\phi\rangle = \int d^3x_1 \ |x_1\rangle \langle x_1|\phi\rangle$$

is

$$P|\phi\rangle = P \int d^3x_1 \ |x_1\rangle \langle x_1|\phi\rangle$$

$$= \int d^3x_1 \ (P |x_1\rangle) \langle x_1|\phi\rangle$$

$$= \int d^3x_1 \ |x_1 + \Delta x\rangle \langle x_1|\phi\rangle.$$

Changing variables

$$x_1 \to x_1 - \Delta x$$

we obtain

$$P|\phi\rangle = \int d^3x_1 \ |x_1\rangle \langle x_1 - \Delta x|\phi\rangle.$$ (6.11)

6.3.1 Properties of the translation operator

For the translation operator $P(\Delta x)$ we can demand the following properties

i) A translated state

$$|\phi'\rangle = P(\Delta x) |\phi\rangle,$$

must also have a unit norm,

$$1 = \langle \phi'|\phi'\rangle = \langle \phi| P^\dagger(\Delta x) P(\Delta x) |\phi\rangle.$$ (6.12)

The above is satisfied if the translation operator is unitary:

$$P^\dagger(\Delta x) P(\Delta x) = 1.$$ (6.13)

ii) We also require that two successive translations by Δx_a and Δx_b are equivalent to a single translation by $\Delta x_a + \Delta x_b$, i.e

$$P(\Delta x_a) P(\Delta x_b) |x\rangle = P(\Delta x_a) |x + \Delta x_b\rangle = |x + \Delta x_b + \Delta x_a\rangle$$

$$= P(\Delta x_a + \Delta x_b) |x\rangle.$$

This is satisfied if

$$P(\Delta x_a) P(\Delta x_b) = P(\Delta x_a + \Delta x_b).$$ (6.14)
iii) The inverse of the translation operator is a translation operator too, translating by the opposite amount,

\[P(\Delta x)P(-\Delta x) |x\rangle = |x\rangle, \]

which is satisfied if

\[P(\Delta x)^{-1} = P(-\Delta x). \quad (6.15) \]

iv) Finally, in the limit of infinitesimally small translations,

\[\lim_{\Delta x \to 0} |x + \Delta x\rangle = |x\rangle, \]

the translation operator is the unit operator

\[\lim_{\Delta x \to 0} P(\Delta x) = 1. \quad (6.16) \]

6.3.2 Generator of translations

For small translations, an operator which satisfies all of the above properties is

\[P(\Delta x) = 1 - i \mathbf{K} \cdot \Delta x + \mathcal{O}((\Delta x)^2), \quad (6.17) \]

where \(\mathbf{K} \) is a hermitian operator,

\[P^\dagger(\Delta x)P(\Delta x) = 1 \]
\[\sim \mathbf{K}^\dagger = \mathbf{K}. \quad (6.18) \]

The operators \(\mathbf{K} \equiv (K_x, K_y, K_z) \) do not commute with the position operators \(\hat{\mathbf{r}} \equiv (\hat{x}, \hat{y}, \hat{z}) \). We have that,

\[\hat{\mathbf{r}} P(\Delta x) |y\rangle = \hat{\mathbf{r}} |y + \Delta x\rangle = |y + \Delta x\rangle (y + \Delta x). \quad (6.20) \]

Applying the operators in the reverse order

\[P(\Delta x)\hat{\mathbf{r}} |y\rangle = P(\Delta x) |y\rangle \hat{\mathbf{r}} = |y + \Delta x\rangle \hat{\mathbf{r}}. \quad (6.21) \]

Thus,

\[[\hat{\mathbf{r}}, P(\Delta x)] |y\rangle = \Delta x |y + \Delta x\rangle. \quad (6.22) \]

Expanding in \(\Delta x \), using Eq.\(6.18 \) and that

\[|y + \Delta x\rangle (\Delta x) = |y\rangle (\Delta x) + \mathcal{O}((\Delta x)^2), \quad (6.23) \]

we obtain

\[[\hat{\mathbf{r}}, -i \mathbf{K} \cdot \Delta x] |y\rangle = (\Delta x) |y\rangle. \quad (6.24) \]
6.3. Translation operator

The same identity holds for an arbitrary state

$$|\phi\rangle = \int d^3y \, |y\rangle \langle y|,$$

i.e.

$$[\hat{\mathbf{r}}, -i \mathbf{K} \cdot \Delta \mathbf{r}] |\phi\rangle = (\Delta \mathbf{r}) |\phi\rangle \quad (6.25)$$

Thus, the operators of the left and right hand sides must be equal:

$$[\hat{\mathbf{r}}, \mathbf{K} \cdot \Delta \mathbf{r}] = i \Delta \mathbf{r}. \quad (6.26)$$

In components,

$$[\hat{x}, K_x \Delta x + K_y \Delta y + K_z \Delta z] = i \Delta x,$$

$$[\hat{y}, K_x \Delta x + K_y \Delta y + K_z \Delta z] = i \Delta y,$$

$$[\hat{z}, K_x \Delta x + K_y \Delta y + K_z \Delta z] = i \Delta z.$$

For $\Delta y = \Delta z = 0$ and $\Delta x \neq 0$, we obtain

$$[\hat{x}, K_x] = i, \quad [\hat{x}, K_y] = [\hat{x}, K_z] = 0. \quad (6.27)$$

Similarly, we can prove the general set of commutation relations

$$[\hat{\ell}, K_k] = i \delta_{\ell k}, \quad \ell, k = x, y, z. \quad (6.28)$$

6.3.3 Momentum operator

It is an axiom of quantum mechanics that the operator \mathbf{K} is proportional to the operator of momentum \mathbf{p}. This is inspired by classical physics, where the generator of displacements is indeed the momentum (recall the Hamiltonian formalism and Poisson brackets). The explicit relation is

$$\mathbf{K} = \frac{\mathbf{p}}{\hbar}, \quad (6.29)$$

where $2\pi\hbar$ is Planck’s constant. From Eq. (6.28) we obtain the commutation relations for the position and momentum operators:

$$[\hat{j}, p_k] = i\hbar \delta_{jk}, \quad j, k = x, y, z. \quad (6.30)$$

Given that the operators of position and momentum in the same direction do not commute, the values of these observables cannot be determined simultaneously. From the general uncertainty relation,

$$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \geq \frac{1}{4} \left| [A, B] \right|^2, \quad (6.31)$$
we obtain that

\[\langle (\Delta x)^2 \rangle \langle (\Delta p_x)^2 \rangle \geq \frac{\hbar^2}{4}, \]
(6.32)

\[\langle (\Delta y)^2 \rangle \langle (\Delta p_y)^2 \rangle \geq \frac{\hbar^2}{4}, \]
(6.33)

\[\langle (\Delta z)^2 \rangle \langle (\Delta p_z)^2 \rangle \geq \frac{\hbar^2}{4}. \]
(6.34)

6.3.4 Translations of arbitrary length

The translation operator for small translations is

\[P(\Delta r) = 1 - \frac{ip \cdot \Delta r}{\hbar}, \]
(6.35)

where \(p \) is the momentum operator. To perform a large translation \(r_B - r_A \) from a point \(A \) to a point \(B \) we divide the translation into infinitesimally small steps,

\[\frac{r_B - r_A}{N} = \Delta r, \quad N \to \infty \]
(6.36)

and perform an infinite number of very small translations \(\Delta r \) in succession:

\[|x + r_B - r_A\rangle = P(\Delta r)^N \]

\[= \lim_{N \to \infty} \left(1 - \frac{ip \cdot \Delta r}{\hbar} \right)^N |x\rangle \]

\[= \lim_{N \to \infty} \left(1 - \frac{ip \cdot (r_A - r_B)}{N \hbar} \right)^N |x\rangle \]

which leads to,

\[|x + r_B - r_A\rangle = U(r_B - r_A) |x\rangle, \]
(6.37)

with

\[U(r) = e^{-i\frac{p \cdot r}{\hbar}}. \]
(6.38)

The exponential of an operator is defined as usual through its Taylor series expansion at all orders,

\[e^X = \sum_{n=0}^{\infty} \frac{X^n}{n!}. \]
6.3.5 Commutator of momentum operators

We consider the position eigenstates x_A and x_B. We relate the two states with the product of two successive translations, one in the $x-$direction by an amount Δx and one in the $y-$direction by an amount Δy. This translation goes through an intermediate point x_C as depicted in Fig. 6.1. Performing the same displacements in the reverse order leads to the same final point x_B through a different point x_D this time.

The two translations through either point x_C or x_D lead to the same position eigenstate. We write,

$$|x_B\rangle = U(\Delta x)U(\Delta y)|x_A\rangle = U(\Delta y)U(\Delta x)|x_A\rangle$$

(6.39)

This yields

$$[U(\Delta x), U(\Delta y)]|x_A\rangle = 0,$$

(6.40)

and for small $\Delta x, \Delta y$

$$\left[1 - \frac{i}{\hbar}\hat{p}_x \Delta x, 1 - \frac{i}{\hbar}\hat{p}_y \Delta y\right]|x_A\rangle = 0,$$

(6.42)

$$\sim [\hat{p}_x, \hat{p}_y]|x_A\rangle = 0.$$

(6.43)

This identity is valid for any general position eigenstate x_A and paths in the $x - z$ or $y - z$ planes as well. Thus, the momentum operators must satisfy

$$[\hat{p}_x, \hat{p}_y] = [\hat{p}_y, \hat{p}_z] = [\hat{p}_x, \hat{p}_z] = 0$$

(6.44)

Given that the momentum operators commute with each other, they have a common set of eigenstates which we label with the eigenvalues of momentum in the three directions

$$|p\rangle \equiv |p_x, p_y, p_z\rangle,$$

(6.45)

where

$$\hat{p}_x |p_x, p_y, p_z\rangle = p_x |p_x, p_y, p_z\rangle$$

(6.46)

$$\hat{p}_y |p_x, p_y, p_z\rangle = p_y |p_x, p_y, p_z\rangle$$

(6.47)

$$\hat{p}_z |p_x, p_y, p_z\rangle = p_z |p_x, p_y, p_z\rangle$$

(6.48)
6. Position and Momentum

6.3.6 Commutation relations

By imposing that the momentum operator is a generator of space-translations we have arrived to the following commutation relations:

\[
[\hat{r}_i, \hat{r}_j] = 0, \quad [\hat{p}_i, \hat{p}_j] = 0, \quad [\hat{r}_i, \hat{p}_j] = i\hbar\delta_{ij}.
\] (6.49)

Alternatively, one could have considered then as postulates of quantum mechanics and derive that the momentum is generator of translations. We find the first approach more intuitive and aesthetically more appealing.

6.4 Wave-function

The eigenstates of the position operator

\[
\hat{r} \left| r \right\rangle = r \left| r \right\rangle
\]

are orthonormal

\[
\langle r_1 | r_2 \rangle = \delta^3(r_1 - r_2)
\]

and form a complete basis such that every other one-particle state can be written as a superposition

\[
\left| \phi \right\rangle = \int d^3r \left| r \right\rangle \langle r \left| \phi \right\rangle.
\]

A measurement of the position will collapse the state \(\left| \phi \right\rangle \) into a position eigenstate \(\left| r \right\rangle \) with a probability amplitude

\[
\psi_{\phi}(r) \equiv \langle r \left| \phi \right\rangle.
\] (6.50)

The wave-function \(\psi_{\phi}(r) \) is simply the probability amplitude that a particle in a state \(\left| \psi \right\rangle \) is measured at a position \(\left| r \right\rangle \).

A description of quantum states in terms of wavefunctions corresponds to a representation of quantum states in the basis of eigenstates of the position operator. Although important, the position operator and the wavefunction representation are not more special than other operators and their representations. However, traditionally, many of the results of quantum mechanics have been worked out in the position representation first. For example, scalar products of quantum states are:

\[
\langle a | b \rangle = \int d^3r \langle a | r \rangle \langle r | b \rangle
\]

\[
\sim \langle a | b \rangle = \int d^3r \psi_a^*(r)\psi_b(r).
\] (6.51)
6.5 Representation of momentum in position space

Let’s act with a small translation operator on an arbitrary state $|a\rangle$

$$\left(1 - \frac{i \mathbf{p} \cdot \delta \mathbf{r}}{\hbar}\right) |a\rangle = \left(1 - \frac{i \mathbf{p} \cdot \delta \mathbf{r}}{\hbar}\right) \int d^3x \; |x\rangle \langle x|a\rangle$$

$$= \int d^3x \; |x + \delta \mathbf{r}\rangle \langle x|a\rangle$$

$$= \int d^3x \; |x\rangle \langle x - \delta \mathbf{r}|a\rangle$$

For small displacements, we can expand up to linear terms in $\delta \mathbf{r}$:

$$\langle x - \delta \mathbf{r}|a\rangle = \langle x|a\rangle - \delta \mathbf{r} \cdot \nabla \langle x|a\rangle$$

Substituting above, we have

$$\left(1 - \frac{i \mathbf{p} \cdot \delta \mathbf{r}}{\hbar}\right) |a\rangle = \int d^3x \; |x\rangle \langle x|a\rangle - \int d^3x \; |x\rangle (\delta \mathbf{r} \cdot \nabla) \langle x|a\rangle$$

$$= |a\rangle - \int d^3x \; |x\rangle (\delta \mathbf{r} \cdot \nabla) \langle x|a\rangle$$

Comparing the two sides of the equation, we have

$$\hat{\mathbf{p}} |a\rangle = \int d^3x \; |x\rangle \left[-i\hbar \nabla\right] \langle x|a\rangle$$

(6.52)

and,

$$\langle r|\hat{\mathbf{p}} |a\rangle = \int d^3x \; \langle r|x\rangle \left[-i\hbar \nabla\right] \langle x|a\rangle$$

(6.53)

$$= \int d^3x \; \delta (\mathbf{r} - \mathbf{x}) \left[-i\hbar \nabla\right] \langle x|a\rangle$$

which leads to

$$\langle r|\hat{\mathbf{p}} |a\rangle = \left[-i\hbar \nabla_{\mathbf{r}}\right] \langle r|a\rangle.$$

(6.54)

Finally, we obtain the representation of the momentum operator in the position-ket basis by setting $|a\rangle = |r'\rangle$, a position eigenstate,

$$\langle r|\hat{\mathbf{p}} |r'\rangle = \left[-i\hbar \nabla_{\mathbf{r}}\right] \langle r|r'\rangle,$$

(6.55)

we find

$$\langle r|\hat{\mathbf{p}} |r'\rangle = \left[-i\hbar \nabla_{\mathbf{r}}\right] \delta (\mathbf{r} - \mathbf{r'}).$$

(6.56)
6.6 Eigenstates of the momentum operator

The eigenstates of the momentum operator satisfy:
\[\hat{p} |p\rangle = p |p\rangle \] \hfill (6.57)

with \[\langle p_1|p_2\rangle = \delta^{(3)}(p_1 - p_2). \] \hfill (6.58)

The probability that a particle with a momentum \(\mathbf{p} \) is found at a position \(\mathbf{x} \) is
\[\langle \mathbf{x}|\mathbf{p}\rangle. \]

Consider \[\langle \mathbf{x} | \hat{p} | \mathbf{p} \rangle = \mathbf{p} \langle \mathbf{x}|\mathbf{p}\rangle, \]
but also, from the previous section,
\[\langle \mathbf{x} | \hat{p} | \mathbf{p} \rangle = -i\hbar \nabla \langle \mathbf{x}|\mathbf{p}\rangle. \]

We have then derived the following differential equation for the requested probability amplitude:
\[-i\hbar \nabla \langle \mathbf{x}|\mathbf{p}\rangle = \mathbf{p} \langle \mathbf{x}|\mathbf{p}\rangle \] \hfill (6.59)

which has a solution
\[\langle \mathbf{x}|\mathbf{p}\rangle = Ne^{ip\cdot\mathbf{x}/\hbar}. \] \hfill (6.60)

We compute the normalization constant as follows:
\[\delta^{(3)}(\mathbf{x} - \mathbf{y}) = \langle \mathbf{x} | \mathbf{y} \rangle = \int d^3\mathbf{p} \langle \mathbf{x}|\mathbf{p}\rangle \langle \mathbf{p}|\mathbf{y}\rangle = \int d^3\mathbf{p} \langle \mathbf{x}|\mathbf{p}\rangle \langle \mathbf{y}|\mathbf{p}\rangle^* = |N|^2 \int d^3\mathbf{p} e^{ip\cdot(x-y)} = |N|^2 (2\pi\hbar)^3 \delta^{(3)}(\mathbf{x} - \mathbf{y}) \]
\[\sim |N| = \frac{1}{(2\pi\hbar)^{3/2}}. \]

Thus, we can write
\[\langle \mathbf{x}|\mathbf{p}\rangle = \frac{1}{(2\pi\hbar)^{3/2}} e^{ip\cdot\mathbf{x}/\hbar}. \] \hfill (6.61)

6.6.1 Position and momentum wave-functions

Let’s assume that a particle is in a state \(|\phi\rangle \). The probability amplitudes for finding the particle at a position \(\mathbf{x} \) or to have a momentum \(\mathbf{p} \) are given by the position and momentum wavefunctions
\[\langle \mathbf{x}|\phi\rangle, \quad \langle \mathbf{p}|\phi\rangle \]
respectively. The two amplitudes are related by a Fourier transformation. Indeed,

\[
\langle x | \phi \rangle = \int_{-\infty}^{+\infty} d^3 p \; \langle x | p \rangle \langle p | \phi \rangle \\
= \int_{-\infty}^{+\infty} \frac{d^3 p}{(2\pi \hbar)^{3/2}} e^{i \frac{p}{\hbar} \cdot x} \langle p | \phi \rangle .
\]

Similarly,

\[
\langle p | \phi \rangle = \int_{-\infty}^{+\infty} d^3 x \; \langle p | x \rangle \langle x | \phi \rangle \\
= \int_{-\infty}^{+\infty} \frac{d^3 x}{(2\pi \hbar)^{3/2}} e^{-i \frac{p}{\hbar} \cdot x} \langle x | \phi \rangle .
\]
6.7 Ehrenfest theorem

6.7.1 Free particles in the Heisenberg picture

\[H = \frac{p^2(t)}{2m} \]
\hspace{1cm} (6.64)

\[\frac{dp_i(t)}{dt} = \frac{1}{i\hbar} [p_i(t), H] = 0 \]
\hspace{1cm} (6.65a)

\[\Rightarrow p_i(t) = p_i(0) \quad \text{Galileo} \]
\hspace{1cm} (6.65b)

\[\frac{dx_i(t)}{dt} = \frac{1}{i\hbar} [x_i(t), H] = \frac{p_i(t)}{m} = \frac{p_i}{m} \]
\hspace{1cm} (6.65c)

\[\Rightarrow x_i(t) = x_i(0) + \frac{p_i}{m} \cdot t \]
\hspace{1cm} (6.65d)

Note that
\[[x_i(t), x_i(0)] = \frac{t}{m} [p_i, x_i] = -\frac{i\hbar t}{m}, \]
\hspace{1cm} (6.65e)

and remembering the uncertainty principle we get
\[\langle (\Delta x)^2 \rangle \langle (\Delta x(0))^2 \rangle \geq \frac{\hbar^2 t^2}{4m^2}, \]
\hspace{1cm} (6.65f)

which shows that a free particle delocalizes with time.

6.7.2 Particles in potential

\[H = \frac{p^2(t)}{2m} + V(x) \]
\hspace{1cm} (6.66)

\[\frac{dp_i(t)}{dt} = \frac{1}{i\hbar} [p_i, V(x)] = -\frac{dV(x)}{dx_i} \]
\hspace{1cm} (6.67a)

\[\frac{dx_i}{dt} = \frac{p_i}{m} \]
\hspace{1cm} (6.67b)

\[\Rightarrow \frac{d^2 x_i}{dt^2} = -\frac{1}{m} \frac{dV(x)}{dx_i}. \]
\hspace{1cm} (6.67c)

So,
\[m \frac{d^2 x(t)}{dt^2} = -\nabla V(x). \quad \text{Newton} \]
\hspace{1cm} (6.67d)
This is valid for the quantum operators x and p in the Heisenberg-picture. Taking averages with respect to a state-ket, we find

$$m \frac{d^2}{dt^2} \langle x \rangle = -\langle \nabla V(x) \rangle.$$ \hspace{1cm} (6.68)

This is the Ehrenfest theorem: No \hbar, averages evolve classically!
A very simple system in quantum mechanics, which we can solve exactly, is the harmonic oscillator in one space dimension. The Hamiltonian of the oscillator in classical physics is

\[H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2, \quad (7.1) \]

where \(m \) is the mass of the oscillating particle and \(\omega \) the angular frequency of the oscillation. For convenience, we shall set \(m = \hbar = \omega = 1 \)
in this chapter. It will always be easy to recover the full dependence on these parameters with dimensional analysis.

7.1 Quantization

We quantize the harmonic oscillator by promoting the coordinate \(x \) and momentum \(p \) to operators, satisfying the commutation relation

\[[x, p] = i. \quad (7.2) \]

The Hamiltonian can be cast as

\[H = \left(x - ip \right) \left(x + ip \right) \frac{1}{\sqrt{2}} - i\frac{xp - px}{2}, \quad (7.3) \]

and using the commutation relation above,

\[H = a^\dagger a + \frac{1}{2}, \quad (7.4) \]

with

\[a = \frac{x + ip}{\sqrt{2}}, \quad a^\dagger = \frac{x - ip}{\sqrt{2}}. \quad (7.5) \]
For reasons to become clear later, the a, a^\dagger operators are called annihilation and creation operators respectively. Their commutator is

$$\left[a, a^\dagger \right] = \left[\frac{x + ip}{\sqrt{2}}, \frac{x - ip}{\sqrt{2}} \right] = \frac{1}{2} \left([x, -ip] + [ip, x] \right) = -i [x, p]$$

$$= 1.$$

Exercise 7.1. Prove that for the operators A, B, C,

We define the so-called number operator

$$N \equiv a^\dagger a. \quad (7.6)$$

The commutators of the number operator and the creation or annihilation operators are

$$\left[N, a^\dagger \right] = \left[a^\dagger a, a^\dagger \right] = a^\dagger \left[a, a^\dagger \right] = a^\dagger \quad (7.7)$$

and

$$\left[N, a \right] = \left[a^\dagger a, a \right] = \left[a^\dagger, a \right] a = -a. \quad (7.8)$$

The Hamiltonian $H = N + \frac{1}{2}$ and the number operator have common eigenstates $|n\rangle$, since they commute.

If $|n\rangle$ is such an eigenstate with an eigenvalue n,

$$N \, |n\rangle = n \, |n\rangle, \quad (7.9)$$

the eigenvalue n cannot be negative. Indeed,

$$0 \leq |a \, |n\rangle|^2 = \langle n | a^\dagger a \, |n\rangle = \langle n | N \, |n\rangle = n. \quad (7.10)$$

Also, the states $a^\dagger \, |n\rangle$ and $a \, |n\rangle$ are eigenstates of N with eigenvalues $n + 1$ and $n - 1$ respectively:

$$N \left(a^\dagger \, |n\rangle \right) = \left([N, a^\dagger] + a^\dagger N \right) \, |n\rangle = (a^\dagger + a^\dagger n) \, |n\rangle = (n + 1) \, (a^\dagger \, |n\rangle), \quad (7.11a)$$

$$N \left(a \, |n\rangle \right) = \left([N, a] + a N \right) \, |n\rangle = (-a + a n) \, |n\rangle = (n - 1) \, (a \, |n\rangle). \quad (7.11b)$$

Thus

$$a \, |n\rangle = c_n \, |n - 1\rangle, \quad a^\dagger \, |n\rangle = d_n \, |n + 1\rangle.$$
We can fix the normalization factors c_n, d_n by requiring that the states $|n\rangle$ have a unit norm.

$$1 = \langle n+1 | n+1 \rangle = \frac{\langle n | aa^\dagger | n \rangle}{|d_n|^2} = \frac{\langle n | [a, a^\dagger] + a^\dagger a | n \rangle}{|d_n|^2} \quad (7.12a)$$

$$= \frac{\langle n | 1 + N | n \rangle}{|d_n|^2} = \frac{1 + n}{|d_n|^2}.$$

Similarly,

$$1 = \langle n-1 | n-1 \rangle = \frac{\langle n | a^\dagger a | n \rangle}{|c_n|^2} = \frac{\langle n | N | n \rangle}{|c_n|^2} \quad (7.12b)$$

$$= \frac{n}{|c_n|^2}.$$

We can choose $c_n = \sqrt{n}$ and $d_n = \sqrt{n+1}$. We these choices, we have

$$a^\dagger | n \rangle = \sqrt{n+1} | n+1 \rangle, \quad (7.13a)$$

and

$$a | n \rangle = \sqrt{n} | n-1 \rangle. \quad (7.13b)$$

Notice that for n non-integer, the repeated application of the last equation leads eventually to an eigenstate with a negative eigenvalue, which is inconsistent with the requirement $n \geq 0$. The only allowed values of n, are non-negative integers. Notice that the coefficient in the lhs of Eq. (7.13b) vanishes for $n = 0$, thus preventing to obtain a state $|\!-1\!\rangle$ with a negative eigenvalue. The spectrum of eigenvalues for the number operator and the Hamiltonian is discrete (quantized) with

$$n = 0, 1, 2, 3, \ldots$$

and energy eigenvalues

$$E_n = n + \frac{1}{2}. \quad (7.14)$$
The eigenstates can all be generated from the “ground” state \(|0\rangle \) by a repeated application of the creation operator:

\[
|1\rangle = a^\dagger |0\rangle \\
|2\rangle = \frac{a^\dagger 2}{\sqrt{2!}} |0\rangle \\
\vdots \\
|n\rangle = \frac{a^\dagger n}{\sqrt{n!}} |0\rangle \\
\vdots
\]

Let’s focus on the ground state for which we shall compute the expectation values

\[
\langle x \rangle, \langle p \rangle, \langle x^2 \rangle, \langle p^2 \rangle.
\]

We recall that

\[
a = \frac{x + ip}{\sqrt{2}}, \quad a^\dagger = \frac{x - ip}{\sqrt{2}},
\]

which, by inverting, yield

\[
x = \frac{a + a^\dagger}{\sqrt{2}}, \quad p = \frac{a - a^\dagger}{\sqrt{2i}}.
\]

We shall need that

\[
a |0\rangle = 0, \quad \langle 0 | a^\dagger = 0,
\]

and

\[
a a^\dagger |0\rangle = \left[a, a^\dagger \right] |0\rangle + a^\dagger a |0\rangle = |0\rangle
\]

It is then easy to compute that

\[
\langle 0 | x | 0 \rangle = \langle 0 | p | 0 \rangle = 0,
\]

and

\[
\langle 0 | x^2 | 0 \rangle = \langle 0 | p^2 | 0 \rangle = \frac{1}{2}.
\]

In the ground state, the product of the uncertainties in position and momentum is therefore minimal:

\[
\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle = \frac{1}{4}
\]
Exercise 7.2. Show that for the \(|n\rangle \) state, the product of uncertainties is

\[
\langle (\Delta x)^2 \rangle_n \langle (\Delta p)^2 \rangle_n = \left(n + \frac{1}{2} \right)^2 .
\]

(7.18)

We shall now determine the wave function in the ground state:

\[
\psi_0(x) \equiv \langle x | 0 \rangle ,
\]

where

\[
\hat{x} | x \rangle = x | x \rangle
\]

and

\[
a | 0 \rangle = 0 .
\]

We have

\[
0 = \langle x | a | 0 \rangle = \langle x | \frac{\hat{x} + i \hat{p}}{\sqrt{2}} | 0 \rangle = \frac{x}{\sqrt{2}} \langle x | 0 \rangle + \frac{i}{\sqrt{2}} \langle x | \hat{p} | 0 \rangle = \frac{x}{\sqrt{2}} \langle x | 0 \rangle + \frac{i}{\sqrt{2}} \left(-i \frac{d}{dx} \right) \langle x | 0 \rangle .
\]

(7.19)

We have thus derived the following differential equation for the wave-function in the ground state:

\[
\left(x + \frac{d}{dx} \right) \psi_0(x) = 0 .
\]

(7.20)

The solution of the above is

\[
\psi_0(x) = Ae^{-\frac{x^2}{2}} .
\]

(7.21)

We can fix the normalization by requiring,

\[
1 = \langle 0 | 0 \rangle = \int_{-\infty}^\infty \langle 0 | x \rangle \langle x | 0 \rangle = \int_{-\infty}^\infty dx \ | \psi_0(x) |^2 = |A|^2 \int_{-\infty}^\infty dx e^{-x^2}
\]

\[
\sim |A| = \left(\int_{-\infty}^\infty dx e^{-x^2} \right)^{-1/2} .
\]

(7.22)

The integral is

\[
I = \int_{-\infty}^\infty dx e^{-x^2} = \sqrt{\pi} ,
\]
7. The harmonic oscillator

We obtain this result as follows:

$$I^2 = \left(\int_{-\infty}^{\infty} dx \, e^{-x^2} \right)^2 = \int_{-\infty}^{\infty} dx \, dy \, e^{-x^2-y^2}, \quad (7.23)$$

Substituting $x = r \cos \theta, y = r \sin \theta$ gives

$$I^2 = \int_0^\infty dr \, r e^{-r^2} \int_0^{2\pi} d\theta = 2\pi \int_0^\infty dr \, \frac{1}{2} \frac{d}{dr} e^{-r^2} = -\pi e^{-r^2}\bigg|_{r=0} = \pi. \quad (7.24)$$

We thus have that

$$\langle x|0 \rangle = \frac{1}{\pi^{1/4}} e^{-x^2/2}. \quad (7.25)$$

We compute the wave-functions of all energy eigenstates recursively.

$$\langle x|n \rangle = \langle x| \frac{a^†}{\sqrt{n}} |n-1\rangle$$

$$= \frac{1}{\sqrt{n}} \int dy \, \langle x| a^† |y\rangle \langle y|n-1\rangle$$

$$= \frac{1}{\sqrt{2n}} \int dy \, \langle x| x - ip |y\rangle \langle y|n-1\rangle$$

$$= \frac{1}{\sqrt{2n}} \left(x - \frac{d}{dx} \right) \langle x|n-1\rangle. \quad (7.26)$$

Iterating, we obtain

$$\langle x|n \rangle = \frac{1}{\sqrt{2^n n!}} \left(x - \frac{d}{dx} \right)^n \langle x|0 \rangle \quad (7.27)$$

The solutions for $n = 0, 1, 2, 3$ can be seen in Fig. 7.1.

7.2 Time evolution

We now consider the position and momentum operators in the Heisenberg picture. They satisfy the Heisenberg equations of motion (remember $\hbar = 1$)

$$i \frac{\partial}{\partial t} x = [x, H] = \left[x, \frac{x^2 + p^2}{2} \right] = \left[x, \frac{p^2}{2} \right] = [x, p] \frac{p}{2} + \frac{p}{2} [x, p] = ip. \quad (7.28)$$
7.2. Time evolution

\[\langle x|n \rangle \]

\[\langle x|0 \rangle \]

\[\langle x|1 \rangle \]

\[\langle x|2 \rangle \]

\[\langle x|3 \rangle \]

Figure 7.1: The wavefunctions of the energy levels \(n = 0, 1, 2, 3 \) of the quantum harmonic oscillator.

Similarly,

\[i \frac{\partial}{\partial t} p = [p, H] = \left[p, \frac{x^2 + p^2}{2} \right] = \left[p, \frac{x^2}{2} \right] = [p, x] \frac{x}{2} + \frac{x}{2} [p, x] \]

\[= -ix, \]

with

\[[A, BC] = [A, B] C + B [A, C]. \] \hspace{1cm} (7.30)

Thus

\[\frac{\partial x(t)}{\partial t} = p(t), \quad \frac{\partial p(t)}{\partial t} = -x(t). \] \hspace{1cm} (7.31)
The solution of these equations is

\[x(t) = x(0) \cos t + p(0) \sin t \]
\[p(t) = -x(0) \sin t + p(0) \cos t \]

(7.32a)
(7.32b)

The above are all operator equations. Notice that for any energy eigenstate, the expectation values of the momentum and position operators vanish. Indeed,

\[\langle n | a^\dagger | n \rangle = \langle n | a | n \rangle = 0 \]

(7.33)

and

\[x(0) = \frac{a + a^\dagger}{\sqrt{2}} , \quad p(0) = \frac{a - a^\dagger}{\sqrt{2}i} \]

(7.34)

and therefore,

\[\langle n | x(t) | n \rangle = \langle n | p(t) | n \rangle = 0 . \]

(7.35)

Unlike the position and momentum of a classical harmonic oscillator, the expectation values of their analogue quantum operators do not oscillate in an energy eigenstate.

7.3 Coherent states

Are there quantum states in which the expectation values of the position and momentum operators oscillate as in the classical system? Yes. These states are called coherent states. Consider a state \(| \lambda \rangle\) which is an eigenstate of the annihilation operator \(a\):

\[a | \lambda \rangle = \lambda | \lambda \rangle . \]

(7.36)

We can write a coherent state as a superposition of energy eigenstates:

\[| \lambda \rangle = \sum_{n=0}^{\infty} f(n) | n \rangle . \]

(7.37)

Then

\[a | \lambda \rangle = \sum_{n=1}^{\infty} f(n) \sqrt{n} | n - 1 \rangle \]
\[= \sum_{n=0}^{\infty} f(n + 1) \sqrt{n + 1} | n \rangle \]
Substituting into Eq. 7.36 we find:

\[\sum_{n=0}^{\infty} \left[f(n+1) \sqrt{n+1} - \lambda f(n) \right] |n\rangle = 0. \tag{7.38} \]

Since the set of \(|n\rangle\) eigenstates is a complete basis of Hilbert space, we must have the recurrence identity:

\[f(\ell + 1) = f(\ell) \frac{\lambda}{\sqrt{1+\ell}}, \quad \ell = 0, 1, 2, \ldots \tag{7.39} \]

We can solve this recurrence identity easily:

\[
\prod_{\ell=0}^{n-1} f(\ell + 1) = \prod_{\ell=0}^{n-1} f(\ell) \frac{\lambda}{\sqrt{1+\ell}}
\]

\[
\sim f(n) \left(\prod_{\ell=1}^{n-1} f(\ell) \right) = f(0) \left(\prod_{\ell=1}^{n-1} f(\ell) \right) \frac{\lambda^n}{\sqrt{n!}}
\]

\[
\sim f(n) = f(0) \frac{\lambda^n}{\sqrt{n!}}. \tag{7.40} \]

Therefore, the coherent state \(|\lambda\rangle\) is

\[|\lambda\rangle = f(0) \sum_{n=0}^{\infty} \frac{\lambda^n}{\sqrt{n!}} |n\rangle. \tag{7.41} \]

We fix the constant \(f(0)\) by normalizing the state

\[1 = \langle \lambda | \lambda \rangle = |f(0)|^2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\lambda^n (\lambda^*)^m}{\sqrt{n!} \sqrt{m!}} \langle m | n \rangle
\]

\[= |f(0)|^2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\lambda^n (\lambda^*)^m}{\sqrt{n!} \sqrt{m!}} \delta_{nm}
\]

\[= |f(0)|^2 \sum_{n=0}^{\infty} \frac{(|\lambda|^2)^n}{n!}
\]

\[= |f(0)|^2 e^{||\lambda||^2}
\]

\[\sim f(0) = e^{-|\lambda|^2/2} \tag{7.42} \]

Therefore, the normalized coherent state takes the form (up to a choice of an overall phase):

\[|\lambda\rangle = e^{-|\lambda|^2/2} \sum_{n=0}^{\infty} \frac{\lambda^n}{\sqrt{n!}} |n\rangle. \tag{7.43} \]
7. The harmonic oscillator

The probability that a particle in a coherent state \(|\lambda\rangle \) is measured to have an energy \(E_n = n + \frac{1}{2} \) is,

\[
P (|\lambda\rangle \rightarrow |n\rangle) = |\langle n|\lambda\rangle|^2 = e^{-|\lambda|^2} \left(\frac{|\lambda|^2}{n!} \right)^n \tag{7.44}
\]

which is a Poisson distribution with a mean value

\[
\langle n \rangle = \langle \lambda | N | \lambda \rangle = |\lambda|^2 \tag{7.45}
\]

Notice that for \(\lambda = 0 \) in Eq.[7.44] the coherent state becomes the ground state (first energy eigenstate) of the harmonic oscillator:

\[
|\lambda = 0\rangle = |n = 0\rangle \tag{7.46}
\]

We can work further on Eq.[7.44]

\[
|\lambda\rangle = e^{-|\lambda|^2/2} \sum_{n=0}^{\infty} \frac{\lambda^n}{\sqrt{n!}} |n\rangle
\]

\[
= e^{-|\lambda|^2/2} \sum_{n=0}^{\infty} \frac{\lambda^n (a^\dagger)^n}{\sqrt{n!}} |0\rangle
\]

\[
= e^{-|\lambda|^2/2} \left(\sum_{n=0}^{\infty} \frac{(\lambda a^\dagger)^n}{n!} \right) |0\rangle
\]

leading to

\[
|\lambda\rangle = e^{-|\lambda|^2/2} e^{\lambda a^\dagger} |0\rangle \tag{7.47}
\]

The expectation value of the energy in a coherent state is:

\[
\langle \lambda | H | \lambda \rangle = \langle \lambda | a^\dagger a | \lambda \rangle + \langle \lambda | \frac{1}{2} | \lambda \rangle
\]

\[
= |a |\lambda\rangle|^2 + \frac{1}{2}
\]

\[
= |\lambda |\lambda\rangle|^2 + \frac{1}{2}
\]

\[
\sim \langle \lambda | H | \lambda \rangle = |\lambda|^2 + \frac{1}{2}. \tag{7.48}
\]

The expectation value of the position operator in a coherent state is:

\[
\langle \lambda | x | \lambda \rangle = \langle \lambda | \frac{a + a^\dagger}{\sqrt{2}} | \lambda \rangle \cos t + \langle \lambda | \frac{a - a^\dagger}{i\sqrt{2}} | \lambda \rangle \sin t
\]

\[
= \frac{\lambda + \lambda^*}{\sqrt{2}} \cos t + \frac{\lambda - \lambda^*}{i\sqrt{2}} \sin t \tag{7.49}
\]
7.3. Coherent states

For
\[\lambda = |\lambda| e^{i\theta} = |\lambda| (\cos \theta + i \sin \theta) , \]
we obtain:
\[\langle \lambda | x | \lambda \rangle = \sqrt{2} |\lambda| \cos(t - \theta) . \] (7.50)

The expectation value of the position in a coherent state oscillates exactly as the position in a classical harmonic oscillation with amplitude \(\sqrt{2} |\lambda| \). Performing a similar computation, we find for the expectation value of the momentum:
\[\langle \lambda | p | \lambda \rangle = -\sqrt{2} |\lambda| \sin(t - \theta) . \] (7.51)

Carrying on to the second powers of the position and momentum operators we find (exercise) the following results:
\[\langle \lambda | x^2 | \lambda \rangle = \frac{1}{2} + 2 |\lambda|^2 \cos^2(t - \theta) , \] (7.52)
\[\langle \lambda | p^2 | \lambda \rangle = \frac{1}{2} + 2 |\lambda|^2 \sin^2(t - \theta) , \] (7.53)

For the uncertainties in position and momentum we have:
\[\langle (\Delta x)^2 \rangle = \langle \lambda | x^2 | \lambda \rangle - \langle \lambda | x | \lambda \rangle^2 = \frac{1}{2} \] (7.54)

and
\[\langle (\Delta p)^2 \rangle = \langle \lambda | p^2 | \lambda \rangle - \langle \lambda | p | \lambda \rangle^2 = \frac{1}{2} . \] (7.55)

The product of the uncertainties in position and momentum for a particle in a coherent state is therefore exactly the minimum allowed by Heisenberg’s uncertainty principle:
\[\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle = \frac{1}{4} . \] (7.56)
Consider a particle in a quantum state $|\psi, t\rangle$ and subject to the Hamiltonian

$$H = \frac{p^2}{2m} + V(r),$$ (8.1)

where p, r are the position and momentum operators. The time evolution of the particle’s state is determined by Schrödinger’s equation,

$$i\hbar \frac{\partial}{\partial t} |\psi, t\rangle = H |\psi, t\rangle.$$ (8.2)

The traditional *Schrödinger’s wave equation* is the application of the above to the position-representation of the state $|\psi, t\rangle$:

$$\psi(r, t) = \langle r | \psi, t \rangle,$$

called the wave-function. We have:

$$\langle r | i\hbar \frac{\partial}{\partial t} |\psi, t\rangle = \langle r | H |\psi, t\rangle$$

$$\sim i\hbar \frac{\partial}{\partial t} \psi(r, t) = \langle r | \frac{p^2}{2m} + V(r) |\psi, t\rangle$$

$$\sim i\hbar \frac{\partial}{\partial t} \psi(r, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(r, t).$$ (8.3)

Eq. 8.3 is Schrödinger’s wave equation.

The time evolution of energy eigenstates is particularly simple for time-independent Hamiltonians.

$$H |\psi_E, t = 0\rangle = E |\psi_E, t = 0\rangle,$$ (8.4)

then

$$|\psi_E, t\rangle = e^{-iEt/\hbar} |\psi_E, t = 0\rangle$$

$$\sim \langle r |\psi_E, t\rangle = e^{-iEt/\hbar} \langle r |\psi_E, t = 0\rangle$$

$$\sim \psi_E(r, t) = e^{-iEt/\hbar} \psi_E(r)$$ (8.5)
Substituting into Eq. 8.3 we obtain:

\[
-\frac{\hbar^2}{2m} \nabla^2 + V(r) \psi_E(r) = E\psi_E(r)
\]

This is Schrödinger’s time independent wave equation.

Exercise 8.1. Solve Eq. 8.6 for the wavefunctions of the energy eigenstates of the harmonic oscillator.

8.1 Probability density and probability current

Consider a particle in a state $|\psi, t\rangle$ at a time t. The probability amplitude that the particle is found at a position r is the wave-function:

\[
\psi(r, t) = \langle r|\psi, t\rangle.
\]

From the normalization of the state we have:

\[
1 = \langle \psi, t|\psi, t\rangle = \int d^3r \ \langle \psi, t|r\rangle \langle r|\psi, t\rangle
\]

\[
= \int d^3r \ |\psi(r, t)|^2
\]

(8.7)

We can interpret the quantity:

\[
\rho(r, t) = |\psi(r, t)|^2,
\]

(8.8)

as the probability density for the particle to be found at the position r.

From the wave equation 8.3 of Schrödinger, we can derive

\[
i\hbar \psi^* \partial_t \psi = -\frac{\hbar^2}{2m} \psi^* \nabla^2 \psi + V(r) |\psi|^2
\]

(8.9)

\[
i\hbar \psi \partial_t \psi^* = \frac{\hbar^2}{2m} \psi \nabla^2 \psi^* - V(r) |\psi|^2
\]

(8.10)

Adding the two equations we obtain:

\[
\partial_t (\psi^* \psi) = -\frac{\hbar}{2mi} (\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^*)
\]

\[
= -\nabla \cdot \left[\frac{\hbar}{2mi} (\psi^* \nabla \psi - \psi \nabla \psi^*) \right]
\]

(8.11)
8.2. Quantized energy levels

We have derived a continuity equation for the probability density \(\rho = |\psi|^2 \),

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0,
\]

(8.12)

with a probability current:

\[
\mathbf{j} = \frac{\hbar}{2mi} [\psi^* \nabla \psi - \psi \nabla \psi^*].
\]

(8.13)

Let’s now rewrite

\[
\psi(\mathbf{r}, t) = \sqrt{\rho(\mathbf{r}, t)} \cdot e^{iF(\mathbf{r}, t)/\hbar},
\]

(8.14)

where the function \(F(\mathbf{r}, t) \) is real. Then,

\[
\psi^* \nabla \psi - \psi \nabla \psi^* = \frac{2i}{\hbar} \rho \nabla F.
\]

(8.15)

The probability current is then

\[
\mathbf{j}(\mathbf{r}, t) = \rho(\mathbf{r}, t) \frac{\nabla F(\mathbf{r}, t)}{m}.
\]

(8.16)

We can regard \(\nabla F/m \) as a “velocity”.

Integrating the probability current over all space we find that it is equal to the expectation value of the momentum divided by the mass:

\[
\int d^3 \mathbf{r} \mathbf{j}(\mathbf{r}, t) = \int d^3 \mathbf{r} \frac{1}{2m} [\psi^* (-i\hbar \nabla) \psi + \psi (i\hbar \nabla) \psi^*] = \int d^3 \mathbf{r} \frac{1}{2m} \left[\langle \psi, t | \mathbf{r} \rangle \langle \mathbf{r} | \mathbf{p} | \psi, t \rangle + \langle \psi, t | \mathbf{p} | \mathbf{r} \rangle \langle \mathbf{r} | \psi, t \rangle \right] = \frac{1}{m} \langle \psi, t | \mathbf{p} | \psi, t \rangle.
\]

(8.17)

8.2 Quantized energy levels

One of the biggest triumphs of quantum mechanics is the prediction of bound states, where particles are restricted to small regions of space (atoms, molecules) and have a discrete energy spectrum. In this section, we shall try to understand these phenomena qualitatively from the wave equation of Schrödinger. Consider a well-potential (i.e. a potential which can trap a particle as in Fig 8.1) in one space-dimension. Schrödinger’s equation can be written in the form

\[
\frac{\psi''}{\psi} = \frac{2m}{\hbar^2} (V(x) - E)
\]

(8.18)
The second derivative of the wave-function is proportional to the difference of the potential and the energy of the particle. Geometrically, the second derivative represents the rate of change of the slope of the wave-function.

i) If $V(x) > E$ then ψ'' and ψ must have the same sign. In that case, the wave function is concave away from the axis (as depicted in Fig. 8.2).

ii) If $V(x) < E$ then ψ'' and ψ must have the opposite sign. In that case, the wave function is concave towards the axis (as depicted in the right picture of Fig. 8.2).

Let us apply the above qualitative principles to a bound state, where

$$\psi(-\infty) = 0.$$ (8.19)

Drawing wave-functions with the above rules starting from $x = -\infty$ and guessing the wave-function all the way up to $x = +\infty$, we realize that it is not easy to end up with a wave-function which is bound at $x = +\infty$ (see Fig. 8.3).

In order to get a physical solution with finite probabilities it is necessary to tune the energy very precisely. Only for a selected number of energy values we are able to get physical solutions like in Fig. 8.4. The difficulty in the matching of a physical wave-function over the full range of space explains the quantization of energy. As we increase the energy level of the bound particle the wave-function for $V(x) > E$ oscillates stronger and over a larger range. Higher energy levels lead to more crossings of the wavefunction and the x-axis (Fig. 8.5).
8.3 Semiclassical approximation

In this section we shall develop an approximation method in order to compute the wave-function of a particle in a static system. This means that we demand that the probability of finding the particle at a certain region is the same irrespectively of the time that we performed our experiment. For such a system, we must have:

\[
\frac{\partial \rho}{\partial t} = 0. \tag{8.20}
\]

The continuity equation 8.12 gives that

\[
\nabla \cdot \mathbf{j} = 0. \tag{8.21}
\]

For simplicity, we will restrict our discussion to one-dimensional systems. Writing the wave-function in the form

\[
\psi(x) = \sqrt{\rho(x)} e^{iS(x)/\hbar}, \tag{8.22}
\]
with a probability current

\[
j(x) = \rho(x) \frac{\partial}{\partial x} S(x) \frac{1}{m},
\]

we have from Eq. 8.21 that:

\[
\frac{\partial}{\partial x} \left(\rho \frac{\partial S}{\partial x} \right) = 0
\]
8.3. Semiclassical approximation

![Figure 8.4: Only for selected (quantized) values of the energy we are able to match a physical behavior of the wave-function at \(x \to +\infty \) with a physical behavior at \(x = -\infty \).](image)

\[V(x) \]

\[\psi(x) \]

\[E \]

\[x \]

\[\psi(x) \]

\[x \]

\[\psi(x) \]

\[x \]

\[\psi(x) \]

\[x \]

Figure 8.5: Higher energy levels correspond to wave-functions with more crossings with the \(x \)-axis.

\[\sim \rho S' = \text{const} \]

\[\sim \rho = \frac{\text{const}}{S'}. \] \((8.24) \)

Let’s assume that \(\hbar \) is a small parameter (\(\hbar \to 0 \) corresponds to the classical limit) and expand:

\[S = S_0 + \hbar S_1 + \hbar^2 S_2 + \ldots \] \((8.25) \)
Notice that the derivatives of the wave-function are proportional to the wave-function itself (by taking the derivative Eq. 8.22):

\[
\psi' = \psi \left[\frac{\sqrt{\rho}'}{\sqrt{\rho}} + i \frac{S'}{\hbar} \right] \tag{8.26}
\]

\[
\psi'' = \psi \left[\left(\frac{\sqrt{\rho}'}{\sqrt{\rho}} + i \frac{S'}{\hbar} \right)^2 + \left(\frac{\sqrt{\rho}'}{\sqrt{\rho}} \right)' + i \frac{S''}{\hbar} \right] \tag{8.27}
\]

Substituting our expansion ansatz for \(\psi\) of Eq. 8.25 into Eq. 8.18 and keeping the leading order term in \(\hbar\) (semiclassical approximation), we obtain the following differential equation:

\[
(S'_0)^2 = -2m(V(x) - E) . \tag{8.28}
\]

For the regions of \(x\) where \(V(x) > E\) we have

\[
S'_0(x) = \pm i \sqrt{2m(V(x) - E)} \tag{8.29}
\]

and, thus,

\[
\psi_{(V(x) > E)} \approx \text{const} \frac{\exp \left(\pm \int_{x_0}^{x} dy \sqrt{\frac{2m}{\hbar}} (V(y) - E) \right)}{[2m(V(x) - E)]^{\frac{1}{4}}} \tag{8.30}
\]

Similarly, for \(V(x) < E\), we find an approximate solution:

\[
S'_0(x) = \pm \sqrt{2m(E - V(x))} \tag{8.31}
\]

and, thus,

\[
\psi_{(V(x) < E)} \approx \text{const} \frac{\exp \left(\pm i \int_{x_0}^{x} dy \sqrt{\frac{2m}{\hbar}} (E - V(y)) \right)}{[2m(E - V(x))]^{\frac{1}{4}}} \tag{8.32}
\]

Obviously, non of the two solutions is a good approximation for values of the potential close to the energy \(V(x) \sim E\). For these regions, we can find an explicit solution expanding the potential around the region \(x = x_{sp}\) for which \(V(x_{sp}) = E\). We write:

\[
V(x) \approx V(x_{sp}) + (x - x_{sp})V'(x_{sp}) + \ldots \tag{8.33}
\]

\[
= E + (x - x_{sp})V'(x_{sp}) + \ldots
\]
The Hamiltonian becomes

\[H \approx \frac{\hat{p}^2}{2m} + E + (\hat{x} - x_{sp})V'(x_{sp}) \quad (8.34) \]

and we need to solve the eigenvalue problem:

\[H |\psi_E\rangle = E |\psi_E\rangle \]

\[\sim \left[\frac{\hat{p}^2}{2m} + (\hat{x} - x_{sp})V'(x_{sp}) \right] |\psi_E\rangle = 0. \quad (8.35) \]

The linear potential problem can be solved exactly, as we shall see in the next section.

Having approximate solutions for the three distinct regions \(V(x) < E \), \(V(x) > E \) and \(V(x) \approx E \) we can construct an approximate solution for all values of \(x \). It is required that the solutions are the same for the regions where more than one approximations are valid. This leads to “matching” conditions which, for bound states, leads to quantization conditions of the energy levels.

8.4 Linear potential

In this section we shall solve Schrödinger’s energy eigenstate problem for a linear potential:

\[\left[\frac{\hat{p}^2}{2m} + a\hat{x} + b \right] |\psi\rangle = 0. \quad (8.36) \]

It is easier to solve this problem in momentum space. Recall that

\[\langle x|p \rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}. \quad (8.37) \]

It is easy to verify that this amplitude satisfies the correct momentum eigenstate equation:

\[\langle x|\hat{p}|p \rangle = -i\hbar \frac{\partial}{\partial x} \langle x|p \rangle = -i\hbar \frac{\partial}{\partial x} \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} = p \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} = p \langle x|p \rangle. \quad (8.38) \]
For two momentum states, $|p\rangle, |q\rangle$, we have

$$\langle p|\hat{x}|q\rangle = \int \, dy \, \langle p|\hat{x}|y\rangle \langle y|q\rangle = \int \, dy \, y \, \langle p|y\rangle \langle y|q\rangle$$

$$= \int \, dy \, \langle p|y\rangle \left(-i\hbar \frac{\partial}{\partial q}\right) \frac{1}{\sqrt{2\pi\hbar}} e^{iyq/\hbar}$$

$$= \left(-i\hbar \frac{\partial}{\partial q}\right) \int \, dy \, \langle p|y\rangle \langle y|q\rangle$$

$$= \left(-i\hbar \frac{\partial}{\partial q}\right) \langle p|q\rangle = \left(-i\hbar \frac{\partial}{\partial q}\right) \delta(p - q). \quad (8.39)$$

Also,

$$\langle p|\hat{x}|\psi\rangle = \int \, dq \, \langle p|\hat{x}|q\rangle \langle q|\psi\rangle$$

$$= -i\hbar \frac{\partial}{\partial p} \int \, dq \, \delta(q - p) \langle q|\psi\rangle$$

$$\sim \langle p|\hat{x}|\psi\rangle = -i\hbar \frac{\partial}{\partial p} \langle p|\psi\rangle. \quad (8.40)$$

Thus,

$$\langle p|\hat{p}^2/2m + a\hat{x} + b|\psi\rangle = 0$$

$$\sim i\hbar a \frac{\partial}{\partial p} \langle p|\psi\rangle = \left(\frac{p^2}{2m} + b\right) \langle p|\psi\rangle$$

$$\sim \langle p|\psi\rangle = N \exp \left(\frac{p^3}{6m} + pb \frac{i\hbar a}{i\hbar a}\right) \quad (8.41)$$

The wavefunction in x–space can be found as:

$$\langle x|\psi\rangle = \int_{-\infty}^{\infty} dp \, \langle x|p\rangle \langle p|\psi\rangle$$

$$= N \int_{-\infty}^{\infty} \frac{dp}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \exp \left(\frac{p^3}{6m} + pb \frac{i\hbar a}{i\hbar a}\right) \quad (8.42)$$

The solution is an Airy function. It is defined through its integral representation

$$\text{Ai}(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \exp \left[i \left(\frac{t^3}{3} + zt\right)\right] \quad (8.43)$$

and can be computed numerically for all values of z.

110
Chapter 9

PARTICLE IN A CONSTANT ELECTROMAGNETIC FIELD

The Hamiltonian for a charged particle in a time-independent electromagnetic field is

\[H = \frac{(p - qA)^2}{2m} + q\Phi, \quad (9.1) \]

where \(A = A(r) \) and \(\Phi = \Phi(r) \) are the vector and scalar potential respectively. Working in the Heisenberg picture, we find that the velocity operator is (exercise):

\[\frac{dr_i}{dt} = -\frac{i}{\hbar} [r_i, H] = \frac{p_i - qA_i}{m} \quad (9.2) \]

and the operator analogue of the classical momentum is then

\[\Pi = m \frac{dr}{dt} = p - qA. \quad (9.3) \]

We call \(\Pi \) the kinetic momentum and \(p \) the canonical momentum. For the commutator of kinetic momenta we find,

\[[\Pi_i, \Pi_j] = i\hbar (\partial_i A_j - \partial_j A_i). \quad (9.4) \]

Recalling that the magnetic field is given by

\[B_i = \epsilon_{ijk} \partial_j A_k, \quad (9.5) \]

we have that

\[\epsilon_{ijk} B_k = (\partial_i A_j - \partial_j A_i). \quad (9.6) \]

We then write,

\[[\Pi_i, \Pi_j] = i\hbar \epsilon_{ijk} B_k. \quad (9.7) \]
We now compute the commutator

\[[\Pi_i, H] = [\Pi_i, \frac{\Pi_j \Pi_j}{2m} + q\Phi] = i\hbar q \left(-\partial_i \Phi + \epsilon_{ijk} \frac{1}{2m} [\Pi_j B_k - B_j \Pi_k] \right) \]

We then obtain for the quantum operator corresponding to the classical force,

\[m\frac{d^2 \mathbf{r}}{dt^2} = \frac{1}{i\hbar} \left[m \frac{d\mathbf{r}}{dt}, H \right] = q \left[-\nabla \Phi + \frac{1}{2} \left(\frac{d\mathbf{r}}{dt} \times \mathbf{B} - \mathbf{B} \times \frac{d\mathbf{r}}{dt} \right) \right] . \] (9.8)

9.1 Wave-function for a particle in an electromagnetic field

The time-evolution of a state is determined by Schrödinger’s equation, which in the case of a particle in a constant electromagnetic field takes the form:

\[i\hbar \frac{d}{dt} |\psi, t\rangle = \left(\frac{\Pi^2}{2m} + q\Phi \right) |\psi, t\rangle . \] (9.9)

For the wave-function

\[\psi(\mathbf{r}, t) = \langle \mathbf{r} |\psi, t\rangle , \]

we obtain

\[i\hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \left(\nabla - \frac{i}{\hbar} qA \right) \left(\nabla - \frac{i}{\hbar} qA \right) + q\Phi \right] \psi(\mathbf{r}, t) \] (9.10)

We define a “covariant” gradient operator:

\[\nabla_c \equiv \nabla - \frac{i}{\hbar} qA \] (9.11)

We then rewrite Schrödinger’s equation as

\[i\hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla_c^2 + q\Phi \right] \psi(\mathbf{r}, t) \] (9.12)

Maxwell equations are invariant under a gauge transformation, which in the case of steady fields takes the form:

\[\mathbf{A}(\mathbf{r}) \rightarrow \mathbf{A}(\mathbf{r}) + \nabla \Lambda(\mathbf{r}) . \] (9.13)
9.1. Wave-function for a particle in an electromagnetic field

Under this transformation, Schrödinger’s equation becomes:

\[i\hbar \frac{\partial \psi_\Lambda (r, t)}{\partial t} = \left[-\frac{\hbar^2}{2m} (\nabla_c - \nabla \Lambda)^2 + q\Phi \right] \psi_\Lambda (r, t) \] \hspace{1cm} (9.14)

We would now like to compare the solutions of the Schrödinger equation before and after the gauge transformation. We can verify easily that if \(\psi (r, t) \) is a solution of Eq. 9.12 then also the function

\[\psi_\Lambda (r, t) = e^{i\frac{q}{\hbar} \Lambda (r)} \psi (r, t) \] \hspace{1cm} (9.15)

is a solution. Indeed,

\[\left(\nabla - \frac{iqA}{\hbar} - \frac{iq\nabla \Lambda}{\hbar} \right) e^{i\frac{q}{\hbar} \Lambda (r)} = e^{i\frac{q}{\hbar} \Lambda (r)} \left(\nabla - \frac{iqA}{\hbar} \right) \] \hspace{1cm} (9.16)

and

\[\left(\nabla_c - i\frac{q}{\hbar} \nabla \Lambda \right)^2 e^{i\frac{q}{\hbar} \Lambda (r)} \psi (r, t) = e^{i\frac{q}{\hbar} \Lambda (r)} \nabla^2_c \psi (r, t). \] \hspace{1cm} (9.17)

Therefore, a gauge transformation results in the wave-function being multiplied with an overall phase.

We shall now revisit our interpretation of the absolute square of the wave-function as a probability density:

\[\rho (r, t) = |\psi (r, t)|^2. \]

Taking the time derivative we have,

\[\frac{\partial \rho}{\partial t} = \psi^* (\partial_t \psi) + (\partial_t \psi^*) \psi \]

\[= i \frac{\hbar}{2m} \left(\psi^* \nabla^2_c \psi - \psi (\nabla^2_c \psi)^* \right) \]

\[= -\nabla J, \] \hspace{1cm} (9.18)

where

\[J = -i \frac{\hbar}{2m} [\psi^* \nabla_c \psi - \psi \nabla^*_c \psi^*], \] \hspace{1cm} (9.19)

and

\[\nabla^*_c = \nabla + i \frac{q}{\hbar} A. \] \hspace{1cm} (9.20)

Contrast this current with the one in the absence of the electromagnetic field. It is consistent with the substitution:

\[\nabla \rightarrow \nabla_c, \]

or, equivalently, replacing the canonical momentum operator with the kinetic momentum operator,

\[p \rightarrow \Pi. \]
9. Particle in a constant electromagnetic field

9.2 Aharonov-Bohm effect

Consider a particle that at \(t = 0 \) is found at a position \(|a\rangle \). After some time \(t \) the state will have evolved according to Schrödinger’s equation:

\[
i\hbar \partial_t |a, t\rangle = \left[\frac{\Pi^2}{2m} + q\Phi \right] |a, t\rangle . \tag{9.21}\]

The probability amplitude that the particle is found at a position \(r \) after time \(t \) is then

\[
\langle r|a, t\rangle ,
\]

and it satisfies

\[
i\hbar \partial_t \langle r|a, t\rangle = \left[-\frac{\hbar^2}{2m} \nabla_c^2 + q\Phi \right] \langle r|a, t\rangle . \tag{9.22}\]

Let’s assume that we can compute the amplitude for the same transition

\[
\langle r|a, t\rangle_0
\]

in the absence of a vector potential \(A = 0 \sim \nabla_c = \nabla \). Then, the amplitude for the transition for \(A \neq 0 \) is:

\[
\langle r|a, t\rangle = \langle r|a, t\rangle_0 \exp \left(\frac{i q}{\hbar} \int_a^r dl \cdot A \right) \tag{9.23}\]

Exercise 9.1. Prove that the above is indeed a solution of Eq. 9.22 and that it satisfies the amplitude “multiplication rule” for two successive transitions:

\[
\mathcal{M}(a \rightarrow b)\mathcal{M}(b \rightarrow c) = \mathcal{M}(a \rightarrow c).
\]

where \(\mathcal{M} \) denotes

\[
\mathcal{M} (x \rightarrow y) = \langle y|x \rangle .
\]

Now consider a two-slit experiment where in between the two slits inside the wall there is a magnetic field \(B \). The field is contained inside the wall and the particles cannot penetrate it. The transition amplitude from the shooting point to a point on the screen behind the wall is the sum of the amplitude for the particle to go through slit 1 (path \(\Gamma_1 \)) and the amplitude to go through slit 2 (path \(\Gamma_2 \)).

\[
\mathcal{M} = \mathcal{M}_{\Gamma_1} + \mathcal{M}_{\Gamma_2} . \tag{9.24}\]
According to Eq. 9.23 this is equivalent to:

\[M = M_1 \exp \left(\frac{iq}{\hbar} \int_{\Gamma_1} dl \cdot A \right) + M_2 \exp \left(\frac{iq}{\hbar} \int_{\Gamma_2} dl \cdot A \right) \] (9.25)

The probability of this transition is

\[P = |M|^2 = |M_1|^2 + |M_2|^2 + 2\Re \left(M_1^* M_2 \exp \left(\frac{iq}{\hbar} \oint dl \cdot A \right) \right) \] (9.26a)

The interference term now depends on the flux of the magnetic field enclosed by the two alternative paths. (Fig. 9.1)

\[\Phi_B = \oint dl \cdot A = \int_{S(\Gamma_1+\Gamma_2)} dS \cdot \nabla A = \int_{S(\Gamma_1+\Gamma_2)} dS \cdot B. \] (9.26b)

\[\sim P = |M_1|^2 + |M_2|^2 + 2\Re \left(M_1^* M_2 \exp \left(\frac{iq}{\hbar} \Phi_B \right) \right) \] (9.26c)

It is remarkable that the path of the particles lies outside the range of the magnetic field. Nevertheless, the interference pattern is affected by it. This is the Aharonov-Bohm effect.
A symmetry changes our way of looking at a physical system without changing the physics of it. In quantum mechanics, symmetry transformations alter quantum states,

$$|\psi\rangle \xrightarrow{T} |\psi'\rangle, \quad |\phi\rangle \xrightarrow{T} |\phi'\rangle,$$

without changing probabilities

$$|\langle \phi' | \psi' \rangle|^2 = |\langle \phi | \psi \rangle|^2.$$

(10.2)

States can be represented as vectors in Hilbert space. If \{\ket{a_i}\} is a set of base-kets, we can write

$$|\psi\rangle = \sum_i c_i |a_i\rangle$$

and we represent \ket{\psi} as a Hilbert space vector

$$|\psi\rangle \doteq \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix}.$$

Under the symmetry transformation \(T\), the vector of \ket{\psi} in Hilbert space transforms as

$$\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} \xrightarrow{T} \begin{pmatrix} c'_1 \\ c'_2 \\ \vdots \\ c'_N \end{pmatrix} = \begin{pmatrix} U_{11}(T) & \ldots & U_{1N}(T) \\ U_{21}(T) & \ldots & U_{2N}(T) \\ \vdots & \ddots & \vdots \\ U_{N1}(T) & \ldots & U_{NN}(T) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix}$$

or, briefly,

$$|\psi'\rangle \doteq U(T) |\psi\rangle,$$

(10.3)
where the kets in the above equations are the vector representations of the states in Hilbert space and not the states themselves. The matrix $U(T)$ changes for other representation of the states with sets of base states different than $\{|a_i\rangle\}$.

To preserve the probabilities under symmetry transformations, according to Wigner’s theorem, we have two options:

i) $U(T)$ is linear and unitary,

$$U(a \langle \psi | + b \langle \phi |) = a U \langle \psi | + b U \langle \phi |,$$

$$\langle \psi | U^\dagger U \langle \phi | = \langle \psi | \phi |,$$

ii) $U(T)$ is anti-linear and anti-unitary,

$$U(a \langle \psi | + b \langle \phi |) = a^* U \langle \psi | + b^* U \langle \phi |,$$

$$\langle \psi | U^\dagger U \langle \phi | = \langle \phi | \psi |.$$

We shall not prove Wigner’s theorem here.\(^1\) We will restrict ourselves in verifying the inverse statement. Consider, for example, that U is anti-linear and anti-unitary. For two states,

$$|\phi \rangle, \quad |\psi \rangle = a_1 |\psi_1 \rangle + a_2 |\psi_2 \rangle,$$

the probability that $|\psi \rangle$ collapses into $|\phi \rangle$ is transformed to

$$|\langle \phi' | \psi' \rangle|^2 = |\langle \phi | U^\dagger U |\psi \rangle|^2$$

$$= |\langle \phi | U^\dagger (a_1 U |\psi_1 \rangle + a_2 U |\psi_2 \rangle)|^2$$

$$= |\langle \phi | U^\dagger (a_1^* U^\dagger |\psi_1 \rangle + a_2^* U^\dagger |\psi_2 \rangle)|^2$$

$$= |a_1^* \langle \psi_1 | \phi | + a_2^* \langle \psi_2 | \phi ||^2$$

$$= |a_1^* \langle \psi_1 | \phi | + a_2^* \langle \psi_2 | \phi ||^2$$

$$= |\langle \psi | \phi ||^2$$

$$= |\langle \phi | \psi ||^2.$$

\(^1\)A proof can be found in Weinberg’s Quantum Theory of Fields, Vol. I
Similarly, if U is linear and unitary,

\[
|\langle \phi' | \psi' \rangle|^2 = |\langle \phi | U^\dagger U | \psi \rangle|^2
\]

\[
= |\langle \phi | U^\dagger (a_1 | \psi_1 \rangle + a_2 | \psi_2 \rangle \rangle|^2
\]

\[
= |\langle \phi | U^\dagger (a_1 U | \psi_1 \rangle + a_2 U | \psi_2 \rangle \rangle|^2
\]

\[
= |a_1 \langle \phi | \psi_1 \rangle + \langle \phi | \psi_2 \rangle|^2
\]

\[
= |\langle \phi | (a_1 | \psi_1 \rangle + a_2 | \psi_2 \rangle \rangle|^2
\]

\[
= |\langle \phi | \psi \rangle|^2.
\]

10.1 Continuous symmetry transformations

Notice that the unit operator is unitary and linear, not anti-unitary and anti-linear. Some symmetry transformations $T(\theta^a)$ are connected to the unity smoothly, such as rotations, translations and Lorentz boosts, via continuous parameters (angles, velocities, etc),

\[
T \equiv T(\theta^a), \quad \theta^a \equiv \begin{cases}
\theta, \phi & \text{angles} \\
\beta_x, \beta_y, \beta_z & \text{boosts} \\
\varepsilon_1, \varepsilon_2, \varepsilon_3 & \text{space-displacements}
\end{cases}
\] (10.5)

Such transformations which are related to the unity (no transformation) continuously must have a unitary and linear representation.

\[
|\psi'\rangle = U \left(T(\theta^a) \right) |\psi\rangle.
\] (10.6)

We choose the parameters θ^a of these continuous transformations so that when the parameters of the transformation vanish, $\theta^a = 0$, the system is unchanged:

\[
U \left(T(\theta^a = 0) \right) = 1.
\] (10.7)

Let us restrict ourselves to unitary and linear transformations $T \equiv T(\theta^a)$ and study their representation $U(T)$. The product of two such transformations is also a transformation,

\[
T_3 = T_2 T_1.
\]
A state $|\psi\rangle$ transforms as

$$|\psi\rangle \to |\psi'\rangle = U(T_2)U(T_1) |\psi\rangle,$$

under the T_1 transformation followed by the T_2 transformation. Transforming under $T_3 = T_2T_1$, we obtain

$$|\psi\rangle \to |\psi''\rangle = U(T_3) |\psi\rangle = U(T_2T_1) |\psi\rangle.$$

The states $|\psi'\rangle$ and $|\psi''\rangle$ must be equivalent, describing the same physics. Therefore, they can only differ by a phase:

$$U(T_2)U(T_1) |\psi\rangle = e^{i\phi_{\psi}(T_2,T_1)}U(T_2T_1) |\psi\rangle.$$ \hspace{1cm} (10.8)

We can show that the phase $\phi_{\psi}(T_2,T_1)$ is independent of the state $|\psi\rangle$. Take a $|\psi\rangle$ which is a superposition of two independent states:

$$|\psi\rangle = |\psi_A\rangle + |\psi_B\rangle.$$

Then,

$$e^{i\phi_{AB}}U(T_2T_1) (|\psi_A\rangle + |\psi_B\rangle) = U(T_2)U(T_1) (|\psi_A\rangle + |\psi_B\rangle)$$

$$= U(T_2)U(T_1) |\psi_A\rangle + U(T_2)U(T_1) |\psi_B\rangle$$

$$= e^{i\phi_A}U(T_2T_1) |\psi_A\rangle + e^{i\phi_B}U(T_2T_1) |\psi_B\rangle.$$ \hspace{1cm} (10.9)

Multiplying both sides with $U^{-1}(T_2T_1)$, we obtain:

$$e^{i\phi_{AB}} (|\psi_A\rangle + |\psi_B\rangle) = e^{i\phi_A} |\psi_A\rangle + e^{i\phi_B} |\psi_B\rangle$$

$$\leadsto 0 = (e^{i\phi_{AB}} - e^{i\phi_A}) |\psi_A\rangle + (e^{i\phi_{AB}} - e^{i\phi_B}) |\psi_B\rangle$$

$$\leadsto e^{i\phi_{AB}} = e^{i\phi_A} = e^{i\phi_B}. \hspace{1cm} (10.10)$$

Thus, the phase is the same for all states and we can write:

$$U(T_2)U(T_1) = e^{i\phi(T_2,T_1)}U(T_2T_1). \hspace{1cm} (10.11)$$

For $\phi(T_2, T_1) = 0$, the matrix $U(T)$ furnishes a representation of the symmetry transformation T. For the general $\phi(T_2, T_1) \neq 0$, $U(T)$ is a so-called projective representation of the symmetry transformations. It can be shown that we can always enlarge the symmetry group so that projective representations turn into representations with a zero phase. Let’s consider the product of the
representations of three symmetry transformations:

\[U(T_3)U(T_2)U(T_1) = U(T_3) \left[U(T_2)U(T_1) \right] \]
\[= \left[U(T_3)U(T_2) \right] U(T_1) \]
\[\sim U(T_3)e^{i\phi(T_2,T_1)}U(T_2T_1) = e^{i\phi(T_3,T_2)}U(T_3T_2)U(T_1) \]
\[\sim e^{i\phi(T_2,T_1)+i\phi(T_3,T_2)}U(T_3T_2T_1) = e^{i\phi(T_3,T_2)+i\phi(T_3T_2,T_1)}U(T_3T_2T_1) \]
\[\sim \phi(T_2,T_1) + \phi(T_3,T_2T_1) = \phi(T_3,T_2) + \phi(T_3T_2,T_1) \quad (10.12) \]

This is satisfied if we write the phase \(\phi \) in terms of a function \(\chi \) as in:

\[\phi(T_a,T_b) = \chi(T_aT_b) - \chi(T_a) - \chi(T_b). \quad (10.13) \]

Defining a representation of an enlarged symmetry transformation as

\[\tilde{U}(T) = U(T)e^{i\chi(T)}, \quad (10.14) \]

we see that \(\tilde{U}(T) \) furnishes a representation (with zero phase)

\[\tilde{U}(T_bT_a) = U(T_b)U(T_a)e^{i(\chi(T_a)+\chi(T_b))} \]
\[= U(T_bT_a)e^{i(\phi(T_b,T_a)+\chi(T_a)+\chi(T_b))} \]
\[= \tilde{U}(T_bT_a)e^{i(\phi(T_b,T_a)+\chi(T_a)+\chi(T_b)-\chi(T_bT_a))} \]
\[= \tilde{U}(T_bT_a). \quad (10.15) \]

For the symmetries of interest we shall take that they have representations with a zero-phase or that they have been enlarged so that this is achieved.

10.2 Lie algebra and generators

We consider a continuous symmetry transformation

\[T(\theta^a) \]

parameterized by a set of continuous parameters

\[\{ \theta^a \}, \quad a = 1 \ldots N \]

The symmetry transformations form a Lie group and the product of two such transformations is also a symmetry transformation belonging to the group:

\[T(\theta_1^a)T(\theta_2^a) = T \left(f^a(\theta_1^a, \theta_2^a) \right). \quad (10.16) \]
10. Symmetries in Quantum Mechanics

We arrange that T corresponds to the unit element of the symmetry group if all values of the parameters are zero, $\theta^a = 0$,

$$T(\theta^a = 0) = 1.$$ \hspace{1cm} (10.17)

The product rule of Eq. 10.16 and our definition of the unit transformation of Eq. 10.17 yield:

$$f^a(0, \theta^a) = f^a(\theta^a, 0) = \theta^a$$ \hspace{1cm} (10.18)

Restricting ourselves to small transformations around the unity transformation, we perform a Taylor expansion around $\theta^a = 0$:

$$f^a(\theta^a_1, \theta^a_2) = f^a(0, 0) + \frac{\partial f^a}{\partial \theta^b_1} \theta^b_1 + \frac{\partial f^a}{\partial \theta^b_2} \theta^b_2 + \frac{1}{2} \frac{\partial^2 f^a}{\partial \theta^b_1 \partial \theta^c_1} \theta^b_1 \theta^c_1 + \ldots$$ \hspace{1cm} (10.19)

with $b, c = 1, \ldots, N$ and Einstein summation convention. Imposing the requirement of Eq 10.18 leads to the form:

$$f^a(\theta^a_1, \theta^a_2) = \theta^a_1 + \theta^a_2 + f_{bc}^a \theta^b_1 \theta^c_2 + \ldots$$ \hspace{1cm} (10.20)

with f_{bc}^a being the second order coefficient of the Taylor expansion of f^a and in this case b, c are dummy indices to sum over.

For an ordinary representation $U(T)$ of the symmetry group,

$$U(T(\theta^a_1)) U(T(\theta^a_2)) = U(T(f^a(\theta^a_1, \theta^a_2))).$$ \hspace{1cm} (10.21)

For small parameters θ^a, we can expand the representation of the transformation as follows:

$$U(T(\theta^a)) = 1 + i \theta^a t_a + \frac{1}{2} \theta^b \theta^c t_{bc} + \ldots$$ \hspace{1cm} (10.22)

where $1, t_a, t_{bc}$ in the above equation are matrices of the same dimensionality as $U(T(\theta^a))$ and the matrix t_{bc} is symmetric in b and c:

$$t_{bc} = t_{cb}.$$ \hspace{1cm} (10.23)

Expanding, using Eq. 10.22, the terms in Eq. 10.21 we have

$$\left(1 + i \theta_1^a t_a + \frac{1}{2} \theta_1^b \theta_1^c t_{bc} + \ldots\right) \left(1 + i \theta_2^a t_a + \frac{1}{2} \theta_2^b \theta_2^c t_{bc} + \ldots\right)$$

$$= 1 + i \left(\theta_1^a + \theta_2^a + f_{bc}^a \theta_1^b \theta_2^c + \ldots\right) t_a + \frac{1}{2} \left(\theta_1^b + \theta_2^b + \ldots\right) \left(\theta_1^c + \theta_2^c + \ldots\right) t_{bc}$$
where we have neglected θ^a terms of third order and higher. Matching the powers of θ_1^a, θ_2^a, we find that

$$t_{bc} = -t_b t_c - i f_{bc}^a t_a.$$ \hspace{1cm} (10.24)

From the symmetry of t_{bc}, we obtain:

$$0 = t_{bc} - t_{cb} = -(t_b t_c - t_c t_b) - i(f_{bc}^a - f_{cb}^a) t_a$$ \hspace{1cm} (10.25)

This leads to the commutation relation for the matrices t^a:

$$[t_b, t_c] = i C_{bc}^a t_a.$$ \hspace{1cm} (10.26)

where the constants

$$C_{bc}^a = f_{cb}^a - f_{bc}^a$$ \hspace{1cm} (10.27)

are antisymmetric in $a \leftrightarrow b$ and are called the *structure constants* of the Lie-group. As you may observe, the structure constants do not depend on the specific representation $U(T(\theta^a))$. Instead, the matrices t_a are specific to the representation and have the same dimensionality. These matrices are known as the *generators* of the representation. Knowing the generators, we can construct the representation of an arbitrary symmetry transformation by using the product property of Eq. 10.21 to assemble large symmetry transformations from many small ones where the expansion of Eq. 10.22 is valid. The common commutation relation of Eq. 10.26 satisfied by the generators of all representations of the symmetry group is known as a *Lie algebra*.

Requiring that the representation of a symmetry transformation is unitary, leads to the conclusion that the generators of the transformation are Hermitian operators:

$$UU^\dagger = 1 \sim t_a^\dagger = t_a.$$ \hspace{1cm} (10.28)

Therefore, generators are good candidates for physical observables.

In the special case of “Abelian” symmetry groups,

$$f(\theta_1^a, \theta_2^a) = \theta_1^a + \theta_2^a,$$

the generators commute:

$$[t_b, t_c] = 0.$$ \hspace{1cm} (10.29)

A representation for general values of the parameters of the symmetry transformation can then be found as:

$$U(T(\theta^a)) = \lim_{N \to \infty} U \left(T \left(\frac{\theta^a}{N} \right) \right)^N$$

$$= \lim_{N \to \infty} \left(1 + i \frac{\theta^a}{N} t_a \right)^N$$

$$= \exp (i \theta^a t_a).$$ \hspace{1cm} (10.30)
10.3 Symmetry and degeneracy

A symmetry transformation T should change a system in the same way irrespective of the time we performed the transformation. Therefore, the following two states must be the same:

$$U(T) \left(e^{iHt/\hbar} \left| \psi \right\rangle \right) = e^{iHt/\hbar} \left(U(T) \left| \psi \right\rangle \right). \quad (10.31)$$

The state of the lhs corresponds to performing the transformation after the system has evolved for time t. The state of the rhs corresponds to performing the transformation at $t = 0$ and then evolving for a time t. Since the above equation is valid for any state $\left| \psi \right\rangle$, we must have that the time-evolution operator and the representation of the symmetry commute:

$$\left[U(T), e^{iHt/\hbar} \right] = 0. \quad (10.32)$$

Equivalently, the Hamiltonian and the symmetry representations also commute:

$$\left[U(T), H \right] = 0. \quad (10.33)$$

For continuous symmetry transformations where

$$U(T) = 1 - i\theta^a t_a + \ldots$$

the generators of the representation commute with the Hamiltonian:

$$\left[t_a, H \right] = 0. \quad (10.34)$$

Then, the Hamiltonian and the generators have a common set of eigenstates. Symmetries are associated with a degeneracy in the energy spectrum of a physical system. Consider an energy eigenstate:

$$H \left| E \right\rangle = E \left| E \right\rangle. \quad (10.35)$$

All states,

$$U(T) \left| E \right\rangle,$$

are also eigenstates of the Hamiltonian with the same energy eigenvalue E. Indeed,

$$H \left(U(T) \left| E \right\rangle \right) = U(T)H \left| E \right\rangle = U(T)E \left| E \right\rangle = E \left(U(T) \left| E \right\rangle \right). \quad (10.36)$$
10.4 Rotations and translations

In this section, we should study symmetry transformations corresponding to the change of reference frame. This is the requirement that the laws of quantum mechanics should be the same irrespective of where we are performing our experiment or how we have set up our coordinate system. We should restrict ourselves to Euclidean changes of reference frame, ignoring special relativity effects. These transformations preserve the magnitude of space-vectors:

\[\mathbf{r} = (r_1, r_2, r_3) \rightarrow \mathbf{r}' = (r'_1, r'_2, r'_3) \]

with

\[|\mathbf{r}| = |\mathbf{r}'| \quad (10.37) \]

or, equivalently,

\[\delta_{ij} r_i r_j = \delta_{ij} r'_i r'_j. \quad (10.38) \]

Differentiating twice the above, we obtain:

\[\delta_{k\ell} = \delta_{ij} \frac{\partial r'_i}{\partial r_k} \frac{\partial r'_j}{\partial r_\ell}, \quad (10.39) \]

from which we conclude that the transformation \(\mathbf{r} \rightarrow \mathbf{r}' \) is a linear transformation:

\[r'_i = R_{ij} r_j + a_i \quad (10.40) \]

Notice that the vector \(a_i \) displaces the center of the coordinate system and the matrix \(R_{ij} \) rotates the coordinates. Substituting into Eq. (10.39), we find

\[\delta_{k\ell} = \delta_{ij} R_{ik} R_{j\ell}. \quad (10.41) \]

We write this in matrix-notation as

\[\mathbf{RR}^T = 1, \quad \mathbf{R}_{ij}^T = \mathbf{R}_{ji}. \quad (10.42) \]

Taking the determinant of the above we have

\[\det(\mathbf{RR}^T) = 1 \leadsto (\det \mathbf{R})^2 = 1 \leadsto \det \mathbf{R} \neq 0, \quad (10.43) \]

\[\det(\mathbf{RR}^T) = 1 \leadsto (\det \mathbf{R})^2 = 1 \leadsto \det \mathbf{R} \neq 0, \quad (10.44) \]

which proves that there exist the inverse transformation of \(\mathbf{R} \). We have

\[\mathbf{RR}^T = 1 \]

\[\leadsto \mathbf{R}^{-1} \mathbf{RR}^T = \mathbf{R}^{-1} \]

\[\leadsto \mathbf{R}_{ij}^{-1} = \mathbf{R}_{ij}^T = \mathbf{R}_{ji}. \quad (10.45) \]
Making two successive coordinate transformations we have

\[r''_i = R_{ij} r'_j + a_i \]
\[= R_{ij} (\bar{R}_{j\ell} r_\ell + \bar{a}_j) + a_i \]
\[= (R\bar{R})_{i\ell} r_\ell + [R\bar{a} + a]_i \]

(10.46)

Thus, we have the following multiplication rule for the group of coordinate transformations:

\[T(R, a)T(\bar{R}, \bar{a}) = T(R\bar{R}, R\bar{a} + a) . \]

(10.47)

Notice that rotations alone and translations alone form subgroups:

\[T(R, 0)T(\bar{R}, 0) = T(R\bar{R}, 0) . \]

(10.48)

and

\[T(1, a)T(1, \bar{a}) = T(1, \bar{a} + a) . \]

(10.49)

10.4.1 Generators

Consider an infinitesimal transformation:

\[T(\delta_{ij} + \omega_{ij}, \epsilon_i), \quad \omega_{ij}, \epsilon_i \in \mathbb{R} \]

From Eq. [10.41] keeping only linear terms in \(\omega \), we have

\[\delta_{k\ell} = \delta_{ij} R_{ik} R_{j\ell} \]
\[\sim \omega_{k\ell} = -\omega_{\ell k} \]

(10.50a)

Let’s now look at the transformation of vectors in Hilbert space corresponding to quantum states in a generic representation of the symmetry group:

\[|\psi\rangle \rightarrow |\psi'\rangle = U(\omega, \epsilon) |\psi\rangle . \]

(10.51)

Expanding the representation \(U \) in the small parameters of the transformation, we have:

\[U(\omega, \epsilon) = 1 + i \frac{1}{2} \omega_{ij} J^{ij} - i \epsilon_\rho P^\rho + \ldots \]

(10.52)

For \(U(\omega, \epsilon) \) to be unitary, we have:

\[UU^\dagger = 1 \sim (J^{k\ell})^\dagger = J^{k\ell}, \quad (P^\rho)^\dagger = P^\rho \]

(10.53)

Since \(\omega_{ij} = -\omega_{ji} \) we can take that

\[J^{k\ell} = -J^{\ell k} . \]

(10.54)
We have already identified the generator
\[\hbar P^\rho \equiv p^\rho \] (10.55)
as the operator of momentum. Similarly, we shall identify the generators of rotations
\[\hbar J^{k\ell} \] (10.56)
as operators of angular momentum.

How do the expectation values of the generators \(J^{k\ell}, P^\rho \) themselves transform under a coordinate transformation? Consider the product
\[U(R,a)U(1 + \omega, \epsilon)U^{-1}(R,a) = U \left(R(1 + \omega)R^{-1}, R\epsilon - R\omega R^{-1}a \right) \] (10.57)
where
\[U^{-1}(R,a) = U \left(R^{-1}, -R^{-1}a \right) \] (10.58)
and the parameters \(\omega, \epsilon \) of the small transformation are not related to the large transformation parameters \(R, a \). Expanding the lhs and rhs of the above in \(\omega, \epsilon \) we have:

\[
U(R,a)U(1 + \omega, \epsilon)U^{-1}(R,a) = U \left(1 + \frac{i}{2} \omega_{k\ell} J^{k\ell} - i\epsilon_\rho P^\rho \right) U^{-1} = 1 + \frac{i}{2} \omega_{k\ell} U J^{k\ell} U^{-1} - i\epsilon_\rho U P^\rho U^{-1}
\] (10.59)
and
\[
U \left(R(1 + \omega)R^{-1}, R\epsilon - R\omega R^{-1}a \right) = 1 + \frac{i}{2} \omega_{k\ell} R^{-1} \rho_{km} R^{-1}_{\ell n} \left(J^{mn} - a^m P^n + a^n P^m \right) - i\epsilon_\rho R^{-1}_{\rho k} P^k
\] (10.60)
Comparing the two, we obtain:
\[U(R,a)J^{k\ell}U^{-1}(R,a) = R^{-1}_{km} R_{\ell n} \left(J^{mn} - a^m P^n + a^n P^m \right) \] (10.62)
and
\[U(R,a)P^\rho U^{-1}(R,a) = R^{-1}_{\rho m} P^m. \] (10.63)

From the above, we can also show that (exercise):
\[U^{-1}(R,a)J^{k\ell}U(R,a) = R_{km} R_{\ell n} \left(J^{mn} - a^m P^n + a^n P^m \right) \] (10.64)
The expectation value of the generators transforms as follows with a coordinate symmetry transformation:

\[
\langle \psi | P^\rho | \psi \rangle \rightarrow \langle \psi | U^{-1} P^\rho U | \psi \rangle = R_{\rho m} \langle \psi | P^m | \psi \rangle \tag{10.66}
\]

and

\[
\langle \psi | J^{k\ell} | \psi \rangle \rightarrow \langle \psi | U^{-1} J^{k\ell} U | \psi \rangle = R_{km} R_{\ell n} \langle \psi | J^{k\ell} - a^m P^n + a^n P^m | \psi \rangle \tag{10.67}
\]

Therefore, the expectation value of P^ρ transforms as a classical vector and the expectation value of $J^{k\ell}$ transforms as a classical tensor with rotations and translations.

10.4.2 Lie algebra

We now assume further also that the transformation $T(R, a)$ is a small transformation,

\[
T(R_{ij}, a_i) = T(\delta_{ij} + \omega_{ij}', \epsilon_i'). \tag{10.68}
\]

and expand Eqs 10.64-10.65 in $\omega_{ij}', \epsilon_i'$. Matching the coefficients of the expansion, we find the following Lie-algebra for symmetry coordinate transformations:

\[
i [J^{ij}, J^{k\ell}] = \delta_{i\ell} J^{j k} - \delta_{ik} J^{j \ell} + \delta_{jk} J^{i \ell} - \delta_{j\ell} J^{ik}. \tag{10.69a}
\]

\[
i [P^m, J^{rs}] = \delta_{mr} P^s - \delta_{ms} P^r \tag{10.69b}
\]

\[
[P^r, P^s] = 0. \tag{10.69c}
\]

We identify the momentum and angular momentum operators as

\[
p \equiv (p_1, p_2, p_3) \equiv \hbar (P^1, P^2, P^3) \tag{10.70}
\]

and

\[
J \equiv (J_1, J_2, J_3) \equiv \hbar (J^{23}, J^{31}, J^{12}) \tag{10.71}
\]

respectively. In terms of these operators, the Lie algebra takes the form:

\[
[J_i, J_j] = i\hbar \epsilon_{ijk} J_k , \tag{10.72a}
\]

\[
[J_i, p_j] = i\hbar \epsilon_{ijk} p_k , \tag{10.72b}
\]

\[
[p_i, p_j] = 0 . \tag{10.72c}
\]
Chapter 11

Representations of angular momentum

In the previous chapter, we identified the generators of rotations with the angular momentum operators. They satisfy the commutation relations,

\[[J_i, J_j] = i\hbar \epsilon_{ijk} J_k. \] \hspace{1cm} (11.1)

11.1 Eigenstates of angular momentum

We observe that the square of the angular momentum vector:

\[J^2 \equiv J_k J_k = J_1^2 + J_2^2 + J_3^2 \] \hspace{1cm} (11.2)

commutes with the generators \(J_i \):

\[[J^2, J_i] = [J_k J_k, J_i] = J_k [J_k, J_i] + [J_k, J_i] J_k \]
\[= i\hbar \epsilon_{ki\ell} (J_\ell J_\ell + J_\ell J_\ell) = 0. \] \hspace{1cm} (11.3)

Thus we can find common eigenstates \(|f, m\rangle \)\(^1\) for \(J^2 \) and one of the generators \(J_i \), let’s say \(J_3 \).

\[J^2 |f, m\rangle = \hbar^2 f |f, m\rangle, \] \hspace{1cm} (11.4a)
\[J_3 |f, m\rangle = \hbar m |f, m\rangle. \] \hspace{1cm} (11.4b)

We have that

\[0 \leq |J_1 |f, m\rangle|^2 + |J_2 |f, m\rangle|^2 + |J_3 |f, m\rangle|^2 \]
\[= \langle f, m | J_1^2 + J_2^2 + J_3^2 |f, m\rangle = \langle f, m | J^2 |f, m\rangle \]
\[= \hbar^2 f \langle f, m |f, m\rangle \]
\[\sim f \geq 0. \] \hspace{1cm} (11.5)

\(^1\)we shall relabel these states later
11. Representations of angular momentum

Also, the eigenvalue number \(m \) of the third component \(J_3 \) is bounded:

\[
0 \leq \langle f, m | J_1^2 + J_2^2 | f, m \rangle = \langle f, m | J^2 - J_3^2 | f, m \rangle = \hbar^2 (f - m^2) \\
\sim -f \leq m \leq f.
\] (11.6)

We can construct linear combinations of the first two components of angular momentum

\[
J_\pm = J_1 \pm iJ_2
\] (11.7)

which are ladder operators:

\[
[J_3, J_\pm] = \pm \hbar J_\pm.
\] (11.8)

Then

\[
J_3 \left(J_\pm | f, m\rangle\right) = \left([J_3, J_\pm] + J_\pm J_3\right) | f, m\rangle \\
= (\pm \hbar J_\pm + J_\pm J_3) | f, m\rangle \\
= (\pm \hbar J_\pm + \hbar m J_\pm) | f, m\rangle \\
= \hbar (m \pm 1) (J_\pm | f, m\rangle)
\] (11.9)

Thus, the state \(J_\pm | f, m\rangle \) is also an eigenstate of \(J_3 \) with eigenvalue \(\hbar (m \pm 1) \).

We may write

\[
J_\pm | f, m\rangle = c_\pm | f, m \pm 1\rangle,
\]

\[
\sim |c_\pm|^2 = \langle f, m | J_\mp J_\pm | f, m \rangle \\
= \langle f, m | J_1^2 + J_2^2 \pm i [J_1, J_2] | f, m \rangle \\
= \langle f, m | J^2 - J_3^2 \mp \hbar J_3 | f, m \rangle, \\
\sim |c_\pm|^2 = \hbar^2 (f - m(m \pm 1)).
\] (11.10a)

We then normalize as:

\[
J_\pm | f, m\rangle = \hbar \sqrt{f - m(m \pm 1)} | f, m \pm 1\rangle
\] (11.10b)

Assume \(j \) being the maximum value of \(m \). Then,

\[
J_+ | f, j\rangle = 0,
\]

\[
\sim f - j(j + 1) = 0,
\]

\[
\sim f = j(j + 1).
\] (11.11)

Now, assume that \(j' < j \) is the minimum value of \(f \).

\[
J_- | f, j'\rangle = 0,
\]

\[
\sim j(j + 1) - j'(j' - 1) = 0,
\]

\[
\sim j' = -j.
\] (11.14c)
The ladder operators span the allowed range $-j \leq m \leq j$ by integer steps. Thus the number $(2j)$ must be an integer and thus:

$$j = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$$ \hfill (11.15)

We shall relabel the eigenstates $|f, m\rangle$ of J^2, J_3 with the half-integer j instead of f. The corresponding eigenvalue equations for the angular momentum operators are:

$$J^2 |j, m\rangle = \hbar^2 j(j + 1) |j, m\rangle \quad (11.16a)$$
$$J_3 |j, m\rangle = \hbar m |j, m\rangle . \quad (11.16b)$$

where, we have found that the eigenvalue numbers j, m are quantized. For the ladder operators we have found:

$$J_\pm |j, m\rangle = \hbar \sqrt{j(j + 1) - m(m + 1)} |j, m \pm 1\rangle . \quad (11.16c)$$

11.2 spin-$\frac{1}{2}$ representation of angular momentum

The simplest representation of the angular momentum operators J_i is the spin-$\frac{1}{2}$ representation, where the operators act on the states of a two-state system. For the spin-$\frac{1}{2}$ representation of angular momentum we have a base of two angular momentum eigenstates:

$$\left| \frac{1}{2}, \pm \frac{1}{2} \right>$$ \hfill (11.17)

satisfying

$$J^2 \left| \frac{1}{2}, \pm \frac{1}{2} \right> = \hbar^2 \frac{3}{4} \left| \frac{1}{2}, \pm \frac{1}{2} \right> , \quad (11.18a)$$
$$J_3 \left| \frac{1}{2}, \pm \frac{1}{2} \right> = \pm \hbar \frac{1}{2} \left| \frac{1}{2}, \pm \frac{1}{2} \right> , \quad (11.18b)$$

$$J_+ \left| \frac{1}{2}, \frac{1}{2} \right> = 0, \quad J_+ \left| \frac{1}{2}, -\frac{1}{2} \right> = \hbar \left| \frac{1}{2}, \frac{1}{2} \right> , \quad (11.19)$$
$$J_- \left| \frac{1}{2}, \frac{1}{2} \right> = \hbar \left| \frac{1}{2}, -\frac{1}{2} \right> , \quad J_- \left| \frac{1}{2}, -\frac{1}{2} \right> = 0. \quad (11.20)$$

In the representation where

$$\left| \frac{1}{2}, \frac{1}{2} \right> \triangleq \begin{pmatrix} 1 \\ 0 \end{pmatrix} , \quad \left| \frac{1}{2}, -\frac{1}{2} \right> \triangleq \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$ \hfill (11.21)
11. REPRESENTATIONS OF ANGULAR MOMENTUM

we find:

\[
J_3 = \frac{\hbar}{2} \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}.
\]

Similarly,

\[
J_- = \hbar \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}
\]

and,

\[
J_+ = \hbar \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}.
\]

The ladder operators are \(J_\pm = J_1 \pm iJ_2 \). From the above we obtain:

\[
J_1 = \frac{\hbar}{2} \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}, \quad J_2 = \frac{\hbar}{2} \begin{pmatrix}
i & -1 \\
1 & 0
\end{pmatrix}.
\]

The matrices

\[
\sigma_1 = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}, \quad \sigma_2 = \begin{pmatrix}
i & -1 \\
1 & 0
\end{pmatrix}, \quad \sigma_3 = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}.
\]

are known as the Pauli matrices.

Notice with an explicit calculation (exercise) that

\[
[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k
\]

Therefore the representation of angular momentum as

\[
J_i = \frac{\hbar\sigma_i}{2}
\]

satisfies the anticipated Lie-algebra of rotations.

Parenthetically, we note the following properties for the Pauli matrices.

\[
\{\sigma_i, \sigma_j\} = \sigma_i\sigma_j + \sigma_j\sigma_i = 2\delta_{ij}1_{2\times2}.
\]

Combining Eq. 11.25 and Eq. 11.26 we obtain that the product of Pauli matrices is:

\[
\sigma_i\sigma_j = \delta_{ij}1_{2\times2} + \epsilon_{ijk}\sigma_k
\]
We shall now use the property of angular momentum operators as generators of rotations. For a rotation of a small angle θ around the z–axis, the representation of the transformation reads:

$$U(\theta) = 1_{2 \times 2} + \frac{i}{2} (\omega_{12} J_{12} + \omega_{21} J_{21})$$

$$= 1_{2 \times 2} + \frac{\theta}{\hbar} J_3 = 1_{2 \times 2} + \frac{i \theta \sigma_3}{2}, \quad (11.28)$$

where we have used that

$$\omega_{12} = -\omega_{21} = \theta, \quad J_{12} = -J_{21} = \frac{J_3}{\hbar} = \frac{\sigma_3}{2}.$$

For a large angle θ we have

$$U(\theta) = \lim_{N \to \infty} \left[U \left(\frac{\theta}{N} \right) \right]^N = \exp \left(\frac{i \sigma_3 \theta}{2} \right). \quad (11.29)$$

The exponential $e^{a\sigma_k}$, where σ_k, $k = 1, 2$ or 3 is a Pauli matrix having the property

$$\sigma^2 = 1_{2 \times 2}$$

is given by

$$\exp(a\sigma_k) = \sum_{n=0}^{\infty} \frac{(a\sigma_k)^n}{n!}$$

$$= \sum_{k=0}^{\infty} \frac{(a\sigma_k)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(a\sigma_k)^{2k+1}}{(2k+1)!}$$

$$= 1_{2 \times 2} \sum_{k=0}^{\infty} \frac{a^{2k}}{(2k)!} + \sigma_k \sum_{k=0}^{\infty} \frac{a^{2k+1}}{(2k+1)!}$$

$$= 1_{2 \times 2} e^{a} + e^{-a} + \sigma_k e^{a} - e^{-a} \quad (11.30)$$

Thus

$$U(\theta) = \exp \left(\frac{i \sigma_3 \theta}{2} \right) = 1_{2 \times 2} \cos \left(\frac{\theta}{2} \right) + i \sigma_3 \sin \left(\frac{\theta}{2} \right)$$

$$= \begin{pmatrix} \cos \left(\frac{\theta}{2} \right) + i \sin \left(\frac{\theta}{2} \right) & 0 \\ 0 & \cos \left(\frac{\theta}{2} \right) - i \sin \left(\frac{\theta}{2} \right) \end{pmatrix}$$

$$= \begin{pmatrix} \exp \left(i \frac{\theta}{2} \right) & 0 \\ 0 & \exp \left(-i \frac{\theta}{2} \right) \end{pmatrix}. \quad (11.31)$$
11. Representations of angular momentum

A general state for a two-state system

\[|\psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \]

(11.32)

under a rotation \(\theta\) around the \(z\)-axis will transform as

\[|\psi\rangle \rightarrow |\psi'\rangle = U(\theta) |\psi\rangle = \begin{pmatrix} e^{i\theta/2} \psi_1 \\ e^{-i\theta/2} \psi_2 \end{pmatrix} \]

(11.33)

Notice that a rotation \(\theta = 2\pi\) does not bring the system back to the original state, against common intuition:

\[U(2\pi) |\psi\rangle = -|\psi\rangle. \]

(11.34)

For spin-\(\frac{1}{2}\) systems a rotation of \(4\pi\) is required in order to return back to the original state.

We can generalize our discussion here for a rotation of an angle \(\theta\) around any axis \(\hat{n}\). We can prove (exercise) that the corresponding spin-\(\frac{1}{2}\) representation is:

\[U(\hat{n}, \theta) = \exp \left(i \frac{\sigma \cdot \hat{n}}{2} \theta \right), \]

(11.35)

which can also be written as

\[U(\hat{n}\theta) = 1_{2 \times 2} \cos \frac{\theta}{2} + i \sigma \cdot \hat{n} \sin \frac{\theta}{2}, \]

(11.36)

where

\[\sigma = (\sigma_1, \sigma_2, \sigma_3). \]

(11.37)

To prove the above the following are useful.

\[\sigma \cdot a = \begin{pmatrix} a_3 \\ a_1 + ia_2 \\ a_3 \end{pmatrix}, \]

(11.38a)

\[(\sigma \cdot a)^2 = a^2, \]

(11.38b)

and

\[(\sigma \cdot a)(\sigma \cdot b) = a \cdot b + i(a \times b) \cdot \sigma. \]

(11.38c)

11.3 Orbital angular momentum

In this chapter we study the space-representation of the eigenstates of the angular momentum operators \(L_3, L^2 = \sum_i L_i^2\), where we have defined

\[L_i = \epsilon_{ijk} x_j p_k, \]

(11.39)
11.3. Orbital angular momentum

with x_i, p_j being the position and momentum operators. It is straightforward to prove that the operators $\frac{L_i}{\hbar}$ satisfy the Lie algebra of the generators of rotations,

$$\left[\frac{L_i}{\hbar}, \frac{L_j}{\hbar} \right] = i\epsilon_{ijk} \frac{L_k}{\hbar}. \quad (11.40)$$

According to the general theory of the generators for rotations, we anticipate that we can find common eigenstates $|\ell, m\rangle$ for $L^2 = \sum_i L^2_i$ and one of the generators L_i with

$$L^2 |\ell, m\rangle = \hbar^2 \ell (\ell + 1) |\ell, m\rangle$$

and

$$L_3 |\ell, m\rangle = \hbar m |\ell, m\rangle.$$

11.3.1 Spherical coordinates

It will be useful to analyze angular momentum using spherical coordinates, where:

\begin{align*}
 x_1 &= r \sin \theta \sin \phi, \quad (11.41a) \\
 x_2 &= r \sin \theta \cos \phi, \quad (11.41b) \\
 x_3 &= r \cos \theta. \quad (11.41c)
\end{align*}

For the differentials, we have

\begin{align*}
 \partial_r &= \sum_i \frac{\partial x_i}{\partial r} \partial_i, \quad (11.42a) \\
 \partial_\theta &= \sum_i \frac{\partial x_i}{\partial \theta} \partial_i, \quad (11.42b) \\
 \partial_\phi &= \sum_i \frac{\partial x_i}{\partial \phi} \partial_i. \quad (11.42c)
\end{align*}

which in matrix notation gives,

\begin{align*}
 \begin{pmatrix}
 \partial_r \\
 \partial_\theta \\
 \partial_\phi
 \end{pmatrix}
 &=
 \begin{pmatrix}
 \sin \theta \sin \phi & \sin \theta \cos \phi & \cos \theta \\
 r \cos \theta \sin \phi & r \cos \theta \cos \phi & -r \sin \theta \\
 r \sin \theta \cos \phi & -r \sin \theta \sin \phi & 0
 \end{pmatrix}
 \begin{pmatrix}
 \partial_1 \\
 \partial_2 \\
 \partial_3
 \end{pmatrix}. \quad (11.43)
\end{align*}

Inverting, we obtain:

\begin{align*}
 \begin{pmatrix}
 \partial_1 \\
 \partial_2 \\
 \partial_3
 \end{pmatrix}
 &=
 \begin{pmatrix}
 \sin \theta \sin \phi & \cos \theta \sin \phi & \frac{\cos \phi}{r} \\
 \sin \theta \cos \phi & \frac{\cos \phi \cos \theta}{r} & -\frac{\sin \phi}{r \sin \theta} \\
 \cos \theta & -\frac{\sin \theta}{r} & 0
 \end{pmatrix}
 \begin{pmatrix}
 \partial_r \\
 \partial_\theta \\
 \partial_\phi
 \end{pmatrix}. \quad (11.44)
\end{align*}
We then calculate, \((\cot \theta = \frac{\cos \theta}{\sin \theta})\)

\[
x_2 \partial_3 - x_3 \partial_2 = \cot \theta \sin \phi \partial_\phi - \cos \phi \partial_\theta , \quad (11.45a)
\]

\[
x_3 \partial_1 - x_1 \partial_3 = \cot \theta \cos \phi \partial_\phi + \sin \phi \partial_\theta , \quad (11.45b)
\]

\[
x_1 \partial_2 - x_2 \partial_1 = -\partial_\phi . \quad (11.45c)
\]

The Laplacian operator is,

\[
\nabla^2 = \sum_i \partial_i^2 = \frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]. \quad (11.46)
\]

11.3.2 Orbital angular momentum operators and the Laplacian

Consider the action of an angular momentum operator on a general state \(|a\rangle\),

\[
L_i |a\rangle = \epsilon_{ijk} \hat{x}_i \hat{p}_j |a\rangle . \quad (11.47)
\]

Acting with a position bra \(<r| = \langle x_1, x_2, x_3|\), we have

\[
<r| L_i |a\rangle = \epsilon_{ijk} <r| \hat{x}_j \hat{p}_k |a\rangle \\
= -i\hbar \epsilon_{ijk} x_j \partial_k <r|a\rangle . \quad (11.48)
\]

For example,

\[
<r| L_3 |a\rangle = <r| \hat{x}_1 \hat{p}_2 - \hat{x}_2 \hat{p}_1 |a\rangle \\
= -i\hbar (x_1 \partial_2 - x_2 \partial_1) <r|a\rangle . \quad (11.49)
\]

Using spherical coordinates introduced in the previous section, we obtain

\[
<r| L_3 |a\rangle = i\hbar (\cot \theta \sin \phi + \partial_\phi) <r|a\rangle . \quad (11.50)
\]

Similarly,

\[
<r| L_1 |a\rangle = -i\hbar (\cot \theta \sin \phi \partial_\phi - \cos \phi \partial_\theta) <r|a\rangle . \quad (11.51)
\]

and

\[
<r| L_2 |a\rangle = -i\hbar (\cot \theta \cos \phi \partial_\phi + \sin \phi \partial_\theta) <r|a\rangle . \quad (11.52)
\]

For the ladder operators,

\[
L_\pm = L_1 \pm iL_2 , \quad (11.53)
\]
we obtain
\[\langle r | L_\pm | a \rangle = i \hbar \left(e^{\mp i \phi} \left[\partial_\theta \mp i \cot \theta \partial_\phi \right] \right) \langle r | a \rangle. \] (11.54)

We can write
\[L^2 = L_3^2 + \frac{1}{2} (L_+ L_- + L_- L_+) \] (11.55)

After a little bit of algebra, we arrive at
\[\langle r | L^2 | a \rangle = -\hbar^2 \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \phi} \right) \right] \langle r | a \rangle. \] (11.56)

We notice that the representation of the operator \(L^2 \) in position-space yields the angular part of the Laplacian operator, which, in turn, represents the square of the momentum. Explicitly,
\[\langle r | p^2 | a \rangle = -\hbar^2 \nabla^2 \langle r | a \rangle \]
\[= -\hbar^2 \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \right] \langle r | a \rangle + \frac{1}{r^2} \langle r | L^2 | a \rangle. \] (11.57)

11.3.3 Spherical harmonics

The eigenstates \(|\ell, m\rangle \) of \(L^2, L_3 \) satisfy
\[i \hbar \partial_\phi \langle r | \ell, m \rangle = \hbar m \langle r | \ell, m \rangle, \] (11.58)

and admit the general solution
\[\langle r | \ell, m \rangle = \eta(r, \theta)e^{-im\phi}. \] (11.59)

For the maximum value \(\ell \) of \(m \), we have that
\[\langle r | L_+ | \ell, \ell \rangle = 0, \] (11.60)

which yields the differential equation,
\[e^{-i\phi} \left[\partial_\theta - i \cot \theta \partial_\phi \right] \eta(r, \theta)e^{-i\ell\phi} = 0 \] (11.61)
\[\sim [\partial_\theta - \ell \cot \theta] \eta(r, \theta) = 0. \] (11.62)

This admits the solution,
\[\eta(r, \theta) = \psi(r)(\sin \theta)^\ell. \] (11.63)

We then have
\[\langle r | \ell, \ell \rangle = \psi(r) Y_\ell^\ell(\theta, \phi), \] (11.64)
11. **Representations of angular momentum**

where

$$Y_\ell^\ell(\theta, \phi) = c_{\ell\ell} e^{-i\ell\phi} (\sin \theta)^\ell$$ \hspace{1cm} (11.65)

contains the angular dependence on the variables \((\theta, \phi)\) of \(\langle r | \ell, \ell \rangle\). This function is a so called *spherical harmonic*. We fix the normalization constant as follows,

$$1 = \langle \ell, \ell | \ell, \ell \rangle = \int d^3 r \langle \ell, \ell | r \rangle \langle r | \ell, \ell \rangle = \int_0^\infty dr |\psi(r)|^2 \int d\Omega |Y_\ell^\ell|^2.$$ \hspace{1cm} (11.66)

We require that the angular integral and the radial integral are normalized to the unity independently:

$$\int_0^\infty dr |\psi(r)|^2 = 1$$ \hspace{1cm} (11.67)

and

$$\int d\Omega |Y_\ell^\ell|^2 = 1.$$ \hspace{1cm} (11.68)

The angular normalization condition yields,

$$|c_{\ell\ell}|^2 \int_0^{2\pi} d\phi \int_0^\pi d\theta \sin \theta (\sin^2 \theta)^\ell = 1$$

$$\sim 2\pi B \left(\ell + 1, \frac{1}{2} \right) = |c_{\ell\ell}|^{-2}$$ \hspace{1cm} (11.69)

$$\sqrt{4\pi \frac{4\ell!(\ell!)^2}{(2\ell + 1)!}} = |c_{\ell\ell}|^{-1}. \hspace{1cm} (11.70)$$

We can obtain spherical harmonics for \(|\ell, m\rangle\) with a lower value of \(m < \ell\) by means of the ladder operators. Acting with the \(L_-\) operator on a general \(|\ell, m\rangle\) state, we obtain

$$\langle r | \ell, m - 1 \rangle = \frac{\langle r | L_- | \ell, m \rangle}{\sqrt{(\ell + m)(\ell + 1 - m)}}, \hspace{1cm} (11.71)$$

or equivalently,

$$\langle r | \ell, m - 1 \rangle = i\hbar e^{i\phi} (\partial_\theta + i \cot \theta \partial_\phi) \frac{\langle r | \ell, m \rangle}{\sqrt{(\ell + m)(\ell + 1 - m)\hbar}}. \hspace{1cm} (11.72)$$
It is obvious that the application of this operator does not mix the radial and angular parts in producing $\langle r | \ell, m \rangle$ of a different m than ℓ. So, we can decompose

$$\langle r | \ell, m \rangle = \psi_{\ell m}(r) Y_{\ell}^{m}(\theta, \phi). \quad (11.73)$$

The spherical harmonics Y_{ℓ}^{m} depend purely on the direction of the vector r. We can think of them as

$$\langle \hat{r} | \ell, m \rangle = Y_{\ell}^{m}(\theta, \phi), \quad \hat{r} = \frac{r}{|r|}. \quad (11.74)$$

For the spherical harmonics $Y_{\ell}^{m}(\theta, \phi)$, we obtain,

$$Y_{\ell}^{m-1}(\theta, \phi) = i \left(e^{i\phi} \left[\partial_{\theta} + i \cot \theta \partial_{\phi} \right] \right) \frac{Y_{\ell}^{m}(\theta, \phi)}{\sqrt{(\ell + m)(\ell + 1 - m)}} \quad (11.75)$$

According to our general theory for the eigenvalues of the generators of rotations, we anticipate that the maximum value ℓ of m is a half-integer and that $m = -\ell, -\ell + 1, \ldots, \ell - 1, \ell$. Here we shall find a little surprise. While the operators $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ furnish a representation of rotations in Hilbert-space it is not necessary that their eigenvalues take all values permitted by the Lie algebra. In fact, for orbital angular momentum only integer values of ℓ, m are allowed. Assume that $\ell = \frac{1}{2}$. Then, we find that

$$Y_{\frac{1}{2}}^{\frac{1}{2}}(\theta, \phi) = c_{11}^{\frac{1}{2}} \frac{e^{-i\phi/2}}{\sqrt{\sin \theta}}. \quad (11.76)$$

With the application of the lowering operator, we obtain:

$$Y_{\frac{1}{2}}^{-\frac{1}{2}}(\theta, \phi) = i \left(e^{i\phi} \left[\partial_{\theta} + i \cot \theta \partial_{\phi} \right] \right) c_{\frac{1}{2}}^{11} e^{-i\phi/2} \sqrt{\sin \theta} \quad (11.77)$$

$$= i c_{\frac{1}{2}}^{11} \frac{e^{i\phi/2}}{\sqrt{\sin \theta}} \frac{\cos \theta}{\sqrt{\sin \theta}}.$$

For a consistent spherical harmonic, we must have that the application of the lowering operator one more time yields zero. Notice also that the derived spherical harmonic gives an infinite value for $\theta = 0$.

Spherical harmonics are only defined for $\ell = 0, 1, 2, 3$ integer values of the indices for the angular momentum eigenvalues. Starting for a generic $m = \ell$ value, repeated application of Eq. $[11.75] \ell - m$ times we can obtain the spherical harmonic Y_{ℓ}^{m}. Let’s denote the differential operator of Eq. $[11.75]$ as

$$D_{-} \equiv i \left(e^{i\phi} \left[\partial_{\theta} + i \cot \theta \partial_{\phi} \right] \right) \quad (11.78)$$

and define

$$\omega_{\ell} \equiv e^{-i\ell \phi} \sin^{\ell} \theta. \quad (11.79)$$
We find that
\[\omega_{\ell} = e^{-i\phi} \sin \theta \omega_{\ell-1}, \quad (11.80) \]
\[D_\omega \omega_{\ell} = (2i\ell \cos \theta) \omega_{\ell-1}, \quad (11.81) \]
\[D_\omega (f(\theta)) = -i e^{i\phi} \sin \theta \frac{d}{d(\cos \theta)} f(\theta), \quad (11.82) \]
\[\frac{d}{d(\cos \theta)} \left[(\sin \theta)^{2\ell} f(\theta) \right] = -(\sin \theta)^{2(\ell-1)} \left(2\ell \cos \theta f(\theta) \right. \]
\[\left. -\sin^2 \theta \frac{d}{d(\cos \theta)} f(\theta) \right). \quad (11.83) \]
and that
\[D_\omega (f(\theta) \omega_{\ell}) = f(\theta) D_\omega \omega_{\ell} + \omega_{\ell} D_\omega (f(\theta)) \]
\[= \omega_{\ell-1} \frac{-i}{(\sin \theta)^{2(\ell-1)}} \frac{d}{d(\cos \theta)} \left[(\sin \theta)^{2\ell} f(\theta) \right], \quad (11.84) \]
where \(f(\theta) \) an arbitrary function of the polar angle \(\theta \). It is now straightforward to compute the repeated application of the differential operator on \(\omega_{\ell} \). For example,
\[D_\omega (D_\omega \omega_{\ell}) = 2i\ell D_\omega \left(\cos \theta \omega_{\ell-1} \right) \]
\[= \omega_{\ell-2} \frac{(-i)^2}{(\sin \theta)^{2(\ell-2)}} \frac{d^2}{d(\cos \theta)^2} \left[(\sin \theta)^{2\ell} \right], \quad (11.85) \]
and in general,
\[D_\omega^n \omega_{\ell} = \omega_{\ell-n} \frac{(-i)^n}{(\sin \theta)^{2(\ell-n)}} \frac{d^n}{d(\cos \theta)^n} \left[(\sin \theta)^{2\ell} \right]. \quad (11.86) \]

We are now ready to determine the spherical harmonics \(Y^m_\ell \) for positive values of \(m \), using the recurrence identity of Eq. \(11.75 \) on
\[Y^\ell_\ell (\theta, \phi) = c^\ell\ell \omega_\ell. \quad (11.87) \]
\(\ell - m \) times, we find
\[Y^m_\ell (\theta, \phi) = (-i)^\ell c^\ell\ell \sqrt{\frac{(2\ell)! (\ell + m)!}{(\ell - m)!}} \frac{e^{-im(\phi - \frac{\pi}{2})}}{\sin \theta^m} \frac{d^{\ell-m}}{d(\cos \theta)^{\ell-m}} (\sin \theta)^{2\ell}. \quad (11.88) \]
The normalization \(c^\ell\ell \) can be determined up to a phase. We conventionally choose this phase to be
\[c^\ell\ell = |c^\ell\ell| (-i)^\ell. \quad (11.89) \]
With this normalization we obtain,

$$
Y^m_\ell(\theta, \phi) = \sqrt{\frac{(2\ell + 1) (\ell + m)!}{4\pi (\ell - m)!}} \frac{e^{-im(\phi - \frac{\pi}{2})}}{(\sin \theta)^m} \frac{(-1)^\ell}{2^\ell \ell!} \frac{d^{\ell-m}}{d(\cos \theta)^{\ell-m}} (\sin \theta)^{2\ell}.
$$

The derivatives above for the case $m = 0$ are related to the Legendre polynomials, defined as,

$$
P_\ell(x) = (-1)^\ell \frac{d^\ell}{dx^\ell} (1 - x^2)^{\ell}. \tag{11.91}
$$

As one can check easily, they satisfy the differential equation,

$$
\frac{d}{dx} \left((1 - x^2) \frac{d}{dx} P_\ell(x)\right) + \ell(\ell + 1)P_\ell(x) = 0. \tag{11.92}
$$

For $x = \cos \theta$, we have

$$
\frac{d}{d\cos \theta} \sin^2 \theta \frac{d}{d\cos \theta} P_\ell(\cos \theta) + \ell(\ell + 1)P_\ell(\cos \theta) = 0. \tag{11.93}
$$

or, equivalently,

$$
\frac{1}{\sin \theta} \sin \theta \frac{d}{d\theta} P_\ell(\cos \theta) = 0. \tag{11.94}
$$

For $m = 0$, the spherical harmonics become:

$$
Y^0_\ell(\theta, \phi) = \sqrt{\frac{(2\ell + 1)}{4\pi}} P_\ell(\cos \theta). \tag{11.95}
$$

To obtain the spherical harmonics for negative values of m we have to repeat a completely analogous study starting from $Y^{-\ell}_\ell$ as derived from

$$
L_- |\ell, -\ell\rangle = 0,
$$

and using that

$$
L_+ |\ell, m\rangle = \sqrt{(\ell - m)(\ell + m + 1)} |\ell, m + 1\rangle.
$$

We find that (exercise):

$$
Y^{-m}_\ell(\theta, \phi) = (-1)^m [Y^m_\ell(\theta, \phi)]^*. \tag{11.96}
$$
11.3.4 Space-representations of rotations

An arbitrary rotation of coordinates \(x_i \to x'_i = R_{ij} x_j \) is represented by a unitary operator

\[
|\psi\rangle \to U(R) |\psi\rangle,
\]

where the operator \(U(R) \) is a function of the generators \(J_i \) with \(i = 1, 2, 3 \). Since the square of the angular momentum commutes with all generators \(J_i \), we should also have that

\[
[J^2, U(R)] = 0.
\]

Thus, the states \(|\ell, m\rangle\) and \(U(R) |\ell, m\rangle\) have the same eigenvalues for the \(J^2 \) operator. The \(U(R) |\ell, m\rangle\) can only be a superposition of \(|\ell, m'\rangle\) states with the same value \(\ell \): In a general decomposition,

\[
U(R) |\ell, m\rangle = \sum_{\ell', m'} c_{\ell' m'} |\ell', m'\rangle
\]

only the terms with \(\ell' = \ell \) are present. We can write that:

\[
U(R) |\ell, m\rangle = \sum_{m'} c_{m'} |\ell, m'\rangle
\]

Physically, this result is anticipated since a rotation should not change the total angular momentum.

Consider a position state \(|\hat{z}\rangle\), corresponding to the unit vector in the \(z \)-direction. A position state \(|\hat{r}\rangle\) with

\[
\hat{r} = (\sin \theta \sin \phi, \sin \theta \cos \phi, \cos \theta),
\]

can be produced by a rotation as for,

\[
|\hat{r}\rangle = U(\theta, \phi) |\hat{z}\rangle.
\]

We then have

\[
|\hat{r}\rangle = \sum_{\ell', m'} U(\theta, \phi) |\ell', m'\rangle \langle \ell', m'| |\hat{z}\rangle
\]

\[
\sim \langle \ell, m|\hat{r}\rangle = \sum_{\ell', m'} \langle \ell, m| U(\theta, \phi) |\ell', m'\rangle \langle \ell', m'| \hat{z}\rangle
\]

\[
\sim \langle \ell, m|\hat{r}\rangle = \sum_{m'} \langle \ell, m| U(\theta, \phi) |\ell, m'\rangle \langle \ell, m'| \hat{z}\rangle
\]

The matrix-element \(\langle \hat{z}|\ell, m\rangle \) is zero unless \(m = 0 \). Indeed, if \(m \neq 0 \),

\[
L_3 |\hat{z}\rangle = (\hat{x}_1 \hat{p}_2 - \hat{x}_2 \hat{p}_1) |\hat{z}\rangle = 0,
\]

11. Representations of angular momentum
since the position operators \(\hat{x}_1, \hat{x}_2 \) yield a zero eigenvalue for a position ket in the orthogonal \(z \)-direction. Also,

\[
0 = \langle \hat{z} | L_3 | \ell, m \rangle = \hbar m \langle \hat{z} | \ell, m \rangle.
\]

For \(m \neq 0 \), we must have that \(\langle \hat{z} | \ell, m \rangle = 0 \). Therefore,

\[
\langle \hat{z} | \ell, m \rangle = \langle \hat{z} | 0, 0 \rangle \delta_{0m} = Y^0_\ell(\theta = 0, \phi) \delta_{0m}
\]

\[
= \sqrt{\frac{(2\ell + 1)}{4\pi}} P_\ell(\cos \theta)|\theta = 0 \rangle \delta_{0m}
\]

\[
\sim \langle \hat{z} | \ell, m \rangle = \sqrt{\frac{(2\ell + 1)}{4\pi}} \delta_{0m}
\]

Substituting in Eq. 11.103 we obtain:

\[
Y^m_\ell(\theta, \phi) = \langle \ell, m | U(\theta, \phi) | 0 \rangle \sqrt{\frac{(2\ell + 1)}{4\pi}}.
\] (11.104)

11.4 Potentials with spherical symmetry

We have proven that systems with a spherical symmetry have a Hamiltonian which commutes with the generators of rotations. The common eigenstates of \(J^2 \) and \(J_3 \) should also be eigenstates of the Hamiltonian, satisfying:

\[
H | E, \ell, m \rangle = E | E, \ell, m \rangle, \quad (11.105a)
\]

\[
L^2 | E, \ell, m \rangle = \hbar^2 \ell(\ell + 1) | E, \ell, m \rangle, \quad (11.105b)
\]

\[
L_3 | E, \ell, m \rangle = \hbar m | E, \ell, m \rangle. \quad (11.105c)
\]

The Hamiltonian of a particle inside a spherically symmetric potential

\[
H = \frac{p^2}{2M} + V(r), \quad (11.106)
\]

where the potential \(V(r) \) is a function only of the magnitude of a spatial distance, is invariant under rotations. Indeed, we can easily compute that:

\[
[r_i, L_j] = i\hbar \epsilon_{ijk} r_k \quad (11.107a)
\]

\[
[p_i, L_j] = i\hbar \epsilon_{ijk} p_k \quad (11.107b)
\]

\[
[p^2, L_i] = 0 \quad (11.107c)
\]

\[
[r^2, L_i] = 0 \quad (11.107d)
\]
from which we conclude that

\[[H, L_i] = 0. \] \hspace{1cm} (11.108)

Recall that

\[\langle r | E, \ell, m \rangle = \psi_{E,\ell,m}(r) \mkern1mu Y^m_\ell(\theta, \phi). \] \hspace{1cm} (11.109)

and from Eq. 11.57, we also obtain that

\[\langle r | p^2 | E, \ell, m \rangle = -\hbar^2 \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\ell(\ell + 1)}{r^2} \right] \psi_{E,\ell,m}(r) \mkern1mu Y^m_\ell(\theta, \phi). \] \hspace{1cm} (11.110)

From Eq. 11.105a we obtain a differential equation for the radial part of the wave-function

\[\left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\ell(\ell + 1)}{r^2} - \frac{2M(V(r) - E)}{\hbar^2} \right] \psi_{E,\ell,m}(r) = 0. \] \hspace{1cm} (11.111)

Notice that the “radial” wavefunction does not depend on the eigenvalue \(m \) of \(L_3 \),

\[\psi_{E,\ell,m}(r) \equiv \psi_{E,\ell}(r). \] \hspace{1cm} (11.112)

We write,

\[\psi_{E,\ell}(r) = \frac{R(r)}{r}, \] \hspace{1cm} (11.113)

which yields

\[0 = R''(r) - \left[\frac{\ell(\ell + 1)}{r^2} + \frac{2M(V(r) - E)}{\hbar^2} \right] R(r). \] \hspace{1cm} (11.114)

Exercise 11.1. Solve this equation in the case of a free particle \(V(r) = 0 \).

Exercise 11.2. Solve this equation for a spherical well \(V(r) = V_0 \Theta(r < r_0) \).

11.5 The hydrogen atom

We are now in position to discuss a simplified version of the hydrogen atom, where we ignore the spin of the electron. The potential is given by

\[V(r) = -\frac{Ze^2}{r}. \] \hspace{1cm} (11.115)
Exercise 11.3. Solve Eq. \[11.114\] for the hydrogen atom potential.

In this section, we shall determine algebraically the energy spectrum of the hydrogen atom. Consider the operator

\[
R = - \frac{Ze^2 r}{r} + \frac{1}{2m} (p \times L - L \times p) \tag{11.116}
\]

where

\[
L = r \times p.
\]

This is the quantum mechanics analogue of the Runge-Lenz vector, a conserved quantity in classical mechanics for the Coulomb potential. Note that

\[
[r_i, L^2] = i \epsilon_{ijk} (L_j r_k - r_j L_k) \tag{11.117a}
\]

\[
[p_i, L^2] = i \epsilon_{ijk} (L_j p_k - p_j L_k) \tag{11.117b}
\]

or equivalently,

\[
[r, L^2] = i (L \times r - r \times L) \tag{11.118a}
\]

\[
[p, L^2] = i (L \times p - p \times L) \tag{11.118b}
\]

We can then rewrite,

\[
R_i = - \frac{Ze^2 r_i}{r} + \frac{[L^2, p_i]}{2mi}. \tag{11.119}
\]

The vector operator \(R_i\) can be easily shown from above to be Hermitian,

\[
R_i^\dagger = R_i.
\]

As anticipated from our experience with classical mechanics, it commutes with the Hamiltonian (exercise).

\[
[H, R_i] = 0, \tag{11.120}
\]

with

\[
H = \frac{p^2}{2m} - \frac{Ze^2}{r}. \tag{11.121}
\]

The Runge-Lenz vector is orthogonal to the angular momentum:

\[
L \cdot R = R \cdot L = 0. \tag{11.122}
\]
Also, we can prove the following identities (exercise):

\[
\mathbf{L} \times \mathbf{p} = -\mathbf{p} \times \mathbf{L} + 2i\hbar\mathbf{p}.
\]

(11.123a)

\[
\mathbf{r} \cdot (\mathbf{p} \times \mathbf{L}) = r_i \epsilon_{ijk} p_j L_k
\]

(11.123b)

\[
= (\epsilon_{kij} r_i p_j) L_k
\]

\[
= L_k L_k
\]

\[
= \mathbf{L}^2,
\]

(11.123c)

\[
(\mathbf{p} \times \mathbf{L}) \cdot \mathbf{r} = \epsilon_{ijk} p_j L_k r_i
\]

\[
= \epsilon_{ijk} p_j ([L_k, r_i] + r_i L_k)
\]

\[
= i\hbar \epsilon_{kij} \epsilon_{ki\ell} p_j r_\ell + L^2
\]

\[
= L^2 + i\hbar 2\delta_{j\ell} p_j r_\ell
\]

\[
= L^2 + 2i\hbar \mathbf{p} \cdot \mathbf{r}.
\]

Similarly,

\[
(\mathbf{p} \times \mathbf{L})^2 = p^2 L^2,
\]

(11.124a)

\[
\mathbf{p} \cdot (\mathbf{p} \times \mathbf{L}) = 0,
\]

(11.124b)

\[
(\mathbf{p} \times \mathbf{L}) \cdot \mathbf{p} = 2i\hbar p^2,
\]

(11.124c)

and

\[
[r_i, r_j] = \frac{2i\hbar}{r}.
\]

(11.125)

For the square of the Runge-Lenz vector we find,

\[
R^2 = \left(-\frac{Ze^2 \mathbf{r}}{r} + \frac{\mathbf{p} \times \mathbf{L}}{m} - \frac{i\hbar}{m} \mathbf{p} \right)^2
\]

\[
= \ldots
\]

\[
= Z^2 e^4 + 2 \left(\frac{p^2}{2m} - \frac{Ze^2}{r} \right) (\hbar^2 + L^2).
\]

Thus,

\[
R^2 = Z^2 e^4 + \frac{2H}{m} (\hbar^2 + L^2).
\]

(11.126)

(11.127)

We can then determine the eigenvalues of the hydrogen-atom Hamiltonian if we know the eigenvalues of \(R^2\). We shall do this by means of an algebraic method.

We find (exercise) the following commutation relations:

\[
[R_i, R_j] = \frac{-2H}{m} i\hbar \epsilon_{ijk} L_k
\]

(11.128a)

\[
[L_i, R_j] = i\hbar \epsilon_{ijk} R_k.
\]

(11.128b)
We also recall,
\[[L_i, L_j] = i\hbar \epsilon_{ijk} L_k . \] (11.128c)

We now define,
\[A_i^\pm = \frac{1}{2} \left(L_i \pm \sqrt{\frac{m}{-2H}} R_i \right) \] (11.129)

The new operators satisfy the algebra,
\[[A_i^\pm, A_j^\pm] = i\hbar \epsilon_{ijk} A_k^\pm \] (11.130a)
and
\[[A_i^\pm, A_j^\mp] = 0 . \] (11.130b)

which is our familiar algebra of angular momentum. Notice that the operators \(A_i^\pm \) are Hermitian if the Hamiltonian has negative eigenvalues, i.e. for negative energies. For the squares \((A^\pm)^2\), we find that
\[
(A^\pm)^2 = \frac{1}{4} \left[L^2 - \frac{m}{2H} R^2 \right],
\]
\[
= \frac{1}{4} \left[L^2 - \frac{m}{2H} \left(Z^2 e^4 + \frac{2H}{m} (\hbar^2 + L^2) \right) \right]
\]
\[
\sim (A^\pm)^2 = -\frac{\hbar^2}{4} - \frac{m}{8H} Z^2 e^4.
\] (11.131)

According to the Lie-algebra for the \(A_i^\pm \) operators, the eigenvalues of the \((A^\pm)^2\) are,
\[
\hbar^2 j(j + 1), \quad j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots
\] (11.132)

Thus, for the energy eigenvalues \(E \), we must have
\[
\hbar^2 j(j + 1) = -\frac{\hbar^2}{4} - \frac{m}{8E_j} Z^2 e^4
\] (11.133)

or, equivalently,
\[
E_n = -Z^2 \frac{me^4}{2\hbar^2} \frac{1}{n^2}
\] (11.134)

with
\[
n = (2j + 1)^2 = 1, 2, \ldots
\] (11.135)

Notice that we have obtained only negative eigenvalues. For states with positive energy eigenvalues, the operators \(A_i^\pm \) are not Hermitian and our derivation of the selection rules based on the Lie algebra does not go through.
Both \((A^\pm)^2\) operators have a \(2j+1 = n\)-fold degeneracy which can be revealed by the action of the \(A^\pm_3\) operators on them. Since the \((A^\pm)^2\) operators are independent, an eigenstate of the Hamiltonian will have a \((2j+1)^2 = n^2\)-fold degeneracy.

11.5.1 \(SO(4)\) symmetry of hydrogen atom

The Lie algebra for group the group of rotations \(SO(N)\) in \(N\) dimensions is given by:

\[
[J_{ab}, J_{cd}] = -i\hbar (\delta_{ad}J_{bc} - \delta_{ac}J_{bd} + \delta_{bc}J_{ad} - \delta_{bd}J_{ac})
\]

(11.136)

with \(a, b, c, d = 1 \ldots N\) and \(J_{ab} = -J_{ba}\). Obviously, this group contains rotations in three-dimensions as a subgroup. For \(J_{12} \equiv L_3, J_{23} = L_1, J_{31} = L_2\), the commutation relation above takes the familiar form:

\[
[L_i, L_j] = i\hbar \epsilon_{ijk} L_k.
\]

(11.137a)

where \(i, j, k = 1, 2, 3\). For the remaining three generators: \(J_{14}, J_{24}, J_{34}\), the commutation relations yield:

\[
[J_{14}, J_{j4}] = i\hbar \epsilon_{ijk} L_k, \quad i, j = 1 \ldots 3.
\]

(11.137b)

and

\[
[L_i, J_{j4}] = i\hbar \epsilon_{ijk} J_{k4}.
\]

(11.137c)

Setting,

\[
R_i \equiv \sqrt{-\frac{2H}{m}} J_{i4},
\]

(11.138)

we recognize the Lie algebra of Eqs (11.128a)-(11.128c). The hydrogen atom has an \(SO(4)\) symmetry, which is a larger symmetry than rotation invariance in three dimensions \(SO(3)\).
Chapter 12

Addition of angular momenta

A particle such as an electron in an atom, can have more than one type of angular momentum: For example, spin and orbital angular momentum. These two types will be described by independent generators of angular momenta living in different representations: J_a, J_b with

$$[J_{ai}, J_{bj}] = 0, \quad i, j = 1 \ldots 3.$$ (12.1a)

As is required for such generators, they satisfy the same Lie algebra:

$$[J_{ai}, J_{aj}] = i\hbar \epsilon_{ijk} J_{ak}$$ (12.1b)

$$[J_{bi}, J_{bj}] = i\hbar \epsilon_{ijk} J_{bk}$$ (12.1c)

Therefore, there exist common eigenstates of the operators: $J^2_a, J^2_b, J_{a3}, J_{b3}$, with eigenvalues:

$$J^2_a |j_a, m_a, j_b, m_b\rangle = \hbar^2 j_a (j_a + 1) |j_a, m_a, j_b, m_b\rangle$$ (12.2a)

$$J^2_b |j_a, m_a, j_b, m_b\rangle = \hbar^2 j_b (j_b + 1) |j_a, m_a, j_b, m_b\rangle$$ (12.2b)

$$J_{a3} |j_a, m_a, j_b, m_b\rangle = \hbar m_a |j_a, m_a, j_b, m_b\rangle$$ (12.2c)

$$J_{b3} |j_a, m_a, j_b, m_b\rangle = \hbar m_b |j_a, m_a, j_b, m_b\rangle$$ (12.2d)

12.1 Addition of angular momenta

The sum of the two angular momenta,

$$J_i = J_{ai} + J_{bi},$$ (12.3)

satisfies the same Lie algebra,

$$[J_i, J_j] = i\hbar \epsilon_{ijk} J_k$$ (12.4)

Notice that the operators J^2_a and J^2_b commute with all the components of the total angular momentum:

$$[J^2_a, J_i] = [J^2_b, J_i] = 0$$ (12.5)
We can then find common eigenstates of the J^2, J_3, J_a^2, J_b^2 operators:

$$|j, m, j_a, j_b\rangle$$

with

$$J_a^2 |j, m, j_a, j_b\rangle = \hbar^2 j_a (j_a + 1) |j, m, j_a, j_b\rangle$$ \hspace{1cm} (12.6a)

$$J_b^2 |j, m, j_a, j_b\rangle = \hbar^2 j_b (j_b + 1) |j, m, j_a, j_b\rangle$$ \hspace{1cm} (12.6b)

$$J^2 |j, m, j_a, j_b\rangle = \hbar^2 j (j + 1) |j, m, j_a, j_b\rangle$$ \hspace{1cm} (12.6c)

$$J_3 |j, m, j_a, j_b\rangle = \hbar m |j, m, j_a, j_b\rangle$$ \hspace{1cm} (12.6d)

The states $|j, m, j_a, j_b\rangle$ can be written as a linear superposition of states: $|j_a, m_a, j_b, m_b\rangle$:

$$|j, m, j_a, j_b\rangle = \sum_{m_a, m_b} |j_a, m_a, j_b, m_b\rangle \langle j_a, m_a, j_b, m_b| j, m, j_a, j_b\rangle.$$ \hspace{1cm} (12.7)

The coefficients

$$\langle j_a, m_a, j_b, m_b| j, m, j_a, j_b\rangle$$

are known as Clebsch-Gordan coefficients.

From Eq. (12.7), it is easy to infer that

$$\sum_{m_a, m_b} |\langle j_a, m_a, j_b, m_b| j, m, j_a, j_b\rangle|^2 = 1.$$ \hspace{1cm} (12.8)

From the definition of the total angular momentum, we have that

$$0 = \langle j_a, m_a, j_b, m_b| J_3 - J_{a3} - J_{b3}| j, m, j_a, j_b\rangle$$

$$= (m - m_a - m_b) \langle j_a, m_a, j_b, m_b| j, m, j_a, j_b\rangle.$$ \hspace{1cm} (12.9)

This leads to the conclusion that,

$$\langle j_a, m_a, j_b, m_b| j, m, j_a, j_b\rangle = \langle j_a, m_a, j_b, m_b| j, m, j_a, j_b\rangle \delta_{m, m_a+m_b}.$$ \hspace{1cm} (12.10)

Finally, we recall that

$$J_\pm = J_1 \pm iJ_2,$$ \hspace{1cm} (12.11a)

$$J_a \pm = J_{a1} \pm iJ_{a2},$$ \hspace{1cm} (12.11b)

$$J_b \pm = J_{b1} \pm iJ_{b2},$$ \hspace{1cm} (12.11c)

with

$$J_\pm = J_\pm + J_\pm,$$ \hspace{1cm} (12.11d)
are rising/lowering operators of the m, m_a, m_b eigenvalues respectively. We then obtain, from the last equation,

\begin{align}
\langle j_a, m_a, j_b, m_b | J_\pm | j, m, j_a, j_b \rangle &= \langle j_a, m_a, j_b, m_b | J_\pm | j, m, j_a, j_b \rangle \\
&+ \langle j_a, m_a, j_b, m_b | J_\pm | j, m, j_a, j_b \rangle
\end{align}

which yields:

\begin{align}
\langle j_a, m_a, j_b, m_b | j, m \pm 1, j_a, j_b \rangle &= \sqrt{\frac{j_a(j_a + 1) - m_a(m_a \pm 1)}{j(j + 1) - m(m \pm 1)}} \langle j_a, m_a \pm 1, j_b, m_b | j, m, j_a, j_b \rangle \\
&+ \sqrt{\frac{j_b(j_b + 1) - m_b(m_b \pm 1)}{j(j + 1) - m(m \pm 1)}} \langle j_a, m_a, j_b, m_b \pm 1 | j, m, j_a, j_b \rangle
\end{align}

The maximum value for j is,

$$j_{\text{max}} = j_a + j_b$$

and there is only one such state

$$|j = j_a + j_b, m = j_a + j_b, j_a, j_b \rangle = |j_a, m_a = j_a, j_b, m_b = j_b \rangle,$$ (exercise).

Therefore,

$$\langle j_a, j_a, j_b, j_b | j, m, j_a, j_b \rangle = \delta_{j, j_a + j_b} \delta_{m, j_a + j_b}.$$

Acting with an J_- on both sides, we obtain a state with $j = j_a + j_b$ and $m = j_a + j_b - 1$,

$$|j_a + j_b, j_a + j_b - 1, j_a, j_b \rangle = \sqrt{\frac{j_a}{j_a + j_b}} |j_a, j_a - 1, j_b, j_b \rangle$$

$$+ \sqrt{\frac{j_b}{j_a + j_b}} |j_a, j_a + j_b - 1 \rangle.$$ (12.15)

There is only one more state with $m = j_a + j_b - 1$. This must have $j = j_a + j_b - 1$. Since it has a different quantum number j it must be orthogonal to the previous state:

$$0 = \langle j_a + j_b, j_a + j_b - 1, j_a, j_b | j_a + j_b - 1, j_a + j_b - 1, j_a, j_b \rangle = (12.16)$$

This condition allows us to determine the state (up to a phase):

$$|j_a + j_b - 1, j_a + j_b - 1, j_a, j_b \rangle = \sqrt{\frac{j_b}{j_a + j_b}} |j_a, j_a - 1, j_b, j_b \rangle$$

$$- \sqrt{\frac{j_a}{j_a + j_b}} |j_a, j_a + j_b - 1 \rangle.$$ (12.17)
We can repeat this procedure until it is not possible to create a new state due to exhausting the range of m_a and m_b. We find a number of $(2j_a + 1)(2j_b + 1)$ and the quantum numbers of the total angular momentum take discrete values in the range: $j = |j_a - j_b| \ldots j_a + j_b$, $m = -j \ldots j$.

The above conventions lead to real-valued Clebsch-Gordan coefficients. Clebsch-Gordan coefficients are the coefficients for the linear transformation from a complete set of states

$$|j_1, m_1, j_2, m_2\rangle$$

to another complete set

$$|j, m, j_1, j_2\rangle .$$

Consider in general two complete sets of states:

$$\{ |\psi_i \rangle \} \quad \text{and} \quad \{ |\phi_i \rangle \}$$

with

$$\langle \phi_i | \phi_j \rangle = \langle \psi_i | \psi_j \rangle = \delta_{ij} ,$$

and the sets are related by a linear transformation with real coefficients:

$$|\phi_i \rangle = \sum_j C_{ij} |\psi_j \rangle . \quad (12.18)$$

Then

$$\delta_{kl} = \langle \phi_k | \phi_l \rangle$$

$$= \sum_{jm} C_{km} C_{lj} \langle \psi_j | \psi_m \rangle$$

$$= \sum_j C_{kj} C_{lj}$$

$$= \sum_j C_{kj} C_{jl}^T \quad (12.19)$$

which leads to

$$\text{det} \, C = 1$$

and

$$C^{-1} = C^T .$$

From the above,

$$C^T C = 1$$

$$\sum_j C_{ji} C_{jk} = \delta_{ik}$$
We can then invert Eq 12.18 to read,
\[|\psi_i\rangle = \sum_j C_{ji} |\phi_j\rangle \]

Applying the above for the Clebsch-Gordan coefficients, we derive that:
\[\sum_{j,m} \langle j_1, m_a, j_2, m_b | j, m, j_1, j_2 \rangle \langle j_1, m_c, j_2, m_d | j, m, j_1, j_2 \rangle = \delta_{m_a, m_c} \delta_{m_b, m_d}. \]

and we can also invert to write:
\[|j_1, m_1, j_2, m_2\rangle = \sum_{j,m} |j, m, j_1, j_2\rangle \langle j_1, m_1, j_2, m_2 | j, m, j_1, j_2 \rangle. \]

12.2 Application: Hydrogen atom

The hydrogen atom has an \(n^2 \) degeneracy as we have found earlier. The general solution for the wave-function is of the form:
\[\psi(r) = \frac{R_n \ell(r)}{r} Y^{m}_{\ell}(\theta, \phi). \]

The degeneracy in this form is due to the fact that the energy levels depend only on \(n \) but not \(\ell, m \). Given that the number of degenerate states is finite, the value of \(\ell \) must be bounded:
\[\ell = 0, \ldots, \ell_{\text{max}}. \]

The number of degenerate states is then
\[n^2 = \sum_{\ell=0}^{\ell_{\text{max}}} (2\ell + 1) = (\ell_{\text{max}} + 1)^2. \]

From the above we conclude that the range of \(\ell \) is
\[\ell = 0, \ldots, n - 1. \]

The total angular momentum of the electron in the hydrogen atom is the sum of its spin and the orbital angular momentum:
\[J = L + S. \]
In the ground state, \(n = 1 \), the orbital angular momentum is zero. The only possibility for \(j \) is \(j = \frac{1}{2} \). A general hydrogen state is denoted by:

\[
\ell_j,
\]

where \(\ell = 0, 1, 2, 3, 4, \ldots, n - 1 \) is represented by the letters

\(s, p, d, f, g, \) and then alphabetically.

The hydrogen states are

\[
1s_{\frac{1}{2}}, 2p_{\frac{3}{2}}, 2p_{\frac{1}{2}}, 2s_{\frac{1}{2}}, 3d_{\frac{5}{2}}, 3d_{\frac{3}{2}}, 3p_{\frac{3}{2}}, 3p_{\frac{1}{2}}, 3s_{\frac{1}{2}}, \ldots
\] (12.26)

The interaction \(\mathbf{L} \cdot \mathbf{S} \) splits the energy levels with same \(n, \ell \) but different \(j \). This splitting is known as the fine structure of the hydrogen atom. An even finer splitting (hyperfine splitting) is found by combining the spin of the electron with the spin of the proton and the interaction is due to the magnetic field of the proton.

12.3 Wigner-Eckart theorem

A set of \((2j + 1)\) operators \(O_j^m \) is said to have spin-\(j \) if

\[
[J_3, O_j^m] = \hbar m O_j^m
\]

and

\[
[J_{\pm}, O_j^m] = \hbar \sqrt{j(j + 1) - m(m \pm 1)} O_j^{m\pm1}
\]

Notice that

\[
\langle j, m' | J_3 | j, m \rangle = \hbar m \delta_{m', m}
\]

and

\[
\langle j, m | J_{\pm} | j, m' \rangle = \hbar \sqrt{j(j + 1) - m(m \pm 1)} \delta_{m', m^\pm1}.
\]

The coefficients are expressed in terms of the \((j)\)-dimensional representation of the angular momentum generators. We cast the above algebra as:

\[
[J_3, O_j^m] = \sum_{m'} [J_3, O_j^{m'}] \delta_{mm'}
\]

\[
= \sum_{m'} \langle j, m | J_3 | j, m' \rangle O_j^{m'}.
\] (12.31a)

\[
[J_{\pm}, O_j^m] = \sum_{m'} \langle j, m | J_{\pm} | j, m' \rangle O_j^{m'}.
\] (12.31b)
or, in general,

\[
[J_i, O^m_j] = \sum_{m'} \langle j, m | J_i | j, m' \rangle O^m_{j'} .
\]

(12.31c)

For example, a scalar spin-0 operator, for which

\[
\langle 0, 0 | J_i | 0, 0 \rangle = 0, \quad \forall \ i = 1, 2, 3
\]

(12.32)

commutes with the angular momentum operators:

\[
[J_i, O^0_0] = 0.
\]

(12.33)

A “vector” operator \(V_m \equiv O^m_i \) satisfies,

\[
[J_i, V_j] = i\hbar \epsilon_{ijk} V_k .
\]

(12.34)

We can define spherical components of such a vector according to:

\[
V^{+1} = \frac{V_1 + iV_2}{\sqrt{2}},
\]

(12.35a)

\[
V^{-1} = \frac{V_1 - iV_2}{\sqrt{2}},
\]

(12.35b)

\[
V^0 = V_3 .
\]

(12.35c)

Exercise 12.1. Show that

\[
[J_3, V^m] = \hbar m V^m
\]

\[
[J_\pm, V^m] = \hbar \sqrt{1(1 + 1) - m(m \pm 1)} V^m .
\]

Exercise 12.2. Prove that a spherical harmonic \(Y^m_\ell(\hat{r}) \) where \(\hat{r} \) is treated as an operator is such an operator.

Consider a state:

\[
| \Omega^{m_1 m_2}_{j_1 j_2} \rangle = O^{m_1}_{j_1} | a, j_2, m_2 \rangle .
\]

(12.36)

Acting on it with a rotation generator \(J_i \) we obtain:

\[
J_i | \Omega^{m_1 m_2}_{a, j_1 j_2} \rangle = [J_i, O^{m_1}_{j_1}] | a, j_2, m_2 \rangle + O^{m_1}_{j_1} J_i | a, j_2, m_2 \rangle
\]

\[
= \sum_{m'} \langle j_1, m_1 | J_i | j_1, m' \rangle | \Omega^{m' m_2}_{j_1 j_2} \rangle
\]

\[
+ \sum_{m'} \langle j_2, m' | J_i | j_2, m_2 \rangle | \Omega^{m_1 m'_2}_{j_1 j_2} \rangle .
\]

(12.37)
12. ADDITION OF ANGULAR MOMENTA

We can compare this with the action of the rotation generators on a state which is a common eigenstate of two types of angular momentum in the \(j \)-th and \(j' \)-th representation:

\[
J_i |j_1, m_1, j_2, m_2\rangle = J^{(j)}_i |j_1, m_1, j_2, m_2\rangle + J^{(j')}_i |j_1, m_1, j_2, m_2\rangle
= \sum_{m'} \langle j_2, m' | J_i | j_2, m_2\rangle |j_1, m_1, j_2, m'\rangle
+ \sum_{m'} \langle j_1, m' | J_i | j_1, m_1\rangle |j_1, m', j_2, m_2\rangle.
\] (12.38)

We observe from Eqs. 12.37-12.38 that the state \(|\Omega_{j_1,j_2}^m\rangle \) transforms as a common eigenstate of two different types of angular momenta. We can then change basis from \(|\Omega_{j_1,j_2}^m\rangle \) to a basis \(|\Omega_{j_1,j_2;j}^m\rangle \) with quantum numbers \(j, m, j_1, j_2 \). The coefficients of the linear transformation are our known Clebsch-Gordan coefficients according to Eq. 12.21. We write:

\[
O_{j_1}^m |a, j_2, m_2\rangle = \sum_{jm} \langle j_1, m_1, j_2, m_2|j, m, j_1, j_2\rangle |\Omega_{j_1,j_2;j}^m\rangle.
\] (12.39)

From the above, we have that

\[
\langle a', j_3, m_3 | O_{j_1}^m |a, j_2, m_2\rangle = \sum_{jm} \langle j_1, m_1, j_2, m_2|j, m, j_1, j_2\rangle \langle a', j_3, m_3 |\Omega_{j_1,j_2;j}^m\rangle.
\] (12.40a)

and, by using orthonormality,

\[
\langle a', j, m | O_{j_1}^m |a, j_2, m_2\rangle = \langle j_1, m_1, j_2, m_2|j, m, j_1, j_2\rangle \langle a', j, m |\Omega_{j_1,j_2;j}^m\rangle.
\] (12.40b)

The matrix element

\[
\langle a', j | \Omega_{j_1,j_2;j}^m \rangle
\]

is independent of the quantum number \(m \). Indeed, for two states with the same \(j, m \) quantum numbers we have

\[
\langle a, j, m \pm 1|b, j, m \pm 1\rangle = \sqrt{j(j+1) - m(m \pm 1)}^{-2} \langle a, j, m | J_\pm J_\pm | b, j, m \rangle
= \langle a, j, m|b, j, m\rangle.
\]

Therefore, their scalar product is independent of the quantum number \(m \). We have thus proven the Wigner-Eckart theorem:
Theorem 12.1 (Wigner-Eckart theorem). The matrix-elements of spin-operators satisfy,

\[\langle a', j_3, m_3 | O_{j_2}^{m_2} | a, j_1, m_1 \rangle = \langle j_2, m_2, j_1, m_1 | j_3, m_3, j_2, j_1 \rangle \langle a' || O || a \rangle, \]

where the term \(\langle a' || O || a \rangle \) is independent of the quantum numbers \(m_1, m_2, m_3 \) and is known as the reduced matrix-element.

The coefficient

\[\langle j_2, m_2, j_1, m_1 | j_3, m_3, j_2, j_1 \rangle \]

is a Clebsch-Gordan coefficient. The Wigner-Eckart theorem is of paramount importance for the understanding of atomic transitions by absorbing and emitting light.
In this chapter, we shall discuss symmetry transformations which cannot be connected to the unity by varying a continuous parameter. Such symmetries are *space inversion* (mirror symmetry/parity) and *time reversal*.

13.1 Parity

Under a parity transformation in classical physics, the position vector changes sign

\[\mathbf{r} \rightarrow -\mathbf{r}. \]

(13.1)

We would like to preserve this property for the expectation value of the position operator

\[\langle \psi | \hat{\mathbf{r}} | \psi \rangle \rightarrow -\langle \psi | \hat{\mathbf{r}} | \psi \rangle \]

(13.2)

Under a parity transformation, a state changes as:

\[|\psi\rangle \rightarrow |\psi'\rangle = \Pi |\psi\rangle, \]

(13.3)

which suggests that we can achieve our requirement of Eq. (13.2) if

\[\Pi ^\dagger \hat{\mathbf{r}} \Pi = -\hat{\mathbf{r}}. \]

(13.4)

According to the above,

\[\hat{\mathbf{r}} (\Pi |\mathbf{r}\rangle) = -\Pi (\hat{\mathbf{r}} |\mathbf{r}\rangle)
\]

\[= -\mathbf{r}(\Pi |\mathbf{r}\rangle). \]

(13.5)

Therefore, the state \(\Pi |\mathbf{r}\rangle \) describes the same physics as the state \(|-\mathbf{r}\rangle \). We then have:

\[\Pi |\mathbf{r}\rangle = e^{i\delta} |-\mathbf{r}\rangle. \]

(13.6)

Conventionally, we shall choose the phase to be zero:

\[\Pi |\mathbf{r}\rangle = |-\mathbf{r}\rangle. \]

(13.7)
Acting twice on a position state, the parity operator has no effect:

$$\Pi^2 |r\rangle = \Pi |-r\rangle = |r\rangle. \quad (13.8)$$

Given that the position eigenkets form a complete basis, we have that:

$$\Pi^2 = 1. \quad (13.9)$$

Thus, the representation Π of the parity transformation is unitary and hermitian, satisfying

$$\Pi^\dagger = \Pi^{-1} = \Pi. \quad (13.10)$$

Let’s consider a space-translation operator

$$U(\Delta r) = 1 - i\frac{\mathbf{p} \cdot \Delta \mathbf{r}}{\hbar}$$

acting on a position eigenket $|r\rangle$. We have

$$\Pi U(\Delta r) |r\rangle = |-r - \Delta r\rangle \quad (13.11)$$

Also,

$$U(-\Delta r) \Pi |r\rangle = |-r - \Delta r\rangle. \quad (13.12)$$

Equating the lhs of the last equations we have

$$\Pi U(\Delta r) = U(-\Delta r) \Pi, \quad \sim \quad \Pi U(\Delta r) \Pi = U(-\Delta r). \quad (13.13)$$

This leads to the following transformation for the momentum operator under parity:

$$\Pi \hat{\mathbf{p}} \Pi = -\hat{\mathbf{p}}. \quad (13.15)$$

We can repeat this analysis for angular momentum, the generators of rotations. An infinitesimal rotation is represented by

$$U(\omega_{ij}) = 1 + \frac{i}{2\hbar}\omega_{ij}J^{ij} \quad (13.16)$$

and

$$U(\omega_{ij}) |r_i\rangle = |r_i + \omega_{ij}r_j\rangle. \quad (13.17)$$

We find that

$$\Pi U(\omega_{ij}) \Pi |r_i\rangle = \Pi U(\omega_{ij}) |-r_i\rangle$$

$$= \Pi |-r_i - \omega_{ij}r_j\rangle$$

$$= |r_i + \omega_{ij}r_j\rangle$$

$$= U(\omega_{ij}) |r_i\rangle. \quad (13.18)$$
Therefore,
\[
\Pi U(\omega_{ij})\Pi = U(\omega_{ij}).
\] (13.19)

For the angular momentum operators the above equation implies that
\[
\Pi J_i \Pi = J_i.
\] (13.20)

(recall that \(\hbar J^{12} = J_3, \ldots\)).

For a system which is symmetric under parity, the energy eigenstates are also
parity eigenstates:
\[
\Pi |\pi\rangle = \pi |\pi\rangle.
\] (13.21)

The parity operator satisfies,
\[
\Pi^2 = 1.
\] (13.22)

The same identity must be fulfilled by the eigenvalues. Therefore, we have
two parity eigenstates \(|\pi\rangle = |\pm\rangle\) with eigenvalues \(\pm 1\):
\[
\Pi |\pm\rangle = \pm |\pm\rangle.
\] (13.23)

Multiplying with a position bra, we find
\[
\langle r | \Pi |\pm\rangle = \pm \langle r |\pm\rangle,
\] (13.24)
\[
\langle -r |\pm\rangle = \pm \langle r |\pm\rangle.
\] (13.25)

As we have remarked above in a parity conserving system parity eigenstates
are also energy eigenstates. Therefore, the wavefunctions
\[
\psi_{\pm}(r) \equiv \langle r |\pm\rangle,
\]
are either even or odd under \(r \rightarrow -r\):
\[
\psi_{\pm}(r) = \pm \psi_{\pm}(-r).
\] (13.26)

13.2 Time reversal

Let’s consider a system which is symmetric under time reversal:
\[
t \rightarrow -t.
\]

In this section, we shall explore the properties of the representation \(\Theta\) of
time-reversal on quantum states:
\[
|\psi\rangle \rightarrow \Theta |\psi\rangle.
\]

The time translation operator, for infinitessimal time intervals, is:
\[
U(\delta t) = 1 - i\frac{H}{\hbar}\delta t
\] (13.27)
Acting on a generic state $|\psi, t\rangle$, we have
\begin{align*}
\Theta^{-1}U(-\delta t)\Theta |\psi, t\rangle &= \Theta^{-1}U(-\delta t) |\psi, t\rangle \\
&= \Theta^{-1} |\psi, t - \delta t\rangle \\
&= U(\delta t) |\psi, t\rangle.
\end{align*}

Therefore,
\begin{equation}
\Theta^{-1}U(-\delta t)\Theta = U(\delta t) .
\end{equation}

Substituting the expression for the operator of an infinitesimally small time evolution, we have:
\begin{equation}
\Theta^{-1}(-iH)\Theta = iH.
\end{equation}

The representation Θ cannot be unitary and linear. If it were the case, we would derive that
\begin{equation}
\Theta^{-1}H\Theta = -H
\end{equation}
and, equivalently,
\begin{equation}
\Theta H = -H\Theta.
\end{equation}

Assume that there is a state $|E\rangle$ which is an eigenstate of the Hamiltonian:
\begin{equation}
H |E\rangle = E |E\rangle.
\end{equation}

Then, for the state $\Theta |E\rangle$, we find that is also an energy eigenstate, however with an energy eigenvalue $-E$:
\begin{align*}
H (\Theta |E\rangle) &= -\Theta (H |E\rangle) \\
&= -E (\Theta |E\rangle).
\end{align*}

This is in contradiction with observations. For free particles it predicts erroneously negative energies.

The above problem is solved if Θ is antilinear and antiunitary. Eq. [13.30] gives
\begin{align*}
\Theta(-iH)\Theta &= iH \\
\Rightarrow i\Theta H\Theta &= iH \\
\Rightarrow \Theta H\Theta &= H
\end{align*}

Equivalently,
\begin{equation}
\Theta H = H\Theta.
\end{equation}

Classically, time reversal changes:
\begin{align*}
\mathbf{r} &\rightarrow \mathbf{r}, \\
\mathbf{p} &\rightarrow -\mathbf{p}.
\end{align*}
13.2. Time reversal

The classical transformation rules should also hold for the expectation values of the corresponding quantum operators. Thus, we must have

\[\Theta^{-1} \hat{r} \Theta = \hat{r} \] \hspace{1cm} (13.38)

and

\[\Theta^{-1} \hat{p} \Theta = -\hat{p} \] \hspace{1cm} (13.39)

This is consistent with the commutation relations:

\[\Theta^{-1} [r_i, p_j] \Theta = \Theta^{-1} i \hbar \delta_{ij} \Theta \]

\[[\Theta^{-1} r_i \Theta, \Theta^{-1} p_j \Theta] = -i \hbar \delta_{ij} \]

\[[r_i, -p_j] = -i \hbar \delta_{ij} \]

\[[r_i, p_j] = i \hbar \delta_{ij} . \] \hspace{1cm} (13.40)

The Lie-algebra of angular momentum is

\[[J_i, J_j] = i \epsilon_{ijk} J_k . \] \hspace{1cm} (13.41)

This leads to

\[[-\Theta^{-1} J_i \Theta, -\Theta^{-1} J_j \Theta] = i \epsilon_{ijk} (-\Theta^{-1} J_k \Theta) , \] \hspace{1cm} (13.42)

which implies that

\[\Theta^{-1} J_i \Theta = -J_i . \] \hspace{1cm} (13.43)