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PREFACE

This script is based on Refs. [1H3]. These books are great and students are
encouraged to study them as a first priority. The purpose of the present notes,
which contain some personalized material, is to facilitate the author for his
lecture presentations. Students are of course welcome to read the script if
they find it useful. However, the script should not replace the study of the
recommended and other literature.
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CHAPTER 1

(QUANTUM BEHAVIOR

1.1 Atomic mechanics

For a long time, light was thought to behave like waves and electrons were
thought to behave like particles. There are phenomena which violate these
main “rules”. So they behave neither like particles nor like waves. However,
it is true that light, electrons, protons and all subatomic particles behave the
same. This common subatomic behavior is very different from our intuition of
large objects. We will demonstrate the difference of the quantum and classic
behavior by a thought “two-slit” experiment first with macroscopic bullets,
second with waves and third with subatomic particles such as electrons.

1.2 Basic two slit experiments

1.2.1 An experiment with bullets

We have a gun firing very hard indestructible bullets towards a wall. The
wall has two slits which are at a close distance and are big enough so that
they can pass through.

Behind the wall there is a “detector”, a material which can stop the bullets.
We can take a look at it afterwards and see how the bullets are distributed
in space after they have gone through the holes. We perform the experiment
in three stages:

e First, we leave open “Hole 1”7 and cover up the second hole. We find
that the bullets are distributed according to P;, a Gaussian centered
around the Hole 1.

e Then, we leave open “Hole 2” while we cover up “Hole 1”. We find a
similar Gaussian P centered around Hole 2.

e Finally, we leave open both holes. We find a distribution which
P12:P1+P2. (11)
7



1. QUANTUM BEHAVIOR

Py

slit 1

slit 2
P P+ P

detector

Figure 1.1: A two slit experiment with bullets.

The probability that a bullet goes through the holes is the sum of the proba-
bilities that it passes either through hole 1 or through hole 2.

1.2.2 An experiment with waves

We now perform a different experiment where we create a spherical wave at
some distance in front of the wall with the two holes. The detector measures
the intensity of the wave arriving at it, which is proportional to the square of
the amplitude:

I~A]%.

We perform the experiment in three stages:

e First, we leave open “Hole 1”7 and cover up the second the second hole.
We find that the intensity [; is a function centered around the Hole 1.

e Then, we leave open “Hole 2” while we cover up “Hole 1”. We find a
similar function intensity I centered around Hole 2.

e Finally, we leave open both holes. We find a distribution I15 # Iy + I5.

There is a simple explanation why the intensity I;5 is not equal to the sum
of the intensities when either one of the two holes is covered. The amplitude

8
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Figure 1.2: A two slit experiment with waves.

of the wave is given by the sum of the amplitudes,
A = A1+ Ay

where A; and Ay can be both positive or negative. The total intensity,

Iy ~ |Ap|? (1.2)
=11 + Is + 24/ |11] |I2] cos &

includes an interference term, giving the characteristic interference pattern of
Fig 1.2

1.2.3 An experiment with electrons

We now shoot electrons at the wall. What happens is pictured in Fig 1.3
This is a surprising result. If an electron went through either hole 1 or hole 2,
we would not have found Py3 # P, + P». Are electrons waves? Well, no. We
always detect one “full” electron at the time at the detector. For example,
we can reconstruct the full energy of an electron as it dissipates it in the
detector, or if the detector is inside a magnetic field, the electron track has
the curvature of charge one, etc.
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Figure 1.3: A two slit experiment with electrons with wave behavior.

So, the electron arrives at the detector as a particle and the probability of
arrival is distributed like the intensity of a wave.

1.3 Watching electrons

Let’s put a light source behind the two holes. Deflected light from the vicinity
of hole 1 or hole 2 can tell us where the electron passed through. What
happens? Indeed, we can see a flash coming from the hole every time that an
electron passes through. However, we find the following probability pattern.
The interference pattern is destroyed when we can verify experimentally that
the electrons go through either hole 1 or hole 2. If we switch off the light, the
interference leading to Py # Py + P; is restored.

Let’s now try to understand how the light affects our measurement. Before
going ahead with modifying the light characteristics, we equip our detector
with a sound system. Each time an electron hits on the detector we also hear
a click.

What happens with a dimmer light? We observe two types of events.

i) Events where a flash comes from hole 1 or hole 2 and we hear a click
immediately after coming from the detector.

ii) Events where we only hear a click from the detector without seeing any
flash.

10



1.3. Watching electrons
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Figure 1.4: A two slit experiment with electrons. In this experiment, we observe which hole
the electrons pass through.

We plot the probability distribution for the above categories of the events.
For the events where we have seen a light, we find a distribution as in Fig.|1.4
with no interference. For the events where we have not seen the light but we
have heard the sound we get a probability distribution as in Fig. 1.3| with an
interference pattern. The interference pattern gets destroyed if we are able to
observe the hole from where the electrons passed.

The intensity of the light is not its only physical characteristic. When we dim
it, we reduce the amplitude of the electromagnetic wave. This means that
there is a smaller density of “light particles” (photons) and therefore some
electrons can pass through the holes without crashing onto one of them. It
is then when we only hear a sound at the moment the electron arrives at the
detector without having seen a flash from a hole before. But we can also tune
the wavelength of the light. There is a simple relation between the momentum
of the photons and the wavelength,

p:X7

where h is a (the Planck) constant. Photons are less energetic and the light
is “gentler” if we increase the wavelength using infrared light or even radio
waves.

So, let’s start increasing gradually the wavelength without changing the in-
tensity. We find that at the beginning there is no change in the type of
probability distribution for the electrons arriving at the detector. As long
as the wavelength is shorter than the distance of the two holes, we can tell
whether a flash light came from one or the other hole and we find no inter-

11



1. QUANTUM BEHAVIOR

ference pattern
Pis(A) = PL(\) + Py(N), A ~ small.

If we increase the wavelength to a size comparable to the distance of the two
holes, we find something dramatic. The flash becomes fuzzy and it is not
possible to tell anymore whether it comes from the first or the second hole.
Then, we find that an interference is restored.

Pia(A) # Pi(A) + Pa(N), A ~ hole distance or larger.

In conclusion, there is no configuration of our apparatus for which we can
determine which hole the electrons went through without destroying the in-
terference pattern.

1.4 Back to the bullet experiment

If the laws of quantum mechanics are universal, for light particles, electrons,
protons and macroscopic objects, why then did we not observe an interference
pattern for the experiment with the bullets? The reason is that the wavelength

close maxima
and minima

bullet
gun

detector

measures

detector, a smooth
interference average

pattern

Figure 1.5: A two slit experiment with bullets.

of a large object is very short. The minima and maxima of the interference
pattern are very dense and they cannot be discerned by the resolution of our

12



1.5. First principles of quantum mechanics

detectors. Instead, we measure a smooth average over the distance of several
wavelengths as in Fig.1.5|

1.5 First principles of quantum mechanics

Let’s define an “ideal” experiment as one in which all initial and final con-
ditions are completely specified. An event is a set of such initial and final
conditions. (For example, a bullet leaves the gun, arrives at the detector and
nothing else happens.)

i) The probability of an event in an ideal experiment is given by the square
of the absolute value of a complex number, which is called the probability

amplitude
¢ = probability amplitude
P19, 3 p_ obabili (13)
P = probability
ii) If an event can occur in several ways, there is interference
¢ =¢1+ @2
P=|¢1+ o] (1.4)

iii) If an experiment can determine whether one or another alternative hap-
pened the interference is destroyed

P=P + P. (1.5)

Note that we compute probabilities. We cannot know what an electron does
at any given instance.

1.6 The laws for combining amplitudes

This is a good point to formalize and develop further the principles of sec-
tion 1.5. We will denote the probability amplitude of an event using the
“bra-ket” notation of Dirac:

(final condition|initial condition)

For example, we can write the amplitude for an electron leaving the source s
and arriving at the point x of the detector as

(arrives at z|leaves from s)

13



1. QUANTUM BEHAVIOR

or, shortly,
(z|s),

and the corresponding probability is
2
P ={[(z]s)|”.

According to our second principle, if an event can occur in more than one way,
then we must add the amplitudes for all alternatives and we have interference.
For example, in our two slit experiment where the electron could pass through
either of the slits, we write

<I|S> = <$‘5>through + <x|5>through . (16)
slit 1 slit 2

We now introduce a new rule for amplitudes (which leads to the third principle
of the previous section). If an event can be expressed as a sequence of other
events then the amplitude factorizes. For example, we can write

arrives| leaves _ /arrives|leaves arrives | leaves
at & |source $/through at x |slit 1 at slit 1|source s
slit 1
or, shortly,
<x|5>through = <.13|1> <1|8> .
slit 1
Then

(x[s) = (z[1) (1]s) + (z[2) (2]s) .

1.6.1 Revisiting the two-slit experiment

Let us now revisit the two-slit experiment where we throw electrons at them
and use a light source behind the slits in an attempt to see which slit is chosen
by an electron before it arrives at the detector. For the purpose of “seeing”
the flashes we place two photon-detectors one to the left of the left hole and
one to the right of the right hole. Let’s focus at the events which will be seen
by the detector D;. The amplitude is

electron arrives at x|electron leaves
My = .
photon strikes Dy source §

= (2[1) A1 (A) (1) + (2[2) Az1(A) (2[s) -

(1.7)

Aj1-1(N) is the amplitude that a photon strikes an electron in hole 1 and it
is deflected into the detector D;. Similarly, As_,;(\) is the amplitude that

14



1.6. The laws for combining amplitudes

D,

>

light source 1

electron
source

light source 2
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Doy

Figure 1.6: A two slit experiment with electrons. Trying to see which slit they are going
through.

a photon strikes an electron in hole 2 and it is deflected into the detector
D;. The detector Dy is placed closer to hole 1 and for small wavelengths
As_.q is much smaller than A;_,;. The interference term in the probability
P = |M1|2 vanishes for As_,; = 0. Instead, for large wavelength A the
photon cannot be localized precisely enough and As_ .1 ~ Aj_,1; then, there
is interference.

Similarly, we can write an expression for the amplitude where the photon
scattered from the electron strikes detector Ds:

My =

electron arrives at x
(1.8)

photon strikes Do
= (z[1) A152(A) (1) + (2[2) A22(A) (2]s) -

electron leaves
source s

What is then the probability for the photon to strike either D; or Dy? Notice
that we now ask for the combined probability of two different events with
different final conditions. We should not combine the two amplitudes into
a common amplitude (M # Mj + Ms). Our rule of combining amplitudes
applies to alternative ways of a single event (where the initial and final condi-
tions are the same for all alternatives). If the events differ, for their combined
probability we add up the probabilities of each separate event. In our specific

15



1. QUANTUM BEHAVIOR

case,
P (light in Dy or D) = P (light in D) + P (light in Ds)

= My + M)

1.6.2 A subatomic travel from Zurich to China?

Our product rule for amplitudes can puzzle our physics intuition from macro-
scopic physics. Think of a particle at a position x; which transitions to a
position x5. The corresponding amplitude is

(x2[x1) .

Let y be an intermediate position in the journey of the particle. According
to our rules for combining amplitudes we must have:

(xa|x1) = (xaly) (y[x1) -

However, if we have no knowledge of which point exactly the particle passed
through (e.g. by putting up a wall with only a hole open) we must sum up
all positions.

(xalx1) = (xaly) (ylx1).

y

In the sum, we are supposed to include all positions y no matter how far they
reside from x7,xs or how improbable they appear to us from our knowledge
of classical physics.

It turns out that amplitudes for classically improbable transitions are sup-
pressed. Up to some normalization, the transition amplitude of a free particle
(no forces are exerted on it) of momentum p from a position x to a position
y is _

e~ FP(x—Yy)

Moy x—yl

7 (1.9)
where p is the classical momentum of the particle and h = % (Planck’s)
constant. We note that the amplitude is suppressed for large distances and
that the motion along the direction of the momentum produces a maximum
phase in the exponential.

Probability amplitudes depend in general both in space and time. The time
evolution of the amplitudes is determined by the equation of Schrodinger,
which we shall see in the future.

16



CHAPTER 2

QUANTUM MEASUREMENT AND
QUANTUM STATES

In this chapter we shall explore further the basic rules of probability ampli-
tudes and introduce quantum states.

2.1 Stern-Gerlach experiment

Let’s think of a magnetic dipole/loop current localized in a small volume,
with a magnetic moment p. The potential energy when the current is inside
a magnetic field is

U=-n-B. (2.1)

Inside a inhomogeneous magnetic field a force will be exerted in the magnetic
dipole so that it minimizes its energy. The force will be

F=-VU=V(u B). (2.2)

For a magnetic field which varies, for example, in the z—direction there is a
force exerted on the magnetic dipole in the same direction,

0B,
0z

F, =pu, (2.3)
In classical physics, we can attempt to describe atoms as dipoles, i.e. cur-
rents which are localized in a tiny space. We now perform a conceptually
very simple experiment, the Stern-Gerlach experiment. We produce a beam
of atoms and we direct the beam towards a magnet with a inhomogeneous
magnetic field. In classical physics we expect that the value of u, is a con-
tinuous variable. The effect of the gradient magnetic field should then be to
spread out the beam along the z—direction as in Fig. ??. This is not what
really happens. Instead, we find that the beam of atoms is split as in Fig. 2.2
in a number of beams which the original beam is split into depends on the

17



2. QUANTUM MEASUREMENT AND QUANTUM STATES

inhomogeneous
magnetic field

beam
of atoms

screen

Figure 2.1: Stern-Gerlach experiment: Expectation from classical electrodynamics in a de-
scription of atoms as magnetic dipoles. (This is not what happens in reality!)

kind of the atoms and a property of them called “spin” |!. Atoms with spin—%
split into two beams, atoms with spin-1 split into three beams and so on; in
general atoms with spin-j split into 2j + 1 beams.

2.2 The Stern-Gerlach filter

2.2.1 Experimental setup

In the following, we shall take a beam of atoms with spin-1 and examine fur-
ther experimentally the three separated beams which originate from a Stern-
Gerlach apparatus. We construct a Stern-Gerlach filter. This filter takes a
beam of atoms and passes it first through a magnetic field with a gradient
in a certain direction, as in the Stern-Gerlach experiment, splitting the beam
into three. The split beams are channeled through gates which we can decide
at wish to keep them open or have them closed. Afterwards, magnets re-unite
the beams which pass through the gates and let them come out from an exit
point as a single beam.

It is not yet time to describe spin. We will only say for now that it is a intrinsic
angular momentum of subatomic particles which can be detected even when these particles
are motionless.

18



2.2. The Stern-Gerlach filter

inhomogeneous

magnetic field
+ul

0 [y

— |u|

screen

Figure 2.2: Stern-Gerlach experiment: The beam splits into a number of separated beams.
The magnetic moments of the atoms assume discrete values.

The filter serves the purpose of selecting atoms of a certain state out of the
Stern-Gerlach experiment. We can produce three types of “pure” beams with
our Stern-Gerlach filter.

i) Atom beams in the state |2, +), where we close the lower two gates and
allow only the “upper” beam to go through.

ii) Atom beams in the state |2,0), where we block the upper and lower
beams and let the non-deflected central beam to go through.

iii) Atom beams in the state |2, —), where we close the upper two gates and
allow only the “lower” beam to go through.

The unit vector Z denotes the orientation of the magnetic field gradient in the
Stern-Gerlach apparatus.

2.2.2 Successive aligned Stern-Gerlach filters

We shall now perform experiments passing atom beams through two succes-
sive Stern-Gerlach filters (Filter 1 and Filter 2), both having the same gradient
for the magnetic field.

In a first experiment, we block the middle and lower gates of both filters.
Filter 1 gives a beam of atoms at the state |2,+). We observe that the full

19



2. QUANTUM MEASUREMENT AND QUANTUM STATES

N N

filter 1 filter 2
Figure 2.4: Two aligned Stern-Gerlach filters for spin-1 atoms.

beam passes through the second filter, which is also designed to select the
same |%,+) state. We then conclude that the probability amplitude for the
transition from a state |2, +) to the same state |2, +) is unity

(3,+]2,+) = 1. (2.4)

In a second experiment, we close the middle and lower gates of Filter 1 and
the upper and lower gates of Filter 2. Filter 1 selects atoms in the state
|2,+) and Filter 2 selects atoms in the state |Z,0). We observe that no beam
passes through the second filter. Therefore the probability amplitude for the
transition from the state |2, +) to the state |2,0) vanishes,

(2,012,4) = 0. (2.5)

2up to a phase exp(ia) which drops out when computing the modulus square of the
amplitude.

20
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40 |2, +) |2,0)
R B

filter 1 filter 2

Figure 2.5: Two aligned Stern-Gerlach filters for spin-1 atoms.

Figure 2.6: Two aligned Stern-Gerlach filters for spin-1 atoms.

The same result holds for transitions from |2, +) to |2, —),
(5,—|2,+) = 0. (2.6)

The following equations summarize our results for the transitions among the
“pure” states |2,+),|%,—),|%,0):

(3,+|2,4) = (£,012,0) = (2,—|2,—) =1 (2.7a)
and

(2,+]2,0) = (2,02, 4+) = (2, +|2,—) =0, (2.7b)

(3,—12,4) = (2,0|13,—) = (3,—]%2,0) =0. 2.7¢)

2.2.3 Successive rotated Stern-Gerlach filters

We now perform a more interesting experiment with two Stern-Gerlach filters
in a row, where the second filter is rotated by an angle #. Specifically, in
Filter 1 the magnetic field B varies along the Z direction and in Filter 2 B
varies along the n direction, with 7 - 2 = cos 6. The first filter splits a beam
of spin-1 atoms along the Z—axis and it can select atoms in the “pure” states

|27 +> ’ ‘27 *> ) ‘270> .

The second filter splits a beam of spin-1 atoms along the n—axis and it can
select atoms in the “pure” states

|ﬁ7 +> ’ |ﬁ> *> 5 ‘ﬁ70> .
21



2. QUANTUM MEASUREMENT AND QUANTUM STATES

%~

2 [

)

z
Filter 2
Filter 1 (rotated)

Figure 2.7: Two Stern-Gerlach filters with their directions of B—field variation roated at an
angle 6.

In our sequential experiments, we can find the probability that an atom tran-
sitions from a definite |2, {+,0, —}) state to a definite |7, {+,0, —}) state. We
find that all such transitions are indeed possible and therefore the probability
amplitudes

<7A17(1‘727b>, aabe {+a037}

are different from zero.

We also observe that a transition from a |2, a) state to any state |, b) takes
always place with a 100% certainty. This gives that

(-2, )" =1, (2.82)
(-2, =P =1, (2.8b)
(R, —|2,0)]" = 1. (2.8¢)

2.2.4 Three filters

We now consider an experiment with three Stern-Gerlach filters. The first and
the third apparatus have a direction of B—field variation along the positive Z
axis. The second apparatus is rotated at an angle § with a B—field variation
pointing along n. We arrange that the first filter sets the atoms in the state
|2,+) and that the second filter puts them at a state |72,0). What happens
when the atoms pass through the third filter? Do the atoms have a memory
that they have been before in a |Z,+) state? No! The atoms can transition
to any of the three states |2, {+,0,—}) despite the fact that they have once
been made to be in a pure |Z,+) state.

Indeed, we can easily show that the fraction of atoms that ends up in any of
the |Z,{+,0}) states through the last filter is independent of the transition

22
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2
2
3 U
. -
2 Filter 3

Filter 2
Filter 1 (rotated)

Figure 2.8: Three Stern-Gerlach filters in a row. The first and the third apparatus have a
direction of B—field variation along the positive Z axis. The second apparatus is rotated at
an angle 6 with a B—field variation pointing along 7.

through the first filter. The amplitudes for the transition through the second
and third filter from the |2, +) to, say, either a |2, +) or a |2, —) state are

(2,417, 0) (7, 0], +)

and
<7:" 7‘ﬁ70> <ﬁ7 0‘27 +>

respectively. The ratio of probabilities for the two transitions is

and it does not depend on the state of the beam prior to the second filter.

2.3 Base states

The previous results illustrate one of the basic principles of quantum mechan-
ics: Atomic systems can be decomposed through a filtering process into base
states. The evolution of the system in any of these states is independent of
the past and depends solely on the nature of the base state. The base states
depend on the filtering process. For example, the states |2, {4,0, —}) are one
set of base states and the states |7, {+,0,—}) are another.

Let’s now go back to our three-filter experiment and do the following:

i) open only the Z2—“4+” gate in the first filter
ii) open only the 7—“0” gate in the second filter
iii) open only the 2—“—" gate in the third filter
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2. QUANTUM MEASUREMENT AND QUANTUM STATES

If the beam exiting the first filter has N atoms, there will be N x |(2, —|#, 0)|?
atoms exiting the last filter.

Now, let’s open all the gates in the second filter. How many atoms will go
through this time? The result of this experiment is very intriguing. No atom
exits our apparatus! It is so, that our filter has no effect if none of the base-
states are selected. We can then write

D (2 —li) (il5,+) =0, i€ |n, {+,0,-}). (2.9)

all ¢

To verify that this is a generic property of a “wide open” filter we check with
a third Stern-Gerlach filter which filter in a completely different direction 7
than the other two filters. If the first filter is set to prepare the atoms in a
state |¢) and the third filter is set to prepare the atoms in a state |x), we find
that the open second filter does not affect at all the transition from |¢) to |x):

(XI0) =Y (xli) (il®) - (2.10)

all ¢

Let us list here the properties of base states:

i) If a system is in a base state then the future evolution is independent of
the past.

ii) Base states satisfy equation 2.10

iii) Base states are completely different from each other
(ilj) = di5. (2.11)

Base states are not unique and they depend on the filtering method. For
example, a Stern-Gerlach filter in the 7 direction and a Stern-Gerlach exper-
iment in a different 7 direction yield a different set of base states.

Let us now compare equation 2.10| and equation 2.8a. In order for both of
them to be valid, we require one more rule for the conjugation of probability
amplitudes. Namely,

()" = (xl9) - (212)
2.4 States and vector spaces

We will now take a bold step. We will postulate that atomic states live in a
vector space. We will also assume that the pure states filtered with the aid of
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2.4. States and vector spaces

a physical measurement, such as angular momentum in the Z direction, form
an orthogonal basis in that vector space. In our example, we can write

1 0 0
=0 ), po=(1]), =0 ]. (2.13)
0 0 1

A generic state will be expressed as a superposition of basis states,

$1
|¢) = 0112, +) + d212,0) + ¢3(2, =) = | ¢2 |- (2.14)
3

We will also equip the vector space of with an inner product, which we will
physically identify with a transition amplitude. For

¢ X1
oy=1 ¢ |, = x |, (2.15)
¢s3 X3
we define
(DIx) = dix1 + dox2 + d3xs- (2.16)
Equivalently, we can define dual vectors, “bra” in Dirac’s notation, as
(¢l = (o1, 93, 03) , (2.17)

and we can think of the inner product of as a multiplication of a dual “bra”
vector and a customary “ket” vector. It will be more practical to us to think
of the inner product in this equivalent way.

The above assumptions of a vector space and an inner product are consistent
with the physical properties that we inferred with our experimentations using
the Stern-Gerlach apparatus. For example, the property

(Blx) = dix1 + d3x2 + d5xs = (X1 + X5d2 + X503)" = (x|9)"  (2.18)

emerges naturally. Let us now focus on the “completeness”identity,

(8lx) =D (0li) (ilx) = (4l <Z ) (2.19)

7

with |7) € {|2,+),]%,0),|2,—)}. From the vector representation of the base
states,

1 0 0
Sliyl={ 0 @00+ 1 )(©0,1,0+ [ 0 )(0,01)=1ss
i 0 0 1

(2.20)
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2. QUANTUM MEASUREMENT AND QUANTUM STATES

we naturally derive this result too.

Recall the values of L, angular momentum that we observed experimentally
for each element in our basis of states. We have

1 0 0
0 | =nh, 1 }]—=0, 0 | —»—h (2.21)
0 0 1
We can define a matrix
R 1 0 0
L,=h|{ 0 0 0 (2.22)
00 -1

with the property that the basis vector states are its eigenvectors and the
corresponding eigenvalues are the values of angular momentum L, measured
in each state. Namely

L. 15,4) = hl5%+) (2.23)
L.|2,0) = 0]z,0) (2.24)
L3+ = —h|3+) (2.25)

(2.26)

We pass a beam of atoms, all prepared identically to be at the same state [1)),
through a Stern-Gerlach apparatus. We will measure the following average
value of the angular momentum L,

(L) = (A A+ (2,000 0+ (2, +[$)* (=h).  (2:27)

Using that (¢|x) = (x|¢)* and that the matrix L, has the set |2, {+,0,—})
as eigenvectors, we cast the above equation as

<Lz>A = <¢|5,+> <27+|¢>Ah+ <w|2a0> <'270W}> 0A+ <¢|'27 *> <27 *|/¢)> (7h)
= (Y| Lz |2,+4) (2, +¥) + ($| L2 |2,0) (£,009) + (| Lz |2, —) (2, —[¢)

= (¥ | L. Doy Gl || ) (2.28)
ie{+.0.—1}
Now, we can use that
S ai i =1 (2.29)
i€{+.0.—1}
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2.4. States and vector spaces

And we obtain that the average value of the physical measuuremt for our
observable, the angular momentum component L, is given by

(L) = (| L [9b) . (2.30)

Similarly, if we start from the experimental statement that the sum of all
probabilities for any of the transitions

|y — 2,4y, i€ {+.0.—1}
is a unity, we can conclude that

(ply) = 1. (2.31)

The matrix operator L.isa “generator” of a symmetry transformation. The
connection to symmetry will be explored at more depth in subsequent lectures.
In here, we will just give a first glimpse of it. After a standard linear algebra
computation, we can compute a weighted exponential of L. as

I e 0 O
U(6) = exp (—if@) = 0 1 0 (2.32)
0 0 €

0 is an arbitrary parameter for now, but we will be able to relate it to a
rotation angle. Let us now define a new transformed state

W) =U(0) [4) . (2.33)
The average value of L, in the transformed state is
(Lo)' = (/| Lo [0) = (@I UT(0) L. U() |¥) - (2.34)
We can easily show that
UNO)L.U@®) =L, (2.35)

<Lz>/ =(L). (2.36)

Classically, we expect that a vector remains unchanged if we perform a rota-
tion by an angle 6 around its axis. The matrix U(f) is, as we will learn in
detail later, encoding the action of this rotational symmetry on the space of
quantum states. The classical result also holds in quantum mechanics, but
for average values in measurements of physical observables.
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CHAPTER 3

QUANTUM MECHANICS AND
LINEAR ALGEBRA

In quantum mechanics we are interested in computing the probability am-
plitudes (bla) for transitions from an initial state |a) to a final state |b). In
this chapter, we will postulate that such amplitudes are the inner products
of vectors in a space of physical states.

(bla) <> b - a.

Mathematically, the space of quantum states belongs to a category of a vec-
tor space known as a Hilbert space. All physical information for a physical
system, e.g. a particle, an atom, a system of many particles, etc is encoded
in these vectors in a Hilbert space. In what follows, we will describe the
properties of the Hilbert space of quantum states.

3.1 Ket-space

Physical states are represented by vectors in a complex vector space. We
call such a vector state a ket. Kets possess complete information about the
physical system. The dimensionality of the ket space is equal to the number
of base states which we can obtain with a filtering experiment, such as our
Stern-Gerlach experiment.

i) Two kets can be added yielding a new ket for another physical state
la) +18) =) (3.1)

ii) The multiplication of a ket with a complex number yields a new ket which
corresponds however to the same physical state as the original

¢|x) and |x) — same physical state. (3.2)
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

3.2 Operators

The state of a physical system can change during an experiment or by letting
the system evolve with time. We represent mathematically changes in physical
states by the action of operators on kets:

Ay = |9) (Operator |state) = |new state)). (3.3)

For a given operator A, there are some special states, |i), which are not
changed, up to a multiplicative factor \;, by the action of the operator,

Ali) = N |d) - (3.4)

The values \; are called the eigenvalues of the operator. The eigenstates of
a physical operator are postulated to correspond to base states: Any other
physical state |¢) can be written as a superposition of the base states.

Vig) 3{ci}: o) = Zci li) -

3.3 Dual space

We define a dual space of “bra” states (¢,

) < (o] . (3.5)

By dual we mean that all information about the bra {¢| is already encoded
in the ket |¢) and we only need to use it for a different purpose. We can
think of kets as states of an “initial condition” and bras as states of a “final
condition”. The duality means that all states are eligible as starting or ending
states of an experiment. For a general superposition of ket states, the bra
dual reads

crlar) + ... Feplen) < o {ar|+ ...+ ¢ (el s (3.6)

where we conjugate the multiplicative factors in front of every bra component.

3.4 Inner product
The dual bra-space serves to define probability amplitudes as inner products:
(alb)  (inner product). (3.7

We postulate that
(alb) = (bla)™, (3.8)
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3.5. Properties of operators and their duals

and that the “square” of a state is positive definite:

(0l6) =0, Vo). (3.9)

We call 1/(¢|¢) the norm of the state |¢p). We can normalize all states to have
a unit norm without altering the physics,

) > [6) = 2=, (3.10)
where <¢~>‘q~5> =1.
3.5 Properties of operators and their duals
i) Two operators are said to be equal, X =Y, if
X[p)=Y|p), V). (3.11)
ii) An operator is zero, X =0, if
Xlg)=0, VIg). (3.12)

iii) Operators can be added together, with properties
X+Y=Y+X, (3.13)
X+Y+2)=X4+Y+2)=X+Y+Z. (3.14)

iv) Operators can be multiplied together with the property

X(YZ)=(XY)Z (3.15)
=XYZ.

v) However, the multiplication order is important and, in general,

XY #£YX.

The dual of an operator acting on a ket X |¢) is in general a different operator
X [p) ¢ (¢ XT, (3.16)

with
Xt £ X,
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

X1 is called the “Hermitian adjoint” of X. Operators with the special prop-
erty that XT = X are called hermitian operators.

The dual of a product of operators is

(xy)t =yixt. (3.17)

Proof. Let’s write

Yla) = |b),
where the dual is

(bl = (al YT
Then

XY |a) = X (Y |a)) = X |b) ¢ (b| XT = (a] YTXT,

which proves our assertion. O

We can define an outer product |b) (a|, which is an operator turning a generic
state |¢) to a state |b)

(Ib) (al) |6} = [b) ({al®}) = ({al®)) [b) , (3.18a)

(operator) |state) = ... = (number) [new state) . (3.18b)

The dual of an outer product is also an outer product

(1) (wl)" = 1v) (@] - (3.19)
Indeed,

(10) (1) la) = 1¢) (Wa)) +> (@l ((W]a))™ = (alv)) (o] = (al ((¥) (¢]) -

3.6 Hermitian operators
For a general operator, X, we can prove that

(al X |b) = (0] X |a)" (3.20)

Proof.

(al X [b) = (al (X 10)) = (01 XT)la})" = (0] X7 Ja)" o
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3.6. Hermitian operators

Hermitian operators H' = H have the special property that

(al H|b) = (| H |a)"

We can prove the following;:

i)

i)

The eigenvalues of a Hermitian operator are real.

Proof. For a Hermitian operator H with eigenstates |),
H i)y = A |3y .

The dual of the above equation is
(il H = ;i

where we have exploited the hermiticity of H (H' = H). Multiplying
the first equation with (i| from the left and the second equation with |i)
from the right, we obtain that

(il H |1) = Ai = Al
which proves that the eigenvalue J\; is real. O
The eigenstates of a Hermitian operator with non-degenerate eigenvalues
are orthogonal.

Proof. Following the same reasoning as above, we can easily show that
for two eigenstates |i),|j) of a Hermitian operator H we can write the
quantity (i| A|j) in two alternative ways:

(il Al7) = Xi (ilg) = A; (il)

which leads to
(Ai = Aj) (il7) = 0.

For non-degenerate eigenvalues, i.e.
Ai # Xj Vi) #17)
we conclude that

(il7) =0, V[i) # |7)

and the eigenstates are orthogonal. O
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

We typically normalize eigenstates of Hermitian operators to be orthonormal:
(il7) = ij. (3.21)

We postulate that a Hermitian operator A which corresponds to a physical
observable has a “complete” set of eigenstates {|i)}. Every other physical
state can be written as a superposition:

Vi) Heik : 16) =3 eili). (3:22)

The coefficients ¢; can be determined to be the transition amplitude from the
state |¢) to the eigenstate |i):

¢ = (ilg). (3.23)
Indeed,

> eili) =19)
~ D6 (ild) = (ile)

~ ch% = (i|$)
~ c; = (i|p) .

From Eq. [3.22| and Eq. [3.23| we obtain that for every state |¢),

j0) =D ({ile) |1} (3.24)

3

which we can re-arrange into.
6) = (Zm <z‘|> 9) (3.25)

Thus, for base-states |i) which are eigenstates of a non-degenerate Hermitian
operator, we have that:

1= i) (il (3.26)

all 4
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3.6. Hermitian operators

For a normalized state |¢) we have that

1= (dlo) = _ (i) (il$) (3.27)

?

~ 1= Z (il )| . (3.28)

This is consistent with the probabilistic interpretation of the inner product,
associating the probability P (|¢) — |¢)) for a transition from a state |¢) to
an eigenstate with the square of the inner product

P(I¢) = |i) = (il9)I” . (3.29)

In a filtering experiment (corresponding to the operator A with eigenstates
|i)) of a quantum mechanical system (such as an atom in a state |¢) ) the
probability that the system passes through one of the filters (the state ¢
collapses to one of the eigenstates |i) ) is one

D P — i) =1. (3.30)

all ¢

The operator A; = |i) (i| projects a general state onto the eigenstate |i) of the
Hermitian operator A. Indeed,

Ailo) = (I) Gl) o) = ((ile)) I2) (3.31)
= [amplitude(|¢) — [i))] x |i) .

This operator has the defining property of a projector,
Mgy = ([3) (al) (19) (1) = 19) (ilg) 5

For i = j, we find that A7 = A;, which tells us that filtering a quantum system
onto a pure state |i) successively does induce any further change to the system
after the filtering of the first time. For ¢ # j, we find that A;A; = 0. A system
which is already filtered onto a pure state |i) cannot transition directly into
a different pure state of the same observable.
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

3.7 Matrix representation of states and operators

Consider a Hermitian operator A with a set of eigenstates {|i)},i =1...N.
These satisfy the orthonormality condition (j|i} = J;;. We can represent these
eigenstates as vectors,

1 0 0
10 |1 10
1) = e [2) = N R |INY = e (3.32a)
0 0 1
We represent the dual bra-eigenstates as
(1} = (1,0,...,0), (3.32b)
(2|=(0,1,...,0), --- , (N|=(0,0,...,1).

The above representations of the bra and ket eigenstates are consistent with
their orthonormality condition. For example,

0
1
0
and
0
1
(22) = (0,1,...,0) | . | =1
0
etc.
A general state |¢) must satisfy
|6y = (ilo) |i) (3.33)
This can be represented as
1 0 0
. 0 1 0
9 =W | . [+ @) | |+ vio) | (3.34)
0 0 1
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yielding,

(N|6)

For a bra state (¢| we write

= <¢|Zli><i\ =@l @l = _(ilo)" (il . (3.35)

% %
This is represented as
(8l = ((116)7, 2[)", ..., (N]g)") . (3.36)
The inner product of two general states is
(alb) = (af <Z |2) ) = {ali) (ilb) = > (ila)" (ilb) . (3.37)
j i
This is consistent with the result that we obtain by using our representation,

(1]b)
(alp) = ((1]a)", (2la)",... . (Nla)") | . (3.38)

(N1B)

A general operator X can be written as

X = (Zm <z‘) X (Z 0 <j|) SIAXGl. (39

The operator is represented as an N x N matrix,

WX X X
xo | G RIXR) L elxiNg 10
(NIX1) (NIX[2) .. (NIX|N)

For the case of the outer product operator, we obtain the following represen-
tation

(La) (1[o)"  (Lla) (2[0)" ... (1]a) (N|b)”
| @l )T (2le) 2B)° . (2la) (N

Ja) (b] = : : : L (341
(Nla) (1]p)" (Nla) (2b)" ... (Nla)(N[p)"
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

3.8 Compatible and incompatible observables

Two Hermitian operators which commute with each other,
[A,B] = AB—- BA =0, (3.42)

are called compatible. If they do not commute, [A4, B] # 0 , they are incom-
patible. We shall prove a couple of theorems which elucidate the meaning of
this terminology.

Theorem 3.1. For two hermitian operators A, B : [A, B] = 0, where A has
a spectrum of eigenstates |i) with non-degenerate eigenvalues,

Ali) = Aili),
i) B is a diagonal matrixz in the representation of the |i) basis,
it) The set of |i) states is also a set of eigenstates of the B operator.
Proof. For any two eigenstates |i) , |j) of A we have that

0=[A B
~ 0= (i| AB — BAlj) = (i| AB|j) — (i| BA|j)
= (N =) (i B|j) /!

For |i) # |j), given that the eigenvalues are not degenerate, we have that
Ai # A;j. Thus, it must be that (¢| B|j) = 0. Only the diagonal elements,
i = 7, are allowed to be different than zero. We write:

(i| Blj) = 6i; (il Bi) , (3.43)

which is the first statement of our theorem.
The B operator can be written as

B= Z\WI B Z|J><j|
—ZI (il B5)

—ZI i (71 (Gl B1i))
—Z il Bli)) [i)l-

(il AB — BA|j) can be seen as (i| (AB — BA) |35).
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3.9. Expectation value and uncertainty of Hermitian operators

Acting on an eigenstate |m) of the A operator, we have

B|m) =Z(<'|B|'>) |2) (il m)
_Z |B| zm

= (<m| B |m)) [m)

which proves that the eigenstates |m) of A are also eigenstates of the com-
muting operator B. O

Theorem 3.2. If two operators do not commute, [A, B] # 0, their common
etgenstates do not form a complete set.

Proof. We can prove the above by assuming the opposite, i.e. the common
eigenstates of A, B, denoted by |a, b) and satisfying

Ala,b) = ala,b),
Bla,b) = bla,b),

form a complete set. Then a general state can be written as

¢) = capla,b). (3.44)
a,b

Acting with the commutator on an arbitrary state |¢), we obtain that

[A,B]|¢) = > cay (AB — BA) |a,b) = " cap (ab — ba) a,b) = 0. (3.45)

a,b a,b

From the above we conclude that the commutator vanishes, [A, B] = 0, which
is in contradiction to our hypothesis. O

3.9 Expectation value and uncertainty of Hermitian
operators (measurements)

Consider a Hermitian operator A which corresponds to a physical observ-
able, such as energy, momentum, position, spin magnetic moment, etc. We
associate the average value measured in an experiment (which is repeated in-
finitely many times) for the quantity corresponding to A with the expectation
value of the operator with respect to the system’s state |¢):

(4) = (9| Alo) . (3.46)
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

Let’s use the eigenstates |i) of the operator A as a basis of physical states.
These have eigenvalues \;, where

Al) = A i) (3.47)

The expectation value of A can be written as

4 <Z|z‘><z‘|>A >_ LGl 1e), (3.48)

which yields

= > nlo”. (3.49)

We can re-write this expression as

A) = Z AiProb(|@) — |i)) (3.50)

The expectation value is a sum over all possible eigenvalues weighted by
the probability that the state of the system collapses to the corresponding
eigenstate. If |¢) is itself an eigenstate of A, e.g. |¢) = |j) the expectation
value of the measurement is simply the eigenvalue A;:

(A) = (j| Al) ZAI il Z/\%—/\ (3.51)

In addition to the average of mesurements for an observable in a quantum
mechanical system, we can compute the uncertainty in these measurements.
This is defined as

(AA)?) = <(A A 1)2> . (3.52)

2| Indeed,
((AA)?) = (A%) — (4)*, (3.53)

which we can easily prove,

(A= ()7) = (&) —2(4(A) + (4 = (4) — 20" + (4 5 5
(-

2From now on we will drop the 1.
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3.10. The uncertainty principle

where
2

(A(A)) = (sl Algl Al9) o) = (8] Al¢) (6] Alg) = ({¢| A \i>)(3_55)

number

2
= (A4)".
Notice that the uncertainty for a system in an eigenstate of A is zero,

((AAY?) = (i| A% [i) = (i| A|i)* = A7 = A} = 0. (3.56)

3.10 The uncertainty principle

In this section, we shall derive Heisenberg’s uncertainty principle for any pair
of incompatible (non-commuting) Hermitian (physical) operators A, B.
We start with

= (4B) - (4) (B)
= %([A,B]} + % (AB + BA) — (A) (B)
= 2 (14.B)
1
#3{(4- ) (B (B) + (B~ (B) (4 - (4)
= (AB) + 5 (A~ (4), B~ (B)) (357)

where the anti-commutator is defined as
{X, Y} =XY +YX. (3.58)

The anti-commutator of Hermitian operators is also a Hermitian operator.
Indeed,
(X, Y} =(XV) + (Y X) = viXxT + XTyT
=YX+ XY=XY+YX={X,Y}

On the other hand, the commutator of two Hermitian operators is anti-
Hermitian [°. Indeed,

(A, B]f = [BY, AT] = [B, 4] = —[4, B]

Now we can prove an important theorem:

3(an operator Z is anti-Hermitian if its adjoint is zt = —Z)
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

Theorem 3.3. The expectation value of a Hermitian operator is real, while
the expectation value of an anti-Hermitian operator is imaginary.

Proof. Indeed, the real and imaginary parts of the expectation value for an
operator A are

A)+(4)" 1
w((a) = AL _ L a g atie) (3.59)
(A)—(4)° 1 T
S S e o/ A _
S ((4) = L = (gl A alg) (3.60)
The real part vanishes if A is anti-Hermitian, AT = —A, while the imaginary
part vanishes if A is Hermitian, AT = A. O

In the rhs of Eq. 3.57, the first term is then purely imaginary while the second
term is real. Both give an independent positive definitive contribution in the
absolute value square of the lhs, and we can write

’2 2 2

-y - - |5 a8)

#|3 (-5 - )

(3.61)
This leads to the inequality,
1 2
(A= (A) (B-B))* > '2 ([A,B]) (3.62)
Now we shall use a Schwarz inequality,
[(alb)|* < (ala) (blb) , (3.63)

(
which we can prove easily by the postulate (¢|¢) > 0 for
)

(b
(b

la

|¢) = la) —

Applying Schwarz’s inequality to

10

and

we obtain,

(A= (A)(B — (B))I* < (A~ (A)*) (B~ (B))*) (3.64)

Combining the inequalities 3.57| - 3.62 we obtain the “uncertainty principle”:

((A4)*) ((AB)*) = < [{[A, B)* (3.65)

1
4
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3.11. Change of basis

3.11 Change of basis

Incompatible operators offer different sets of base-kets to describe the states
of a quantum mechanical system (furnishing a different “representation” for
each one of such operators).

Given two sets of base-kets there is a unitary operator which can transform
general states and operators from one basis to the other. Consider two Hermi-
tian operators A, B and their corresponding sets of eigenstates {|a;)}, {|b:)}
where,

Alai) = a;|a;), (3.66)
Bb;) = bi[b;) , (3.67)

and
(ailaj) = (bilbs) = bij- (3.68)
There is a unitary operator U which transforms a state |a;) into a state |b;):
bi) = U |ai), (3.69)

with
UUt=UU =1. (3.70)

Explicitly, we can easily verify that

U=)_ b {axl. (3.71)
k

Indeed,
Ulas) =Y [bx) (arlas) = Y |br) 0k (3.72)
k k
=1b;).
Similarly,
k k
= \ai> .
Finally,

UTU = | > lay) (b (Z |b) <akl> =" la;) (b;[bw) (ax|

J k ik (3.74)

*ZWJ ik (ak| = Z|a] (a;| =1,
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

and

UUt = (Z aj|) (Zlak bk) =" |b;) (ajlax) (x|
ik

7 (3.75)
= Z Jk (o] = Z |b
ik
3.11.1 Transformation matrix
The transformation matrix
U= 5" [be) (a (3.76)
2
is represented in the basis of {]a;)} as
(ai|Ula:) = {a;lbe) {arlas) =Y (a;|br) Srs = {aj|bs) - (3.77)
k k
An arbitrary state |¢) is written as
(a1|9)
(az|¢)
¢> = ch \ak Z ak|q5 |ak . (3.78)
k 2 :
(an|®)

and in the {|a;)} basis it is represented as a column vector with elements
(a;|¢). Similarly, in the {|b;)} basis it is represented as a column vector with
elements (b;|¢).

It
=il = S el b = | (3.79)
’ ' (bn|o)

The two column vectors are related as follows:

(bil#) = (bilax) (axl¢)
- (3.80)

= Z (ail o |lak) (ax|®) -
k
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3.11. Change of basis

In matrix form

wilo) | = - @lutian . | (el (3.81)

new basis (ai\UHak) at ith row old basis
and kth column

Let’s now look at changing representations for operators. In the two bases,
{]a;)} and {|b;)}, an operator X is represented by the matrices

(aj| X'|a;) and (b;| X |b;),

respectively. We write:

(b X |bi) = (bjlar) (ak| X |ac) (ac|b:)

ke (3.82)
=D (a5| U" Jar) (ar] X |ag) {ael U las)
ke
4

Which, in matrix notation is written as

{bs] X [b:)

new basis (383)

= {aj|U"ax) {ar| X |ar) (@,U |ai)

old basis

3.11.2 Trace of operators

The trace of an operator is defined as

tr(X) = Z {a;| X |as), (3.84)

i

4In the same manner as Eq. [3.81
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3. QuANTUM MECHANICS AND LINEAR ALGEBRA

and it is independent of the representation. Indeed, for two representation

{la:)}, {|b:)}, we have:
S (@il X las) = 3 {ailby) (by| X [be) (bilas)

i ijk

=> (bl (Z |a¢><az‘> |b;) (bs] X [br)
ik i

1
= Z (br[bj) (bs] X [br)
_Zajk b;| X |br)
_Z (bs] X |b;) .

It is easy to prove the typical properties for traces, such as
tr(XY) = tr(YX). (3.85)
We also note that the trace of an outer product is an inner product,

tr (|e)(b]) = (aile) (blai) = (b (ZW al|> = (ble). (3.86)

3.12 Eigenstates and eigenvalues

Suppose that we know the representation (a;| X |a;) of an operator X in a
basis {]a;)}. We would like to compute the eigenstates of X in the same

representation. We have
X |b;) = bi [bs)

~ XZ lar)(ai] |bi) = b; |b;)
l

~{aal XY Jar)(aul [b:) = bi {ax|bi)
l

~ Y {ax] X |ar) ailbi) = b (ax|bs)
l

which, in matrix notation, is cast as
(a1 Xar) ... (@] Xlan)\ [ (a1]bi) (a1bs)
S s 2 S0 B PR CEL
(an[ Xlar) ... (an|Xlan)/) \(an|bi) (an|bi)
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3.13. Unitary equivalent observables

We can find the eigenvalues b; and eigenstates

(a1bs)
: (3.88)
(an|bi)

as eigenvalues and eigenstates of the matrix in the lhs of Eq. 3.87. The

eigenvalues satisfy,
det(X — b;1) = 0. (3.89)

Knowing the eigenvalues the eigenstates can be constructed as usual in linear
algebra by substituting b; explicitly in Eq. [3.87 and solving for the (a;|b;)’s.

3.13 Unitary equivalent observables

Two operators A, B are equivalent if they can be related by a unitary trans-
formation.
B=UAU', Ul=U"%. (3.90)

These operators have the same eigenvalues and their eigenstates are related
by the same unitary transformation.

Ala) = ala)
~ AU |a) = aU'U |a)
gl gl
~ (UAUY) (U |a)) = aUU'U |a)
~ B(Ula)) =a (U |a)). (3.91)

The operator B satisfies an eigenvalues equation
Blb) =blb).

Comparing with the above, we conclude that the eigenstates of the operator
B are
b) = U l|a),

and the eigenvalues are
b=a.
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CHAPTER 4

TIME EVOLUTION

Before we introduce Quantum Mechanics, it will be useful to recall how we
described the dynamics of simple mechanical systems in classical physics. In
Quantun Mechanics, we will postulate principles that extend a picture of
Classical Mechanics.

4.1 Time evolution in classical mechanics

Consider, for simplicity, a one-dimensional mechanical system whose dynam-
ical behavior is encoded in a Lagrangian

L(x(t),2(1)) -

The Lagrangian depends on the position and the velocity, which are functions
of time. We will focus on energy conserving systems, in which the Lagrangian
acquires all of its time dependence through these functions and has no other
explicit time dependence,

oL _,

= (4.1)

The time evolution of the position and the velocity obeys the principle of least
action. This states that the action is stable,

05 =0, (4.2)
under small variations of the physical trajectory
x(t) = x(t) + ox(t). (4.3)
Eq. 4.2, leads to the Euler-Lagrange differential equation

d 0L 0L
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4. TIME EVOLUTION

For example, a particle moving in one-dimension under the influence of a force
potential V(x) has a Lagrangian

L= %ma’:Q —V(x), (4.5)

and the corresponding Euler-Lagrange equation yields Newtons law

ma + 881 = 0. (4.6)

An alternative description of the same dynamics can be obtained through the
Hamiltonian formalism. We define first the canonical momentum,

L

- = (4.7)

p

which, in general, is a function of both the position and velocity,
p=p(x(t),i(t)). (4.8)
We now define the Hamiltonian
H(z,p) =pi — L, (4.9)

and pick the pair of (x,p) as our independent variables, “inverting” Eq. (4.8),
and considering the velocity as a function of position and momentum,

&= (x,p). (4.10)
Differentiating the Hamiltonian with the position, we have

OH

— =...=—p 4.11
2 b, (4.11)
while differentiating with respect to the momentum we arrive at

oH _
=

I
.&.

(4.12)

Therefore, alternatively to the second-order Euler-Lagrangian differential equa-
tion, we can describe the dynamical system with the pair of first-order differ-
ential equations of Hamilton

OH . OH

p:
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4.1. Time evolution in classical mechanics

Let us now consider a generic physical quantity,
A= A(z,p,t). (4.14)

Differentiating with respect to time, we have

dA 0A 0A 0A
= = Epa ey o 4.1
at o T (4.15)
Substituting above the Hamilton equations (4.13)), we obtain
dA 0A
— ={AH —_—. 4.1
o = AH (4.16)

where the Poisson bracket for two functions f(z,p) and g(z,p) is given by

_0f0g _9f9
{f.9 = 959p  Opoc’ (4.17)

For example, the canonical momentum for a particle in a potential, corre-
sponding to the Lagrangian of Eq. (4.5), is

oL
which we invert to read
. p
= —. 4.19
. m ( )

The Hamiltonian is then computed to be

2

. p
H=pt—L=—+4YV 4.20
pi—L=2 4 v(), (4:20)
and Hamilton’s equations are
. D . ov
=L p=_2" 4.21
TP ox (4.21)
and the general evolution equation reads
dA p? 0A
— =<A—+4V — 4.22
dt { "om (x)}+8t (422)

We will study the theoretical implications of the time-evolution equation for
generic physical quantities A above and the Poisson brackets, soon.
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4. TIME EVOLUTION

4.1.1 Properties of Poisson brackets

We can derive the following properties of Poisson brackets from their definition
in Eq. (4.17).

e Anti-commutation,

{A,B} = —{B, A} (4.23)
e Linearity
{A,B+C}={A,B}+{A,C}, (4.24)
e Product rule,
{A,BC}=B {A,C}+{A,B} C (4.25)

e Action on position and momentum

{z.p} =1, {z,2}=0, {p,p}=0. (4.26)
In addition, Poisson brackets satisfy the Jacobi identity
{AAB,C}} +{B.{C, A}} + {C.{A,B}} = 0. (4.27)

We can now also show the inverse. For the class of functions of position and
momentum which have a series representation as in

fl@,p) = > cama"p™, (4.28)

n,m=0
the properties of Eqgs. (4.23) - (4.26), lead back to the definition of Eq. (4.17).
The proof can be somewhat lengthy but relies on simple induction.
We first prove inductively that

{z, 2™} =0, {p,p"} =0, (4.29)
and
{z,p™} =mp™ = a%pmy {z"™,p} =ma™ ! = % ™. (4.30)

Then, it follows that for a generic function f(z,p), as of Eq.|4.17, the Poisson
bracket with respect to position (momentum) is equivalent to the derivative
with respect to momentum (position),

of

{x,f}=87p, {fvp}:% (431)

92



4.2. Time evolution in quantum mechanics

Now, we can show inductively that

_,0f da" df L, Of 0p o

(@ fap)} =T = TS () p") = w7 g = S o 8)

Now, in Eq. (4.32) and in the anticommutation, Eq. (4.23), linearity, Eq. (4.24),
and product rule, Eq. (4.25), of the Poisson brackets we have all the ingredi-
ents needed to return back to Eq. (4.17).

{f(z,p),9(z,p)} {chmx p™, 9(z,p) } chm {z"p™, g}

nm nm

= cam " {p", g} + Y com {27 g} 0" =D cum [—2" {9, 0™} + {27, 9} P

nm nm nm

_ZC {—x op™ dg  Ox™ @} of 0g Of Og

=== - = . 4.
Op 8x+ Or P Oop (4.33)

Oxr dp Op O

4.1.2 A way to think of classical time evolution

We have just then shown, that the definition of Poisson brackets in Eq. (4.17)
is equivalent to the properties of Eqs (4.23)-Eqs (4.26). We can then choose
to formulate time evolution as follows.

The dynamics of a physical system is encoded in its Hamiltonian,
H(zi,pi)

which depends on space coordinates x; and canonical momenta p;. A physical
quantity A(z;,p;,t) evolves in time according to

@ = {AH) + 3‘4 (4.34)

and the Poisson brackets are defined to satlsfy

{zi,z;} = {pi,p;} =0, {zi,p;} = dij, (4.35)

as well as, anticommutation, linearity, and the product rule of Eqs. (4.23)-
(4.25)). The above statements are all what one needs to describe the dynamic
evolution of a classical system.

4.2 Time evolution in quantum mechanics

Physical systems are in quantum states |1} of a Hilbert space. Physical quan-
tities, such as the position and momentum, are hermitian operators acting on
this space,

Ti Diye--
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4. TIME EVOLUTION

The mean value of experimental measurements of an observable quantity
O(z;,pi), which is represented by an operator O in Hilbert space, is given
by

(0) = (V| O(&4, i) ) - (4.36)

Quantum time evolution has a very similar form as classical evolution, in
the form presented in the subsection 4.1.2l A central object in classical
evolution has been the Poisson brackets of position and momentum. What is
the analogous object for the corresponding quantum mechanical operators?
Dirac observed that the commutator of two operators,

[A,B] = AB — BA

possesses algebraic properties analogous to the classical Poisson brackets, i.e.

[A,B] = —[B,A], (4.37)
[A,B+C] = [A B]+[AC], (4.38)
[A,BC] = BIA,C)+A,B|C, (4.39)
[A,[B,C]] +[B,[C, Al + [C,[A, B]] = 0. (4.40)

In classical mechanics, the Poisson bracket of a coordinate and its canonical
momentum is a constant (unit). We will postulate the same for the commu-
tator of their quantum mechanical operators,

[, p] = constant

The constant must then be imaginary, given that the positions and momenta
are hermitian,

constant™ = [,p]' = [pf, 7] = — [, 5] = —constant. (4.41)

In analogy to classical mechanics, it comes natural to postulate the following
commutation relations for positions and momenta

Comparing Eqs. (4.42)) and the Poisson bracket “postulates” for classical me-
chanics in Eq. (4.35)) it is motivated to ide