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The scientific potential and technological challenges of the HL-LHC 5
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Figure 2. Timeline for the LHC and HL-LHC upgrades [29].

the current LHC program after Run 3 with the goal of increasing the integrated
luminosity delivered to the experiments by an order of magnitude. Significant
upgrades to the LHC itself and to the detectors will be installed. Data taking
with the HL-LHC configuration is planned to start in 2027 and to continue until
about 2040. The current LHC and HL-LHC timeline is presented in Figure 2.

The HL-LHC physics program will obtain a deeper understanding of the
interactions and self-interactions of the Higgs boson, crucial for direct tests of the
SM, and searches for dark matter and other BSM physics. Many of these processes
have very low cross sections, so that data with a large integrated luminosity needs
to be collected before conclusive statements can be made. Therefore, the upgrades
that are underway for the HL-LHC focus on delivering ten times more integrated
luminosity than the current LHC program. The projected lifetime of the HL-LHC
is approximately 12 years with an expected integrated luminosity of 3000 fb

�1. In
order to achieve this, the instantaneous luminosity will need to be ten times larger,
resulting in an average number of up to 140–200 interactions per bunch crossing.

This review will mainly focus on the upgrade of the LHC and the ATLAS
and CMS detectors. The planned upgrade for the ALICE detector for the HL-
LHC era will enable study of rare phenomena, perform high-precision measurements,
and lead to unprecedented insight into the properties of the Quark-Gluon Plasma
phase (QGP). The ALICE upgrade will enhance its tracking capabilities, the time
projection chambers, and the forward muon tracker, to handle the higher collision
rates. The collaboration plans to add a new fast interaction trigger detector to detect
particles which scatter at a small angles, and also add a new forward high granularity
calorimeter to improve particle identification. The LHCb detector upgrade will fully
exploit the flavor-physics opportunities from their high production rate at the HL-
LHC. It will also enable precision searches for physics beyond the Standard Model by
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A vivid programme of precision collider physics for the next two decades. 



“Rare”  processes at the 
LHC

2 → 3

σ (pp → ttH( → γγ))

σ [pp → VVV] V = W, Z

4

with a nonprompt lepton is evaluated using a sample of events in which one lepton satisfies
loose identification criteria but fails the tight criteria. The number of events in this region de-
termines the estimate of the nonprompt background in the signal region using a transfer factor
computed with a separate event sample rich in nonprompt leptons. This transfer factor is the
ratio of the number of events that pass the tight selection criteria to those that pass the loose
criteria. For the 5` channel, a sample of events with three prompt leptons and one nonprompt
lepton is dominated by WZ production and used to verify the prediction of background con-
tributions with nonprompt leptons. Nonprompt leptons are a minor background for all other
channels.
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Figure 1: Comparison of the observed numbers of events to the predicted yields after fitting.
For the WWW and WWZ channels, the results from the BDT-based selections are used. The
VVV signal is shown stacked on top of the total background. The points represent the data
and the error bars show the statistical uncertainties. The expected significance L in the middle
panel represents the number of standard deviations (sd) with which the null hypothesis (no
signal) is rejected; it is calculated for the fit for µcomb. The lower panel shows the pulls for the
fit result.

The signal strength µ, defined as the measured production cross section times branching frac-
tion divided by the expected SM value, is determined through simultaneous fits to all twenty-
one signal regions. In one version of the fit, four independent signal strengths (µWWW, µWWZ,
µWZZ, and µZZZ) are used. In the other version, a common signal strength µcomb is used for all
four processes.

The most important sources of systematic uncertainty involve the estimation of background
contributions; the uncertainties range from 5 to 25% and come mainly from limited statis-
tical precision in the control regions. The uncertainties in the nonprompt background esti-
mates from control samples in data also contribute significantly at 50%. Uncertainties related
to trigger efficiencies, lepton identification and energy resolution, jet energy scale, and b-jet
tagging efficiency range from 1 to 9%. A 2.3–2.5% uncertainty in the integrated luminosity is
assessed [58–60]. Uncertainties due to limitations of the theory include missing higher-order
corrections (2–14%), PDF uncertainties (2–7%), and the strong coupling aS (1%). Theoretical
and experimental uncertainties are correlated across different channels. Statistical uncertain-

Measurements of triboson production at colliders directly probe the strength of gauge boson self-interactions
within the standard model (SM) via triple gauge couplings and quartic gauge couplings [1, 2]. Any
significant deviations from the SM predictions would provide evidence of new physics at a higher energy
scale than is presently accessible [3–8]. Triboson final states are among the least-understood SM processes
due to their small production cross sections. In particular, searches for the production of three W bosons
(,,,) have been performed by both the ATLAS [9, 10] and CMS [11, 12] Collaborations. Using
proton-proton (??) collisions at a center-of-mass energy (

p
B) of 13 TeV delivered by the Large Hadron

Collider (LHC) [13], the ATLAS Collaboration analyzed 80 fb≠1 of data and provided evidence for both
,,, and ,,//,// production [10], and the CMS Collaboration analyzed 137 fb≠1 of data and
observed the combined production of three massive vector bosons (,,, , ,,/ , ,// and ///) [12].

This Letter reports the observation of ,,, production and a measurement of its cross section using
139 fb≠1 of data at

p
B = 13 TeV [14] taken with the ATLAS detector. At leading order (LO) in QCD,

,,, production can proceed via the radiation of each , boson from a fermion, via a , boson produced
in association with an intermediate Z/W⇤ or Higgs boson that decays via the ,,

⇤ intermediate state, or via
a quartic gauge coupling vertex. Representative Feynman diagrams are shown in Figure 1. The analysis
selection is sensitive to processes with both on-shell and o�-shell , bosons decays. For simplicity all
these processes (including ,� ! ,,,

⇤) are generically referred to as ,,, throughout this Letter.
Two decay channels, ,,, ! ✓

±
a✓

±
a@@ and ,,, ! ✓

±
a✓

±
a✓

⌥
a with ✓ = 4 or `, are considered and

are hereafter referred to as 2✓ and 3✓, respectively. Events with electrons and muons produced through g

leptons are also included. The experimental signature of the 2✓ channel consists of two same-sign charged
leptons, missing transverse momentum, and two jets, while the signature of the 3✓ channel consists of three
charged leptons and missing transverse momentum.

Figure 1: Representative Feynman diagrams at LO for the production of three massive , bosons, including diagrams
sensitive to triple and quartic gauge couplings.

The ATLAS detector [15] is a multipurpose particle physics detector with cylindrical geometry.1 It consists
of an inner tracker (ID) surrounded by a superconducting solenoid, sampling electromagnetic (EM) and
hadronic calorimeters, and a muon spectrometer (MS) with three toroidal superconducting magnets. A
two-level trigger system is used to select events for storage. Events used in this analysis were selected
online by single-electron or single-muon triggers [16–18]. An extensive software suite [19] is used in the
reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data
acquisition systems of the experiment.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis points
upwards. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The
pseudorapidity is defined in terms of the polar angle \ as [ = � ln tan(\/2). Momentum in the transverse plane is denoted by
?
)

.
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Figure 2: Postfit BDT output distribution in the 4
±
4
± (top left), 4±`± (top right), `±`± (bottom left) and 3✓ (bottom

right) channels. The bottom panel of each plot shows the ratio of the data to the total prediction. The uncertainty
bands include both the statistical and systematic uncertainties as obtained by the fit. The signal is scaled to the fitted
signal strength of 1.61.

In conclusion, the first observation of the ?? ! ,,, process is reported by the ATLAS experiment
at the LHC. Events with two same-sign charged leptons in association with at least two jets, as well
as events with three charged leptons and no same-flavor opposite-sign lepton pairs, were selected from
139 fb�1 of 13 TeV ?? collisions. Two BDTs were trained to improve the separation between signal and
background. The SM background-only hypothesis is rejected with an observed (expected) significance
of 8.0 (5.4) standard deviations. The inclusive ?? ! ,,, production cross section is measured to be
820 ± 100 (stat) ± 80 (syst) fb, approximately 2.6 standard deviations from the predicted cross section of
511 ± 18 fb calculated at NLO QCD and LO electroweak accuracy.
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A vivid programme to survey the Large Scale 
Structure

• Abundance of new and future data 
(BOSS, DESI, MegaMapper, 
PUMA, …) 

•  Testing cosmological models 
stringently 

• Precise determinations or limits of 
Hubble’s constant, dark matter 
density, neutrino masses, 
primordial non-Gaussianities, 
curvature and other cosmological 
parameters 

• Competitive or better uncertainties 
than from CMB measurements. 

The MegaMapper would be located at Las Campanas Observatory in the southern hemisphere, and
would have full access to LSST imaging for target selection.

Figure 1: Number of galaxy redshifts as a function of time for the largest cosmology surveys.
The dotted line represents an increase of survey size by a factor of 10 every decade. Fielding the
MegaMapper in ten years maintains this pace into the 2030s, and enables the Inflation and Dark
Energy measures proposed in this and other white papers.

2.2 Cosmology Science Forecasts: Inflation and Dark Energy

In [5] we have identified two samples, a more optimistic “idealized” sample based on the LSST
target density of LAEs and LBGs, and a “fiducial” sample, based on conservative redshift suc-
cess rates and assumptions about line strengths (see [5] for the sample specifications and [8] for
background about selection and sample properties).

We have found that both samples can significantly cross the theoretical threshold s( f local
NL ) . 1,

surpassing the current and future CMB bounds by an order of magnitude. In particular, we find
s( f local

NL ) = 0.11 and 0.073 for the fiducial and idealized samples respectively when including both
the power spectrum and bispectrum. Improvements by a factor of two or larger over the current
bounds are also expected for the equilateral and orthogonal shapes [5]. Particular care should be

4

 Astro2020 APC White Paper 
[1907.11171] 
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High precision theory predictions in perturbative QCD

e.g. Higgs Rapidity

• Innovative perturbative 
methods (mostly analytic)


• High precision theoretical 
prediction (~2%) at N3LO. 


• Awaiting data from the LHC 
at the high luminosity phase. 
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FIG. 1: Approximate Higgs boson rapidity distribution with threshold expansion truncated at di↵erent orders. The left panel
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prediction obtained in this work.
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Numerical methods for perturbation theory

• Fantastic progress with analytic approaches, so far. 


• Scattering amplitudes for many massive and massless particles depend on many 
variables. Hard to solve analytically. 


• Cosmological correlators depend non-trivially on all parameters of the cosmological 
model, as well as  kinematic variables. 


• Recent progress is fast towards semi-analytic/semin-numerical methods. 


• We would like to develop universal, process dependent numerical methods. Letting 
the computer to do the hard work… 
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𝒫(k) = + + +

Solution of 
linearised equations.  

Depends on cosmological 
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Weak non-linearities as loop corrections. 
Cosmological parameters enter implicitly, through the 

propagator lines. 
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evaluation of loop corrections

7.1 The Planck linear power-spectrum

(a) The linear power-spectrum P
[0]

lin. which fur-
nishes a best fit to the Planck data. We over-
lay the solution given as points for specific val-
ues of k derived with CLASS [10] at redshift
z = 0.57 and an interpolating function. In
the UV and IR regions the linear powerspec-
trum is extrapolated according to Eq. (6.13)
and Eq. (6.14).

(b) The power-spectrum (i) P [0]

LO
computed at

leading order (linear contribution) (red), (ii)
P

[0]

NLO
computed at NLO which includes the

one-loop correction (green), and (iii) P
[0]

NNLO

computed at NNLO which includes both the
one-loop and two-loop corrections (blue)

Figure 6: The Planck linear power spectrum and its loop corrections.

In our analysis, a central role is given to the cosmological ⇤CDM model with param-

eters listed below

h
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ln 1010A(Planck)

s
= 3.044

n
(Planck)

s
= 0.965X

m
(Planck)

⌫i
= 0.06

This model gives a best fit to the Planck data [].

In Fig. 6a we plot the Planck linear power spectrum P
[0]

lin.
in the form of discrete

points derived with CLASS [10]. In addition, we overlay the functional form that we

attribute to it with interpolation and the UV and IR extrapolations of Eqs. (6.13)-

(6.14).

7.1.1 Magnitude of perturbative corrections

After we have described the method for numerically integrating the diagrams ap-

pearing through two-loops, we present here the result of the numerical evaluation for

– 22 –
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Infinite range (UV singularities)

∫
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(2π)3

IR and UV singularities motivate

analytic methods for the evaluation 


of loop corrections
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Analytic method at one-loop

EFT of LSS propagator Massive QFT propagators

Raised to integer powers

• Enables powerful methods to reduce number of integrals (master 
integrals)


• Enables master integral evaluation methods with analytic control over 
UV and IR singularities. 



Generic one-loop N-point 
correlators in EFT of LSS. 
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No box, pentagon, hexagon,…  master integrals in three dimensions 
Van Neerven, Vermaseren [Phys.Lett.B 137 (1984) 241-244] 

where we have introduced raising (lowering) operators representing the original integral with

a power of propagator increased (decreased) by one,
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and a neutral operator which leaves the integral unchanged
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In the case of det(dij) 6= 0, which is always the case for non-degenerate external momenta,

we can use the inverse matrix d̃ij ,

NX

j=1

d̃bj dja = �ab, (6.17)

to diagonalize the above system of di↵erence equations,

⌫b b̂
+ =

NX
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⌫j +

NX
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⌫i �D

!
0̂+
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a 6=j

⌫aa
+
j
�

3

5 . (6.18)

Let us now consider positive non-zero integer powers of propagators ⌫b = db > 0. The integrals

of the right-hand side are all simpler than the integral of the left-hand side. Specifically, the

sum of powers of propagators in the b̂
+ term of the left-hand side is

P
i 6=b ⌫i + (⌫b + 1) =P

i di + 1, while the corresponding sum for 0̂,
P

i ⌫i =
P

i di and a
+
j
�,
P

i 6=a,j ⌫i + (⌫a +

1) + (⌫j � 1) =
P

i di , in the right-hand side is lowered by a unit to
P

i di. A sequential

application of the recurrence identities of Eq. (6.18) will eventually reduce all the powers of

propagators to ⌫b 2 {0, 1}. In fact, we have already seen this reduction mechanism at work

for the triangle and bubble recursion relations (see the discussion around Eq. (4.50)) which

are representative examples of the general one-loop case which we treat in this Section.

A further reduction can be now achieved by restricting ourselves to the physical limit of

D = 3 dimensions. We find that only master integrals with at most three propagators, raised

to unit powers, are truly independent. This reduction has been shown in Ref. [93], and we

review it here, in a slightly modified derivation.

Consider the case of the one-loop “box” integral with four propagators raised to a unit

power,

I4 ⌘

Z
d
D
q

1

A1A2A3A4
(6.19)

The three-dimensional part of the loop momentum q can be decomposed as a superposition

of the three independent linear combinations pi, i = 1 . . . 3 of external momenta. Explicitly,
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Finally, the tensor reduction in the remaining integrals emerging from the right-hand side

gives factors proportional to X

j 6=i

⇧ijpi · pj = �ij = 0 , (6.33)

as, for each i the dependence on pi disappears from the integral. Therefore, they vanish, too.

We are then left with the identity,
Z
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D
q
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(6.34)

The integral with q2? is of order O(✏) in D = 3� 2✏ dimensions and drops out when we

take the exact limit of D = 3. Indeed, we can separate the integration measure into a three

dimensional part and a D � 3 = �2✏ part,
Z

d
D
q

q
2
?

A1A2A3A4
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Z
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q d

�2✏
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q
2
?

A1A2A3A4
(6.35)

The propagators Ai = q
2 +2q · pi + ⇢i depend on the transverse momentum q? only through

its magnitude squared q2? in q
2, as the external momenta combinations pi are purely three

dimensional and the scalar products q · pl do not depend on q?. Then, we are allowed to

average over angles in the �2✏-dimensional space,
Z

d
�2✏q?q

2
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Z
d
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using ⌦n�1 =
n
2⇡⌦n+1.

The identity of Eq. (6.34) is then a “dimensional-shift” of the box integral from D = 3�2✏

dimensions to D = 5� 2✏ dimensions [103],
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(6.37)

The box integral is UV finite in D < 8 dimensions, as can be seen with power counting for

the ultraviolet degree of divergence. Similarly, IR power counting of the degree of divergence

for potential soft or collinear singularities [104–106] shows that it is also IR finite in D > 4.

Therefore, the five dimensional box integral in the right-hand side of Eq. (6.37) is finite. As,

it is multiplied with a factor of ✏ = 3�D
2 , it drops out when integrals are computed through

their finite parts in the expansion around ✏ = 0. We then have the following identity,
2
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Integration by parts identities can be brought to a diagonal form for arbitrary number of 
external legs 

CA, Braganca, Senatore, Zheng 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Figure 1: Triangle plots, best-fit values, and relative 68%-credible intervals of base cosmological parameters
measured from the analysis of BOSS power spectrum multipoles P`, ` = 0, 2, at one-loop, bispectrum monopole
B0 at tree or one-loop level, and bispectrum quadrupole B2 at tree-level. Planck ⌫⇤CDM results are shown
for comparison.

A note of warning: We end this section of the main results with a final note of warning. It
should be emphasized that in performing this analysis, as well as the preceding ones using the
EFTofLSS by our group [4, 6, 11, 17, 13, 7, 21], we have assumed that the observational data
are not affected by any unknown systematic error or undetected foregrounds. In other words,
we have simply analyzed the publicly available data: the two- and three-point functions of
the galaxy density in redshift space as measured from the public galaxy catalogues. Given the
additional cosmological information that the theoretical modeling by the EFTofLSS allows
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BOSS

D’ Amico, Donath, Lewandowski, Senatore, Zheng 
[2206.08327] 

One-loop bispectrum in EFT of 
LSS in phenomenology

Braganca, Donath, Senatore, Zheng  
[2307.04992]

DESI: ze↵ nb,e↵[(hMpc�1)3] b
ref
1

(kTreemax , k
1L
max, kNL) [hMpc�1] N

1L
bins

N
Tree

�
N

1L
�

Bin 1 0.84 8.0⇥10�4 1.3 (0.08, 0.18, 0.9) 37 17 115

Bin 2 1.23 3.2⇥10�4 1.5 (0.09, 0.23, 1.3) 45 17 191

Table 2: DESI e↵ective survey specifications, calculated according to the formulas in Sec. 2 and Tab. 6 in App. A.

nb,e↵ is the background galaxy number density entering the derivatives (not the covariance), Nbins is the number of

k-bins we consider for the power spectrum and N� is the number of triangles we consider for the bispectrum.

cosmological parameters. Analyzing fNL in combination with cosmological parameters changes the

fNL constraints by less than 8%. For neutrino masses, with the caveats discussed in footnote 17,

it seems likely that DESI is already able to detect massive neutrinos at the 2� level.

�(·) h ln(10
10As) ⌦m ns ⌦k

P 0.0061 0.12 0.0045 0.027 0.051

P+B 0.0042 0.035 0.0023 0.011 0.013

�(·) h ln(10
10As) ⌦m logmtot.

⌫ (
�+

�� )

P 0.0065 0.051 0.0072 1.3 (
+0.26
�0.072)

P+B 0.0042 0.025 0.0034 0.63 (
+0.087
�0.047)

�(·) f loc.

NL
feq.

NL
forth.

NL

P+B 3.5 114 30

Figure 5: Triangle plots and errors from Fisher forecasts for DESI including the spectral tilt and spatial curvature

(left) and massive neutrinos (right) and Non-Gaussianity (bottom). In the table we also report the upper and lower

bounds of the 68% confidence interval for the sum of massive neutrinos, i.e P
⇥�P

i m⌫i �
P

i m
ref

⌫i

�
2 (��,�+)

⇤
=

0.68. We use all power spectrum and bispectrum multipoles at one loop order for the above results and use the

analytical covariance without cross-correlations.

Impact of shot noise and biases Similar to Sec. 4.1, it is interesting to investigate constraints

with the “galaxy-formation prior” (g.p.) putting stronger priors on EFT parameters, and look

at the theoretical limits of fixed biases and zero shot noise for DESI. As shown in Fig. 6, the

27

DESI

�(·) h ln(10
10As) ⌦m ns ⌦k

P` 0.014 0.2 0.012 0.066 0.027

P`+B0 0.01 0.13 0.009 0.037 0.017

�(·) h ln(10
10As) ⌦m logmtot.

⌫ (
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�� )

P` 0.011 0.14 0.011 2.3 (
+0.84
�0.089)

P`+B0 0.0092 0.095 0.008 1.6 (
+0.41
�0.080)

�(·) f loc.

NL
feq.

NL
forth.

NL

P`+B0 25 266 94

Figure 3: Triangle plots and errors from Fisher forecasts for BOSS including the spectral tilt and spatial

curvature (left), massive neutrinos (right), and primordial non-Gaussianity (bottom). The power spectrum

monopole and quadrupole, and the bispectrum monopole were used both at one loop order. In the table we

also report the upper and lower bounds of the 68% confidence interval for the sum of massive neutrinos, i.e

P
⇥�P

i m⌫i �
P

i m
ref

⌫i

�
2 (��,�+)

⇤
= 0.68. The covariance used here is the full, measured covariance with all

cross-correlations. We implemented the approximate AP e↵ect as discussed in Sec. 2.4.

Impact of shot noise, biases and multipoles For BOSS, we checked that adding the trispec-

trum at tree level and the 2-loop power spectrum 28 do not improve on the measurements 29.

This is mostly attributable to the large shot noise of the survey. However, given the power of the

Fisher formalism, we can investigate the e↵ects of certain limits and configurations on parameter

constraints. Of course, we here look at limiting cases, that are unrealistic in reality, but they

show where information is lost. In particular, we are interested in the impact of EFT parameters

and of the survey shot noise. Throughout this section, we will be using the analytical covariance,

which gives us the most control but comes with the caveats mentioned in Sec. 3. We investigate

several e↵ects on both base cosmological parameters including ns, and fNL. Just as in [28], unless

mentioned otherwise, we fix the cosmological parameters when quoting errors on fNL. We checked

28While currently, we do not have the 2-loop power spectrum for galaxies in redshift space, we can simply run a

Fisher analysis on the one loop correlators, with the 2-loop kmax reach. This then gives an upper bound estimate for

the extra constraining power of the 2-loop correlators. The results on BOSS do not improve even with this optimal

estimate, and therefore we believe, a 2-loop analysis will not improve the results on BOSS.
29Exploration of the contribution from higher N -point functions is currently in progress [121].

24

BOSS

�(·) h ln(10
10As) ⌦m ns ⌦k

P 0.0036 0.021 0.0012 0.006 0.0076
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�(·) h ln(10
10As) ⌦m logmtot.

⌫ (
�+

�� )
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Figure 7: Triangle plots and errors from Fisher forecasts for MegaMapper including the spectral tilt and

spatial curvature (left) and massive neutrinos (right) and non-Gaussianity (bottom). In the table we also

report the upper and lower bounds of the 68% confidence interval for the sum of massive neutrinos, i.e

P
⇥�P

i m⌫i �
P

i m
ref

⌫i

�
2 (��,�+)

⇤
= 0.68. We use all power spectrum and bispectrum multipoles for the above

results and use the analytical covariance without cross-correlations.

is far greater at higher redshifts, as can be seen from Tab. 8, the shot noise, especially for the

higher redshift bin, is extremely large 31. We, therefore, present the limiting case of zero shot

noise to better understand the possible gain achievable by reducing the currently estimated shot

noise. Equally motivated by the long timeline of MegaMapper, we present results with stronger

bias priors, anticipating the better understanding of galaxy formation until the data release. Along

with the zero shot noise and “galaxy-formation prior” results, we also present the impact of fixing

biases in Fig. 8.

We see that stronger bias priors mostly have an e↵ect on f
eq.

NL
and f

orth.

NL
. Going further and

fixing the biases we would again, roughly, reduce the error bar by a factor 2, with again the

exception of f eq.

NL
where the dependence is much stronger. This again motivates the perturbativity

prior we discuss in Sec. 5. This is very similar to the case of BOSS and DESI shown in Secs. 4.1

and 4.2. Thus, the relative gain of putting the “galaxy-formation prior” or fixing the biases is very

similar among the three surveys we consider.

31This also means that the 2-loop analysis for MegaMapper just marginally improves on this results at < 20%

error bar reduction, which we verified with the same method as mentioned in footnote 28.
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MegaMapper

Loop corrections enhance the range of applicability of  

perturbation theory to include shorter scales  

(weakly non-linear regime). 



Two-loop QFT integrals for the power 
spectrum: the SunCut topology 
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Differences with integrals from one-loop 
cosmological correlators 

• UV/IR divergent integrals, 
with  poles.  


• IBP reduction identities are 
coupled. 


• Master integrals are neither 
known nor easy to compute 
analytically.

1/ϵ

• At one-loop, in , ALL 
integrals are free of  poles 
(finite or dim. Reg. zeros).


• At one loop, IBP identities 
can be easily diagonalised, 
symbolically (no Laporta 
algorithm needed). 


• Reduction to master 
integrals numerically 
(setting D=3 exactly) and 
masses/invariants to their 
values. 


• All (three) master integrals 
computed analytically in 
closed form (logs). 

D = 3 − 2ϵ
1/ϵ

p
k

q
k

M1

M5

M3M2 = 0

M4 = 0

Novel Elliptic Polylogarithms
Gireaux, Pokraka, Porkert, Sohnle  

 [2401.14307] 



Ingredients for a numerical 
evaluation of loop corrections

• Computations purposed for cosmological parameter 
inference. Need to decouple cosmological parameter 
dependence from integrations.


• No ultraviolet singularities or enhancements (UV 
counterterms of EFT of LSS)


• No infrared singularities (general property of EFT of 
LSS)


• We need smooth integrands, not just integrals, free of 
UV+IR singularities  so that a numerical integration is 
possible and efficient. 
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Free of UV+IR 
singularities

Cosmology 
dependence



The one-loop corrections
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Removing leading 
ultraviolet behaviour

• Power-counting to determine UV limit of the 
integrand


• Write an approximation of the integrand with the 
same limiting UV behaviour.


• The UV approximation should not introduce new 
undesired singularities. 


• To restrict the counterterm in the UV region only, 
we need to introduce an IR ``cutpoff’’ (a 
renormalization mass scale)


• Define a UV-fintie integral with a subtraction.


• Absorb UV behaviour into the UV counterterms of 
the EFT of LSS.  
Po
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Removing leading 
ultraviolet behaviour

• Power-counting to determine UV limit of the 
integrand


• Write an approximation of the integrand with the 
same limiting UV behaviour.


• The UV approximation should not introduce new 
undesired singularities. 


• To restrict the counterterm in the UV region only, 
we need to introduce an IR ``cutoff’’ (a 
renormalization mass scale)


• Define a UV-fintie integral with a subtraction.


• Absorb UV behaviour into the UV counterterms of 
the EFT of LSS.  
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Removing leading 
ultraviolet behaviour

• Power-counting to determine UV limit of the 
integrand


• Write an approximation of the integrand with the 
same limiting UV behaviour.


• The UV approximation should not introduce new 
undesired singularities. 


• To restrict the counterterm in the UV region only, 
we need to introduce an IR ``cutpoff’’ (a 
renormalization mass scale)


• Define a UV-fintie integral with a subtraction.
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Removing leading 
ultraviolet behaviour

• Power-counting to determine UV limit of the 
integrand


• Write an approximation of the integrand with the 
same limiting UV behaviour.


• The UV approximation should not introduce new 
undesired singularities. 


• To restrict the counterterm in the UV region only, 
we need to introduce an IR ``cutpoff’’ (a 
renormalization mass scale)


• Define a UV-fintie integral with a subtraction.


• Absorb UV behaviour into the UV counterterms of 
the EFT of LSS.  
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Effect of UV subtraction at 
one-loop
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Fraction of SPT one-loop diagrams above 1 h/Mpc

UV subtracted diagrams receive very small 
contributions from non-linear region 
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where we used the fact that C22,UV = �C13,UV.

The numerical results for this subtraction procedure with M2 = 100 are shown

in fig. 3. In particular, we can notice how the safe integrands give rise to a smaller

value per diagram at high k’s compared with the original integrands, while keeping

the sum between diagrams untouched up to numerical errors.

(a) The diagram P13 without UV or IR sub-
traction (orange), with its UV counterterm i.e.
P13�P

UV
13 (light blue), and with the IR and UV

counterterms i.e. P13 � P
UV
13 � P

IR
13 (dark blue).

One can see that the IR counterterm gives the
largest contribution, lowering the absolute value
of the diagram.

(b) Comparison between the diagram P22 with-
out IR subtraction (light red), and the same di-
agram with the IR counterterm i.e. P22 � P

IR
22

(dark blue). The UV subtraction for this dia-
gram is not necessary, as discussed in section 4.1.

(c) 1-loop correction.

Figure 3: 1-loop diagrams P13 and P22 and their sum with M = MUV = kNL = 0.7.

– 13 –

 

Pei9

9

Pent

Large IR cancellations among diagrams  
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(b) Comparison between the diagram P22 with-
out IR subtraction (light red), and the same di-
agram with the IR counterterm i.e. P22 � P

IR
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gram is not necessary, as discussed in section 4.1.

(c) 1-loop correction.

Figure 3: 1-loop diagrams P13 and P22 and their sum with M = MUV = kNL = 0.7.
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do not exhibit


large cancellations 
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where we used the fact that C22,UV = �C13,UV.

The numerical results for this subtraction procedure with M2 = 100 are shown

in fig. 3. In particular, we can notice how the safe integrands give rise to a smaller

value per diagram at high k’s compared with the original integrands, while keeping

the sum between diagrams untouched up to numerical errors.

(a) The diagram P13 without UV or IR sub-
traction (orange), with its UV counterterm i.e.
P13�P

UV
13 (light blue), and with the IR and UV

counterterms i.e. P13 � P
UV
13 � P

IR
13 (dark blue).

One can see that the IR counterterm gives the
largest contribution, lowering the absolute value
of the diagram.

(b) Comparison between the diagram P22 with-
out IR subtraction (light red), and the same di-
agram with the IR counterterm i.e. P22 � P

IR
22

(dark blue). The UV subtraction for this dia-
gram is not necessary, as discussed in section 4.1.

(c) 1-loop correction.

Figure 3: 1-loop diagrams P13 and P22 and their sum with M = MUV = kNL = 0.7.
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Theory free of IR singularities

where we used the fact that C22,UV = �C13,UV.

The numerical results for this subtraction procedure with M2 = 100 are shown

in fig. 3. In particular, we can notice how the safe integrands give rise to a smaller

value per diagram at high k’s compared with the original integrands, while keeping

the sum between diagrams untouched up to numerical errors.

(a) The diagram P13 without UV or IR sub-
traction (orange), with its UV counterterm i.e.
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UV
13 (light blue), and with the IR and UV

counterterms i.e. P13 � P
UV
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IR
13 (dark blue).

One can see that the IR counterterm gives the
largest contribution, lowering the absolute value
of the diagram.

(b) Comparison between the diagram P22 with-
out IR subtraction (light red), and the same di-
agram with the IR counterterm i.e. P22 � P

IR
22

(dark blue). The UV subtraction for this dia-
gram is not necessary, as discussed in section 4.1.

(c) 1-loop correction.

Figure 3: 1-loop diagrams P13 and P22 and their sum with M = MUV = kNL = 0.7.
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In the sum of diagrams all IR divergences dancel
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+∫q
T ⃗q→ ⃗k = 0 .
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where we used the fact that C22,UV = �C13,UV.

The numerical results for this subtraction procedure with M2 = 100 are shown

in fig. 3. In particular, we can notice how the safe integrands give rise to a smaller

value per diagram at high k’s compared with the original integrands, while keeping

the sum between diagrams untouched up to numerical errors.

(a) The diagram P13 without UV or IR sub-
traction (orange), with its UV counterterm i.e.
P13�P

UV
13 (light blue), and with the IR and UV

counterterms i.e. P13 � P
UV
13 � P

IR
13 (dark blue).

One can see that the IR counterterm gives the
largest contribution, lowering the absolute value
of the diagram.

(b) Comparison between the diagram P22 with-
out IR subtraction (light red), and the same di-
agram with the IR counterterm i.e. P22 � P

IR
22

(dark blue). The UV subtraction for this dia-
gram is not necessary, as discussed in section 4.1.

(c) 1-loop correction.

Figure 3: 1-loop diagrams P13 and P22 and their sum with M = MUV = kNL = 0.7.
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where we used the fact that C22,UV = �C13,UV.

The numerical results for this subtraction procedure with M2 = 100 are shown

in fig. 3. In particular, we can notice how the safe integrands give rise to a smaller

value per diagram at high k’s compared with the original integrands, while keeping

the sum between diagrams untouched up to numerical errors.

(a) The diagram P13 without UV or IR sub-
traction (orange), with its UV counterterm i.e.
P13�P

UV
13 (light blue), and with the IR and UV

counterterms i.e. P13 � P
UV
13 � P

IR
13 (dark blue).

One can see that the IR counterterm gives the
largest contribution, lowering the absolute value
of the diagram.

(b) Comparison between the diagram P22 with-
out IR subtraction (light red), and the same di-
agram with the IR counterterm i.e. P22 � P

IR
22

(dark blue). The UV subtraction for this dia-
gram is not necessary, as discussed in section 4.1.

(c) 1-loop correction.

Figure 3: 1-loop diagrams P13 and P22 and their sum with M = MUV = kNL = 0.7.
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In the sum of diagrams all IR divergences dancel

∫q
Tq→0 +∫q
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+∫q
T ⃗q→ ⃗k = 0 .

Cancellations are not local
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where we used the fact that C22,UV = �C13,UV.

The numerical results for this subtraction procedure with M2 = 100 are shown

in fig. 3. In particular, we can notice how the safe integrands give rise to a smaller

value per diagram at high k’s compared with the original integrands, while keeping

the sum between diagrams untouched up to numerical errors.

(a) The diagram P13 without UV or IR sub-
traction (orange), with its UV counterterm i.e.
P13�P

UV
13 (light blue), and with the IR and UV

counterterms i.e. P13 � P
UV
13 � P

IR
13 (dark blue).

One can see that the IR counterterm gives the
largest contribution, lowering the absolute value
of the diagram.

(b) Comparison between the diagram P22 with-
out IR subtraction (light red), and the same di-
agram with the IR counterterm i.e. P22 � P

IR
22

(dark blue). The UV subtraction for this dia-
gram is not necessary, as discussed in section 4.1.

(c) 1-loop correction.

Figure 3: 1-loop diagrams P13 and P22 and their sum with M = MUV = kNL = 0.7.
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where we used the fact that C22,UV = �C13,UV.

The numerical results for this subtraction procedure with M2 = 100 are shown

in fig. 3. In particular, we can notice how the safe integrands give rise to a smaller

value per diagram at high k’s compared with the original integrands, while keeping

the sum between diagrams untouched up to numerical errors.

(a) The diagram P13 without UV or IR sub-
traction (orange), with its UV counterterm i.e.
P13�P

UV
13 (light blue), and with the IR and UV

counterterms i.e. P13 � P
UV
13 � P

IR
13 (dark blue).

One can see that the IR counterterm gives the
largest contribution, lowering the absolute value
of the diagram.

(b) Comparison between the diagram P22 with-
out IR subtraction (light red), and the same di-
agram with the IR counterterm i.e. P22 � P

IR
22

(dark blue). The UV subtraction for this dia-
gram is not necessary, as discussed in section 4.1.

(c) 1-loop correction.

Figure 3: 1-loop diagrams P13 and P22 and their sum with M = MUV = kNL = 0.7.
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− Tq→0 − T ⃗q→ ⃗k

In the sum of diagrams all IR divergences dancel

For an efficient numerical method, we want to implement 
these cancellations before integration! 

Method 1: Local IR 
subtractions per 

diagram (as in this slide)

Method 2: Construct a single 
integrand for the sum of all diagrams 

with local IR cancellations.-
Carrasco, Foreman, Green, Senatore [1304.4946]e.g. C.A.,Sterman [1812.03753]

https://arxiv.org/abs/1812.03753
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IR safe one-loop integrand
In the spirit of Carrasco, Foreman, Green, Senatore [1304.4946]

• Map all infrared 
singularities from all 
diagrams to a  single point 
(the origin ) in the 
integration domain. 


• Singularities are then 
destined to cancel locally. 


• Partition of unity method 
to disentancle 
singularities.  

⃗q = 0
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IR safe one-loop integrand
In the spirit of Carrasco, Foreman, Green, Senatore [1304.4946]

• Map all infrared 
singularities from all 
diagrams to a  single point 
(the origin ) in the 
integration domain. 


• Singularities are then 
destinies to cancel locally. 


• Partition of unity method 
to disentancle 
singularities.  

⃗q = 0
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IR safe one-loop integrand
In the spirit of Carrasco, Foreman, Green, Senatore [1304.4946]

• Map all infrared 
singularities from all 
diagrams to a  single point 
(the origin ) in the 
integration domain. 


• Singularities are then 
destinies to cancel locally. 


• Partition of unity method 
to disentancle 
singularities.  

⃗q = 0
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(q2)2 + ( | ⃗k − ⃗q |2 )2

⃗q → ⃗q + ⃗k



The two-loop corrections

+ +

+  EFT counterterms

+



Or   and  fixed⃗q → ∞ ⃗p

Two-loop UV subtraction
• “Single” and “double” 

UV singularities


• A nested set of subtractions 
(BPHZ-like)


• In a first step, subtract first 
single UV singularities. 


• Subtract the double UV 
singularity from the 
outcome of the first step.  

Pij( ⃗k) = ∫ d3 ⃗pd3 ⃗p pij ( ⃗p, ⃗q, ⃗k)

pUV−reg.
ij = (1 − Rdouble−UV) (1 − Rsingle−UV) pij

Double UV:   and ⃗p → ∞ ⃗q → ∞

Single UV:   and  fixed⃗p → ∞ ⃗q

Or   and  fixed⃗q → ∞ ⃗p + ⃗q

P

TEAM
9

y

9
5 P

7

YET

P

TEAM
9

y

9
5 P

7

YETP

TEAM
9

y

9
5 P

7

YETALL UV subtractions can be made to act on  
the momentum-dependent vertices. 



UV-safe power spectrum through two-
loops

it's I Fz Fg

My
t.gl

𝒫(k) ≡ = 𝒫UV−reg.
1−loop + 𝒫UV−reg.

2−loop + (EFT counterterms)′ 

𝒫UV−reg.
1−loop =

𝒫UV−reg.
2−loop =
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F2 F2

FUV−reg.
5

+

FUV−reg.
4

+ +
FUV−reg.

3 FUV−reg.
3

FUV−reg.
3

FUV−reg.
3 FUV−reg.

3

FUV−reg.
5 = (1 − ℛ(0)

p,q→∞ − ℛ(2)
p,q→∞) (1 − ℛq→∞ − ℛp→∞) F(s)

5

Modified vertices

FUV−reg.
3 = (1 − ℛq→∞) F(s)

3
FUV−reg.

4 = (1 − ℛp→∞) F(s)
4



IR-safe two-loop power spectrum
DIAGRAM LOCATION OF SINGLE 

IR SINGULARITIES

⃗p = 0, or  ⃗q = 0, or  ⃗p + ⃗q = ⃗k

⃗p = 0, or  ⃗q = 0, or  ⃗q = ⃗k

⃗p = 0 or  ⃗q = 0

⃗p = 0 or  ⃗q = 0
⃗q

⃗q

⃗p

⃗k

⃗k

0⃗

Web of leading IR singularities



IR-safe two-loop power spectrum
DIAGRAM LOCATION OF SINGLE 

IR SINGULARITIES

⃗p = 0, or  ⃗q = 0, or  ⃗p + ⃗q = ⃗k

⃗p = 0, or  ⃗q = 0, or  ⃗q = ⃗k

⃗p = 0 or  ⃗q = 0

⃗p = 0 or  ⃗q = 0
⃗q

⃗q

⃗p

0⃗

After partition of unity and shifts leading IR singularities cancel locally



 model 
with parameters 
fitting CMB data  

of Planck

ΛCDM
h(Planck) = 0.673
ω(Planck)

b = 0.02237

ω(Planck)
cdm = 0.1203

ln 1010A(Planck)
s = 3.044

n(Planck)
s = 0.965

∑ m(Planck)
νi

= 0.06

𝒫NLO(k) = 𝒫lin(k) + 𝒫UV−reg.
1−loop (k, M) + CTs(1)(k, M)

𝒫NNLO(k) = 𝒫lin(k) + 𝒫UV−reg.
1−loop (k, M) + 𝒫UV−reg.

2−loop (k, M) + CTs(2)(k, M)

Numerical impact of loop corrections

M = 0.7h /Mpc
CTs(1) = CTs(2) = 0.

EFT parameters

𝒫UV−reg.
2−loop (k)

𝒫lin.(k)

𝒫UV−reg.
1−loop (k)

𝒫lin.(k)

A good range of naturally mild  
loop corrections.   

CLASS
Linear solution

Non-linear corrections
 With our num. integration



Avoiding new numerical integrations in 
inferring cosmological model parameters

• I presented numerical results for 
one cosmological model and one 
set of values for its parameters. 


• Very fast (few laptop minutes per 
wavenumber point) numerical 
integration thanks to having 
eliminated locally, at the integrand 
ultraviolet and infrared 
singularities. 


• This may be NOT fast enough for 
practically scanning the full model 
parameter space and parameter 
inference from data. 

h = h(Planck) + Δh
ωb = ω(Planck)

b + Δωb

ωcdm = ω(Planck)
cdm + Δωcdm

As = A(Planck)
s + ΔAs

ns = n(Planck)
s + Δns

∑ mν = ∑ m(Planck)
ν + Δ∑ mν

𝒫lin.(q) = N 𝒫Planck
lin. (q) + Δ𝒫lin.(q)

FUV−reg.
5



Perurbative expansion in cosmological 
model parameter space

h = h(Planck) + Δh
ωb = ω(Planck)

b + Δωb

ωcdm = ω(Planck)
cdm + Δωcdm

As = A(Planck)
s + ΔAs

ns = n(Planck)
s + Δns

∑ mν = ∑ m(Planck)
ν + Δ∑ mν

𝒫lin.(q) = N 𝒫Planck
lin. (q) + Δ𝒫lin.(q)

We are scanning over viable parameter space of viable models. The linear 
power spectra of scanned “cosmologies” should not differ drastically.  

Small

∼ ∫ F2 𝒫3
lin. = ∫ F2 [𝒫Planck

lin. + ΔP]3

∼ ∫ F2 [𝒫Planck
lin. ]3 + ∫ F2 [𝒫Planck

lin. ]2 ΔP + ∫ F2 𝒫Planck
lin. [Δ𝒫]2 + ∫ F2 [Δ𝒫]3

SmallBig Smaller Tiny



Perturbative expansion in 
cosmological models

𝒪 (Δ𝒫lin.)

𝒪 ((Δ𝒫lin.)2)
𝒪 (Δ𝒫lin.)

𝒪 ((Δ𝒫lin.)2)
𝒪 ((Δ𝒫lin.)3)



Decoupling cosmological  
model and integrations. 

Δ𝒫lin.(k) = ∑
n,m

Cnm (H, Ω, …)
1

(k2 + Mn + iΓn)νm

𝒫lin.(q) = N 𝒫Planck
lin. (q) + Δ𝒫lin.(q)

Quality of fit depends on the number of our basis functions. 

Two example fits of Δ𝒫



Decoupling cosmological  
model and integrations. 

𝒫2−loop [𝒫lin(h, Ω, . . . )](k)

= 𝒫2−loop [𝒫lin(hPlanck, ΩPlanck, . . . )](k)

+∑
a

Coeffa (h, Ω) ℐa (k, hPlanck, ΩPlanck, . . . )

+∑
a,b

Coeffa (h, Ω) Coeffb (h, Ω) ℐab (k, hPlanck, ΩPlanck, . . . )

+𝒪 (Δ𝒫3)
0.2 %Better than



Required  basis 
integrals

𝒪(300)

…
Numerically computed once and for all



The two-loop power-spectra for 100 
sets of cosmological parameters



Developing a universal 
numerical method for 

QCD amplitudes



Two loop gauge theory 
amplitudes with direct integration

• Two-loop amplitudes with direct   
integration over loop momenta?


• Number of integrals is SIX. 


• … for all two-loop amplitudes 
and kinematic configurations. 


• Understand fully the singular 
structure of QCD amplitudes at 
two loops.     

A2 ({pexti}, {Mi})

d ⟶ 4 ?
Singularities

= ∫ ddk ∫ ddl 𝒜2 (k, l, {pexti}, {Mi})
Monte-Carlo Integration?



Singularities of Feynman diagrams 
and scattering amplitudes

• The poles can lie inside 
the domain of 
integration. 


• If we can deform the 
path of integration away 
from the poles, then 
they lead to no 
singularities

∫
∞

−∞
dE…

⋯
E2 − ω2 + iδ

= ∫
∞

−∞
dE…

⋯
ω ( 1

E − ω + iδ
−

1
E + ω − iδ )

ω → ω − iδ with δ → 0

ReE

ImE

−ω
+ω



Integrable Singularities

• The poles can lie inside 
the domain of 
integration. 


• If we can deform the 
path of integration away 
from the poles, then 
they lead to no 
singularities

∫
∞

−∞
dE…

⋯
E2 − ω2 + iδ

= ∫
∞

−∞
dE…

⋯
ω ( 1

E − ω + iδ
−

1
E + ω − iδ )

ω → ω − iδ with δ → 0

ReE

ImE

−ω
+ω



Soft massless particles

ReE

ImE

∫
∞

−∞
dE…

⋯
(E + iδ) (E − iδ)

• Poles due to soft 
massless particles. 

• These singularities 
pinch the integration 
path from both sides.  

• Condition for a TRUE 
INFINITY



Collinear massless 
particles

ReE

ImE

particle 1

particle 2

p
(1 − x) ⋅ p

x ⋅ p• A second source of infinities 
due to massless collinear 
particles.  

• A singularity of one particle in 
the lower half-plane lines up 
with the singularity of a collinear 
particle in the higher half-pane. 

• The singularities pinch the 
integration path from both 
sides.  

• We cannot deform the path, a 
condition for a TRUE INFINITY!
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A complicated structure of overlapping singularities.
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of Eq. (21), namely that the divergences from PS ⇢ are equal for �(n) and t⇢�(n),
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= 0 , (28)

where ⇥(n̂[⇢]) restricts the integration to the reduced neighborhood n̂[⇢] [Eq. (25)]. This integral over the reduced

neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire

reduced neighborhood n̂[⇢]. The PSs internal to the original neighborhoods n[⇢] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of

each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes

can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],

which we now discuss.

D. Nested subtractions

The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the

limits x2

I
! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an

arbitrary n-loop diagram that is one-particle irreducible in the xI channel as �(n). Following the momentum-space

procedure of Ref. [7], we define a regulated version of �(n) by

R(n) �(n) = �(n) +
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where N [�] is the set of all nonempty nestings for diagram �. We will refer to R(n) as the subtraction operator at

nth order. We may then write for the full nth-order xI -irreducible partonic amplitude (5), Ḡ(n) =
P
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5 . (30)

The products in Eqs. (29) and (30) are ordered with the larger PSs to the right of smaller PSs. Thus, the first

approximation operators t⇢ to act on �(n) involve the fewest points on the light cones or at short distances. As in Eq.

(20), the approximation operators act on the diagram over the full integration region, and are not restricted to the

neighborhood of the corresponding pinch surface.

Among the approximation operators that appear in R(n)�(n), we may identify the smallest, ⇢� , for which all vertices

approach the origin, that is, for which H(��) = �(n). Now because ⇢� is the smallest PS, it nests with every other

pinch surface. Its approximation operator, which we denote by tuv for any diagram, always appears to the left of

every other operator in Eq. (30). Operator tuv acts only on the external propagators that attach to �(n). We can

thus separate it in the sum over nestings, and we find

Ḡ(n) =
X

�(n)

8
<

:tuv�(n) + (1 � tuv)
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• The procedure of nested 
subtractions has a solution for 
the finite remainder at any loop 
order as a Forest formula 
(similarly to BPHZ of UV 
renormalzation)


• It is valid term by term in an 
amplitude or a Feynman diagram. 


• This forest formula structure 
combined with gauge symmetry, 
gives rise to the factorization of 
gauge theory amplitudes in terms 
of Jets, Soft and Hard fucntions.  

Ma; Erdogan, Sterman; Collins;  
Collins, Soper, Sterman



Constructing finite two-loop 
integrals

• The method of nested 
subtractions guarantees that 
we can always remove the 
infrared singularities


• … of ANY integral at ANY order 
in perturbation theory. 


• Subtractions can be made to 
take a simple form. 


• Method demonstrated with 
examples at two-loops

and the pattern follows the general considerations outlined in the previous section.

We will use these examples, however, to illustrate convenient choices of finite parts

for collinear subtractions. We then turn to the more complex cases of the planar and

nonplanar double boxes.

3.1 Subtraction for the diagonal-box

p

p p
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k

k

k

k

k
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3
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Figure 4. The two-loop diagonal-box

As our first two-loop application, we choose an example with only collinear

singularities. Consider the diagonal-box integral, defined as

Dbox ⌘

Z
d

d
k1

i⇡
d
2

d
d
k4

i⇡
d
2

1

A1A2A3A4A5
, (3.1)

with

Ai = k
2
i
+ i0 . (3.2)

The momenta ki of the propagators are depicted in Fig. 4. One can concretely

identify loop momenta with the lines k1 and k4, so that

k1 = l, k2 = l + p2, k3 = k + p123, k4 = k, k5 = k � l + p1. (3.3)

The kinematics of the external momenta pi are,

4X

i=1

pi = 0, p
2
2 = p

2
4 = 0, p2

1 = m
2
1, p

2
3 = m

2
3, p

2
12 = p

2
34 = s, p

2
23 = p

2
14 = t. (3.4)

We have taken the p1, p3 momenta to be o↵-shell. Our study carries through un-

changed, however, in the case that one or both of them go on-shell.

By inspecting all pinch surfaces, using the power counting of Eq. (2.4), we find

that the diagonal-box has only collinear singularities, which we sort according to

increasing volumes of their regions:

– 14 –

A3, A4 inside the square brackets, as a reminder that they appear with denominator

A5 in a one-loop integral, evaluated at fixed k1 = �x2p2.

We remove the remaining single-collinear singularity C4||4 from Dbox|R2
similarly,

giving giving

Dbox|R3
= (1 � tC2C4 � tC2 � tC4 + tC2tC2C4 + tC4tC2C4) Dbox

Z
d

d
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d
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+
1

A1A2A3A4


1

A5

�

k4=x4p4,

k1=�x2p2

)
,

(3.15)

where again, we use tC4tC2C4 = tC2C4 . At this stage, we have an integral that is free

of all infrared singularities. However, the counterterms that we have introduced are

divergent in the ultraviolet limit, just as they were for the one-loop box treated in the

previous section. For an analysis carried out purely in dimensional regularization,

this would not be a problem, but since, as above, our goal is to derive integrals that

can be evaluated numerically, we need them to converge in four dimensions.

As an additional step, therefore, we modify our counterterms, so that they de-

pend on an artificial mass µ in a manner that tames the ultraviolet behavior of the

integrand. These are a variant of the subtraction in Eq. (2.26) above, still in the

spirit of Ref. [43]. This gives our final expression for a fully-subtracted diagonal box,

now finite in four dimensions. The subtractions are in the same pattern as in (3.15),

but all integrals are now UV convergent,

Dbox|fin =
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i⇡
d
2

d
d
k4

i⇡
d
2
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(A3 � µ2) (A4 � µ2)

� )
.

(3.16)

In this expression, we have added to each subtraction term in (3.15) an IR finite ad-

justment, in which mass dependence is introduced in the denominators that become

collinear. Of course, this introduces poles associated with the new denominators.

– 17 –
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• There is a lot of value in 
constructing finite integrands 
for Feynman integrals.


• And simplifications or elegance.


• Subtractions can be made to 
take a simple form. 


• For example, the full two-loop 
crossed box has a mixed 
transcendentally. But the 
integration over our finite 
remainder gives uniform weight 
four… 
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Nielsen polylogarithms Snp(y) (appendix A.1) of uniform weight n + p  4. We

have calculated the required integrals algebraically by comparing a few first terms

in their series expansion around y = 0, 1, ±1 and a general ansatz of such Nielsen

polylogarithms.

While here we studied a single two-loop diagram, in a calculation of a physical

two-loop amplitude it is anticipated that sums of collinear limits from all diagrams

will factorize in terms of splitting functions times one-loop or tree amplitudes, sim-

plifying the convolutions into products.

3.4 Subtraction for the two-loop crossed double-box integral
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Figure 9. The two-loop cross-box

We now detail the construction of local counterterms for the two-loop crossed

double-box, which is depicted in Fg. 9. The external momenta satisfy,

p1 + p2 + p3 + p4 = 0, p
2
i

= 0, p
2
12 = s, p

2
23 = t, p

2
13 = u = �s � t. (3.71)

For convenience below, and as for the planar box, we introduce the integral with an

arbitrary numerator N , and define

Xbox [N ] ⌘

Z
d

d
k2

i⇡
d
2

d
d
k5

i⇡
d
2

N(k2, k5)

A1A2A3A4A5A6A7
, (3.72)

with Ai = k
2
i
+ i0. The internal momenta can be chosen as:

k1 = k, k2 = k + p1, k3 = k + p12, k4 = �l � p12,

k5 = �l + p4, k6 = k � l, k7 = k � l + p4. (3.73)

We are interested in removing the infrared singularities of Xbox[1], which was com-

puted analytically for the first time in Ref. [52]. We follow the same procedure as for

the planar double-box and previous examples. Namely, we remove the singularities

– 32 –
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In the above, Bi = Ai � µ
2. Upon direct analytic integration, using the integration

techniques described in the previous section for the counterterms, and the analytic

result of [52] for the crossed double-box integral, we verify that
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In the above, Bi = Ai � µ
2. Upon direct analytic integration, using the integration

techniques described in the previous section for the counterterms, and the analytic

result of [52] for the crossed double-box integral, we verify that
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QCD Amplitudes are SIMPLER than Feynman integrals

• In singular IR regions of loop momenta, virtual gauge bosons 
acquire (unphysical) longitudinal polarizations. 


• The propagation of unphysical degrees of freedom is 
“prohibited” by Ward identities. 


•  Cancellations of IR singularities among Feynman diagrams.  
 
                         
                     



Infrared amplitude factorization
• UV Renormalized scattering 
amplitudes  for well-separated final-
states take a simple factorized form 
                     

  

  - “soft” and “jet”  functions contain 
all divergences. 


•These are  universal functions. For 
any new process we should need to 
compute only the “hard” function. 


•So far, we do not have a way to 
compute the “hard” function directly. 


•But, what if we did?   
 
                         
                     

Amplitude = hard ⋅ soft ⋅ ∏
i

Jeti .
HARD

Jet

JetJet

Jet

Soft

Ma;  
Erdogan, Sterman; Feige, 
Schwartz; Collins



How could we imagine 
using  factorisation?

ℳ

1/Jet

1/Jet1/J
et

1/J
et

1/Soft

HARD =

An inverted factorization  theorem



How could we imagine 
using factorization?

A = ∫ [dk] 𝒜(k) = ∫ 𝒮∏
i

𝒥i ⋅ ∫ [dk] 𝒜(k) ⋅ 𝒮−1(k) ⋅ ∏
i

𝒥−1
i (k)

Analytic Integration in ,  
known  to at least three-loops

D = 4 − 2ϵ Numerical integration in  
exactly D = 4.

Universal

From factorisation we could identify, remove and integrate separately the singular parts of 
amplitudes order by order in perturbation theory:

Hard

This procedure is universal…could be applied to any process, irrespectively of the complexity of 
its final state.

ℋ(0) = 𝒜(0) ℋ(1) = 𝒜(1) − 𝒥(1)ℋ(0) − 𝒮(1)ℋ(0) ℋ(2) = 𝒜(2) − 𝒥(1)ℋ(1) − 𝒮(1)ℋ(1) − 𝒥(2)ℋ(0) − 𝒮(2)ℋ(0) + 𝒥(1)𝒮(1)ℋ(0) …

Divergent Finite

Process dependent

soft/collinear
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• In the integral expression of the process 
dependent “HARD” function, we need 
singularities to be cancelled locally, AT THE 
INTEGRAND. 


• A naive construction leads to non-local 
cancellations.  


• Integrands with non-local cancellations 
cannot be integrated numerically.  


• To enable Monte-Carlo integration methods, 
can we ensure that ALL soft, collinear and 
ultraviolet singularities cancel  point by point 
in the integrand? 


• A challenge!                                 
  

Non-local cancellations 
Local cancellations 

Numerically integrable

∫
10

0
dx [ 1

x − 3 + i0+
−

1
x − 7 + i0+ ]

∫
10

0
dx

e− 1
(x − 3)2

x − 3 + i0+
−

cos(x − 3)
x − 3 + i0+



=
+ +

+

ℋ(1),R
qq̄→ew(k) = ℳ(1),R

qq̄→ew(k) − ℱ(1),R
qq̄ (k)[P1 ℳ̃ (0)

qq̄→ewP1]
q + q̄ → V1 + V2 + …Vn , Vi = W, Z, γ*
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tion is constructed as
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Equation (7.3) does not include two-loop diagrams with vacuum polarization cor-

rections to a gluon propagator or two-loop diagrams with fermion loops. Up to

straightforward multiplications with colour factors, these diagrams also appear in

the QED process of e+e� ! �⇤�⇤. We can subtract their singularities locally with

the procedures developed in Section 4 of Ref. [146] and we will not discuss them in

this publication any further.
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Table 2: Two-loop S-type diagrams for qq̄ ! �⇤�⇤

The integrands of the Feynman diagrams D(2)

i
(k, l) and D(2)

i
(k, l) which are in-

cluded in Eq. (7.3) are derived from the graphs depicted in Tables 2,3,4,5. We now

describe the explicit steps we take for the construction of each term in Eq. (7.3).

1. We assign loop momentum flows to all diagrams D(2)

i
(k, l) as depicted in Fig. 1,

according to the following rules.
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rections to a gluon propagator or two-loop diagrams with fermion loops. Up to

straightforward multiplications with colour factors, these diagrams also appear in

the QED process of e+e� ! �⇤�⇤. We can subtract their singularities locally with

the procedures developed in Section 4 of Ref. [146] and we will not discuss them in

this publication any further.
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the QED process of e+e� ! �⇤�⇤. We can subtract their singularities locally with

the procedures developed in Section 4 of Ref. [146] and we will not discuss them in

this publication any further.
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Table 7: Diagrams for the form factor amplitude q(p1) + q̄(p2) ! H through two

loops.

factor integrand is generated from the diagrams of Table 7 as

F (0) [H] = F (0)

1
[H] , (7.6)

F (1) [H] (k) = F (1)

1
[H] (k) , (7.7)

F (2) [H] (k, l) =
2X

i=1

F (2)

i
[H] (k, l) +

8X

i=3

F (2)

i
[H] (k, l) ,

+
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LP,i
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2CF

h
F (2)

5
[H] (k, l � k)� F (2)
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i
. (7.8)
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Upon contracting with kµ, as occurs in the k k p2 collinear limit, we see that the

terms in the square bracket above vanish due to p2 · �?(p1,p2) = p2 · l?(p1,p2) = 0. The

last term, proportional to CA �µ, is associated with ghosts. When combined with the

analogous terms of Eq. (6.13), from one-loop vertex corrections that are not adjacent

to the incoming legs, it factorizes.

In summary, we have constructed one-loop Rl!1 ultraviolet counterterms that

respect the same Ward identities locally as the amplitude that we constructed in the

previous sections. Combined with two-loop Rk,l!1 counterterms, we are now in a

position to subtract all singularities, ultraviolet and infrared, simultaneously, using

the scheme of Eq. (2.3). In the next section, we detail the steps that we follow for

an example two-loop amplitude.

7 Numerical check

In the previous sections, we presented a systematic method to remove the ultraviolet

and infrared singularities of amplitudes for generic electroweak production through

two loops. To check our method, we apply it to the q(p1) + q̄(p2) ! �⇤(q1) + �⇤(q2)

QCD amplitude.

We first generate [174] the integrand for the Feynman diagrams, applying Feyn-

man rules in the Feynman gauge and assigning appropriate momentum flows follow-

ing the rules as in Fig. 1. The tree amplitude is

M(0)

�⇤�⇤ =

PP P
my pen'sik w pr y crR Y C

Y c

p g1 1

Pa 92

Ps 91

Pa 92

+ (�⇤(q1) $ �⇤(q2)) , (7.1)

where the second contributing diagram not explicitly shown is obtained by Bose

symmetry, exchanging the momenta and polarizations of the external photons. The

one-loop amplitude integrand is given by

M(1)

�⇤�⇤(k) =
4X

i=1

D(1)

i
(k) + (�⇤(q1) $ �⇤(q2)) , (7.2)

where the integrands D(1)

i
(k) of the one-loop Feynman diagrams are derived by a

direct application of Feynman rules in Feynman gauge on the graphs of Table 1. In

all graphs the momentum k of the gluon flows out of the quark-gluon vertex which

is nearest within the fermion line to the antiquark q̄(p2).

The part of the two-loop amplitude integrand which is discussed in this publica-
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• Finite one-loop 
amplitude integrand


• Free of all IR and UV 
singularities locally


• Integrable in D=4 
exactly 

• One-loop amplitude 
integrand


• As derived with Feynman 
rules


• Momentum flow 
assignment


• One-loop 
amplitude 
integrand for 
simplest 
process

2 → 1

• The external current is the 
full tree-level amplitude


• I.e. the finite integrand of 
the previous perturbative 
order

Locally finite integrands  for   electroweak 
production in quark annihilation
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Table 7: Diagrams for the form factor amplitude q(p1) + q̄(p2) ! H through two

loops.

factor integrand is generated from the diagrams of Table 7 as

F (0) [H] = F (0)

1
[H] , (7.6)

F (1) [H] (k) = F (1)

1
[H] (k) , (7.7)

F (2) [H] (k, l) =
2X

i=1

F (2)

i
[H] (k, l) +

8X

i=3

F (2)

i
[H] (k, l) ,

+
2X

i=1

F (2)

LP,i
[H] (k, l) +

CA

2CF

h
F (2)

5
[H] (k, l � k)� F (2)

5
[H] (k, l)

i
. (7.8)
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Non-local  
cancellations?

• Collinear gluons off 
one-loop vertices 
acquire random 
polarisations. 


• Ward identities 
generate non-local 
zeros.
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M(2),R
qq̄→ew(k, l) = ℳ(2),R

qq̄→ew(k, l) − Δℳ(2),R
qq̄→ew(k, l)

∫ dDk ∫ dDl Δℳ(2),R
qq̄→ew(k, l) = 0

Locally finite integrands  for   electroweak 
production in quark annihilation

q + q̄ → V1 + V2 + …Vn , Vi = W, Z, γ*

• In singular IR regions of loop momenta, virtual gauge bosons acquire (unphysical) longitudinal 
polarizations. 


•  Same scattering amplitude. “Shift” counterterms integrate to zero.

• All Ward identity cancellations are made local. All collinear gluons have longitudinal polarizations

• The two-loop amplitude 
integrand as derived 
from Feynman diagrams

• “Shift” Counterterms



What cures non-local cancellations?

loop and Hµ tree in Fig. 3) occur only in these diagrams and from regions (1k,Hl),

while (Hk, 1l) corresponds to a one-loop hard scattering subdiagram (J µ tree and

Hµ one-loop in Fig. 3) . As above, J µ is always a single-particle irreducible diagram.

We discuss both regions because we will need to modify the integrands of certain

diagrams to deal with loop polarizations, and we must check that these modifications

do not a↵ect other regions. We begin our discussion with what we will refer to as the

“QED triangle”, the vertex diagram in Fig. 4 with three quark-gluon vertices. We

then go on to the “QCD triangle”, with a three-gluon vertex, and finally the relevant

self-energy (Type S) diagrams.

To anticipate, in this and subsequent sections, we will detail the three ingredients

of our construction of a locally finite integrand for our amplitudes. First, we will

modify Feynman graphs or subgraphs in order to make infrared factorization man-

ifest locally. Then we will introduce IR counterterms, and finally we will introduce

ultraviolet counterterms.

4.1 Loop polarizations in type V diagrams I: the QED triangle

A Type V QED-type correction is a vertex adjacent to the incoming quark line,

corresponding to integrand factors of the form
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P 92

= g3
s
T (q)

c

✓
CA

2
� CF

◆
V µ (k, l) u (p1) , (4.1)

where T (q)

c is the color generator in fundamental representation. Adopting the con-

vention of Eq. (2.2), the factors of (2⇡)�D associated with loop momenta are al-

ready accounted for. A direct application of Feynman rules in the conventions of

Refs. [171, 172] yields

V µ (k, l) =
�⌫(/k + /l + /p

1
)�µ(/l + /p

1
)�⌫

l2 (l + p1)
2 (k + l + p1)

2
. (4.2)

We will study singularities that arise when terms that result from this subdiagram

are inserted into any of the two-loop diagrams in the class under study (quark-

antiquark annihilation to color-neutral final states). Our goal is to identify terms

associated with loop polarizations, which factorize after integration, but for which

tree-level Ward identities do not immediately result in factorized singular integrands

that cancel in the subtracted amplitude, Eq. (2.3).

To begin this analysis, we write V µ as an sum of two terms with di↵ering struc-

ture of the collinear singularities,

V µ (k, l) = V µ

k
(k, l) + V µ

l
(k, l) . (4.3)
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which can be proved using changes of variables, l0 = �(l + k + p1) and l0 = �(l +

k+ 2p1), respectively, for D less than four dimensions. Using these results below, in

four dimensions, it will be possible to introduce ultraviolet counterterms to ensure

that the resulting integrals remain convergent, while again leaving the results of the

integrals unchanged. Using these identities, we will cancel loop polarizations locally.

4.2 Loop polarizations in type V diagrams II: the QCD triangle

We identify loop polarizations in the QCD triangle in a similar fashion. The vertex

takes the form
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W µ (k, l) u (p1) . (4.10)

The momentum dependence of the integrand in the truncated QCD triangle diagram

in Fig. 4 will be written as

W µ(k, l) = W µ

scalar
(k, l) + Oµ(k, l) , (4.11)

where, as for the QED vertex, it is convenient to isolate terms on the basis of their

behavior in di↵erent regions. As we will describe, the vectors W µ

scalar
and Oµ have

di↵erent behavior in region (1k,Hl). They also give, respectively, self-energy and

ghost contributions to the Ward identity for external gluon k, which we will also

review below.

The first vector is generated from the “scalar” term of the three-gluon vertex,

and is given by

W µ

scalar
(k, l) =

(2l � k)µ �↵
⇣
/l + /p

1

⌘
�↵

l2 (l + p1)2 (k � l)2
. (4.12)

Acting on the Dirac spinor, this simplifies in D = 4� 2✏ dimensions to

W µ

scalar
(k, l) u(p1) = � 2 (1� ✏) (2l � k)µ/l

l2 (l + p1)2 (k � l)2
u(p1) , (4.13)

and we see explicit loop polarizations. As in the QED vertex in Eq. (4.8), we isolate

loop polarizations that are singular in region (1k,Hl) by expanding the vector lµ in

l/, in terms of its components in the p1, ⌘1 and perpendicular directions. Then, using

– 15 –

integrates to factorizable form. This contribution is entirely avoided, however, if we

use symmetric integration to reduce the quark self-energy to a scalar integral. To be

specific, we introduce the factors

NS�q(k, l) =
(1� ✏)

l2 (l + k + p1)
2
, (4.17)

and

NS�q̄(k, l) =
(1� ✏)

l2 (l + k � p2)
2
, (4.18)

for quark and antiquark, respectively. We then perform the replacements
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Ps

Yickd
⇥ ig2

s
CF NS�q(k, l)

= g3
s
CF NS�q(k, l)T

(q)

c
�µ u(p1) (4.19)

and, for a self-energy diagram on the incoming antiquark,

THE
pkamob

e Pa
Pa

=
THE

pkamob
e Pa

Pa

⇥ ig2
s
CF NS�q̄(k, l)

= g3
s
CF NS�q̄(k, l)T

(q)

c
v̄(p2) �

µ . (4.20)

The above modifications do not alter the integrated value of the amplitude.

In summary, after symmetric integration for type S diagrams, the remaining

singular loop polarization terms are found in Eqs. (4.8) and (4.14). Having identified

these terms, we are now ready to show how to rewrite the corresponding contributions

to the integrands in a manner that explicitly removes all singular loop polarizations

at the local level. As we will see, it is possible to do this without changing the results

of integration, by the addition of counterterms, based on the identities in Eq. (4.9).

The modified integrands will satisfy the Ward identities of Fig. 3 locally, making

possible the local cancellation of these regions in the subtracted amplitudes of Eq.

(2.3). We emphasize, that as for the QED amplitudes studied in Ref. [146], these

counterterms are added to both the electroweak amplitude in question and to the

form factor that defines its subtractions.
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loop and Hµ tree in Fig. 3) occur only in these diagrams and from regions (1k,Hl),

while (Hk, 1l) corresponds to a one-loop hard scattering subdiagram (J µ tree and

Hµ one-loop in Fig. 3) . As above, J µ is always a single-particle irreducible diagram.

We discuss both regions because we will need to modify the integrands of certain

diagrams to deal with loop polarizations, and we must check that these modifications

do not a↵ect other regions. We begin our discussion with what we will refer to as the

“QED triangle”, the vertex diagram in Fig. 4 with three quark-gluon vertices. We

then go on to the “QCD triangle”, with a three-gluon vertex, and finally the relevant

self-energy (Type S) diagrams.

To anticipate, in this and subsequent sections, we will detail the three ingredients

of our construction of a locally finite integrand for our amplitudes. First, we will

modify Feynman graphs or subgraphs in order to make infrared factorization man-

ifest locally. Then we will introduce IR counterterms, and finally we will introduce

ultraviolet counterterms.

4.1 Loop polarizations in type V diagrams I: the QED triangle

A Type V QED-type correction is a vertex adjacent to the incoming quark line,

corresponding to integrand factors of the form
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where T (q)

c is the color generator in fundamental representation. Adopting the con-

vention of Eq. (2.2), the factors of (2⇡)�D associated with loop momenta are al-

ready accounted for. A direct application of Feynman rules in the conventions of

Refs. [171, 172] yields

V µ (k, l) =
�⌫(/k + /l + /p

1
)�µ(/l + /p

1
)�⌫

l2 (l + p1)
2 (k + l + p1)

2
. (4.2)

We will study singularities that arise when terms that result from this subdiagram

are inserted into any of the two-loop diagrams in the class under study (quark-

antiquark annihilation to color-neutral final states). Our goal is to identify terms

associated with loop polarizations, which factorize after integration, but for which

tree-level Ward identities do not immediately result in factorized singular integrands

that cancel in the subtracted amplitude, Eq. (2.3).

To begin this analysis, we write V µ as an sum of two terms with di↵ering struc-

ture of the collinear singularities,

V µ (k, l) = V µ

k
(k, l) + V µ

l
(k, l) . (4.3)
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which can be proved using changes of variables, l0 = �(l + k + p1) and l0 = �(l +

k+ 2p1), respectively, for D less than four dimensions. Using these results below, in

four dimensions, it will be possible to introduce ultraviolet counterterms to ensure

that the resulting integrals remain convergent, while again leaving the results of the

integrals unchanged. Using these identities, we will cancel loop polarizations locally.

4.2 Loop polarizations in type V diagrams II: the QCD triangle

We identify loop polarizations in the QCD triangle in a similar fashion. The vertex

takes the form
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The momentum dependence of the integrand in the truncated QCD triangle diagram

in Fig. 4 will be written as

W µ(k, l) = W µ

scalar
(k, l) + Oµ(k, l) , (4.11)

where, as for the QED vertex, it is convenient to isolate terms on the basis of their

behavior in di↵erent regions. As we will describe, the vectors W µ

scalar
and Oµ have

di↵erent behavior in region (1k,Hl). They also give, respectively, self-energy and

ghost contributions to the Ward identity for external gluon k, which we will also

review below.

The first vector is generated from the “scalar” term of the three-gluon vertex,

and is given by

W µ

scalar
(k, l) =

(2l � k)µ �↵
⇣
/l + /p

1

⌘
�↵

l2 (l + p1)2 (k � l)2
. (4.12)

Acting on the Dirac spinor, this simplifies in D = 4� 2✏ dimensions to

W µ

scalar
(k, l) u(p1) = � 2 (1� ✏) (2l � k)µ/l

l2 (l + p1)2 (k � l)2
u(p1) , (4.13)

and we see explicit loop polarizations. As in the QED vertex in Eq. (4.8), we isolate

loop polarizations that are singular in region (1k,Hl) by expanding the vector lµ in

l/, in terms of its components in the p1, ⌘1 and perpendicular directions. Then, using
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integrates to factorizable form. This contribution is entirely avoided, however, if we

use symmetric integration to reduce the quark self-energy to a scalar integral. To be

specific, we introduce the factors

NS�q(k, l) =
(1� ✏)

l2 (l + k + p1)
2
, (4.17)

and

NS�q̄(k, l) =
(1� ✏)

l2 (l + k � p2)
2
, (4.18)

for quark and antiquark, respectively. We then perform the replacements
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Yickd
⇥ ig2

s
CF NS�q(k, l)

= g3
s
CF NS�q(k, l)T

(q)

c
�µ u(p1) (4.19)

and, for a self-energy diagram on the incoming antiquark,
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s
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s
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(q)
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µ . (4.20)

The above modifications do not alter the integrated value of the amplitude.

In summary, after symmetric integration for type S diagrams, the remaining

singular loop polarization terms are found in Eqs. (4.8) and (4.14). Having identified

these terms, we are now ready to show how to rewrite the corresponding contributions

to the integrands in a manner that explicitly removes all singular loop polarizations

at the local level. As we will see, it is possible to do this without changing the results

of integration, by the addition of counterterms, based on the identities in Eq. (4.9).

The modified integrands will satisfy the Ward identities of Fig. 3 locally, making

possible the local cancellation of these regions in the subtracted amplitudes of Eq.

(2.3). We emphasize, that as for the QED amplitudes studied in Ref. [146], these

counterterms are added to both the electroweak amplitude in question and to the

form factor that defines its subtractions.
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+

The term J µ

c,canonical
(k, l) is naturally produced in a conventional generation of the

Feynman diagrams for the electroweak process, in which S-type diagrams are treated

as in Eq. (4.19),

J µ

c,canonical
(k, l) ⌘ g3

s
T (q)

c

"
CF �µNS�q(k, l) +

✓
CA

2
� CF

◆
V µ(k, l) +

CA

2
W µ(k, l)

#
.

)(4.37)

The counterterm in Eq. (4.36) is then

�1J µ

c
(k, l) ⌘
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(k,�l � p1)� V µ

k
(k, l)}

�CA �J µ(k,�l � p1)� CF �J µ(k, l)

#
. (4.38)

This term can be thought of as an additional Feynman rule.

We eliminate loop polarizations from the jet function of the incoming antiquark

by introducing an analogous additive term, obtained directly from Eq. (4.38) by

exchanging the momenta labels, k $ l, by substituting p1 ! �p2 (as noted after Eq.

(4.21)), and defining an appropriate auxiliary vector ⌘1 ! ⌘2 with p2 · ⌘2 6= 0. The

result is,

�2J µ

c
(l, k) ⌘
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Pa
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Pa

= �1J µ

c
(l, k)

����� ⌘1!⌘2
p1!�p2

. (4.39)

4.5 Single-collinear region (2k,Hl) and its Ward identity

To confirm the arguments after Eq. (4.29) concerning the finiteness in the (2k,Hl) of

the modified jet diagrams, we examine the subtracted integrands explicitly, acting

on (p1). We start by combining terms that appear with explicit coe�cient CA/2 in

the first form of Eq. (4.35),

[J µ

kA
(k, l)� 2 �J µ(k,�l � p1)] u(p1) =

2 (1� ✏)

l2 (l + p1)
2 (k � l)2

⇥
(
l2�µ

?(p1,⌘1)
+ (k � 4l)µ/l?(p1,⌘1)

� l · p1
p1 · ⌘1

kµ
/⌘
1

)
u(p1) . (4.40)
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• Integrates to zero


• Eliminates loop 
polarizations

In closing this subsection, we observe that the same procedure that demonstrates

factorization of the shift counterterms in double collinear limits (1k, 1l) and (2k, 2l)

for the form factor applies to the general electroweak amplitudes discussed here. The

only di↵erence is to apply the identity of Eq. (5.2) repeatedly, first to the outer gluon,

and then to the resulting vertex into which both (collinear) gluon momenta flow.
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Figure 12: Shift term �planar, Eq. (5.8), for uncrossed gluonic loops. All diagrams

are assigned color factor CFCA/2. Each pair of diagrams integrates to zero in loop

momentum l, but enables local factorization in region (1k, Hl).

5.3 Local factorization for ghost terms

In the foregoing, we have split the treatment of diagrams with three-gluon vertices

into “scalar” and “ghost” components. For V type diagrams discussed in Sec. 4,

these were the scalar term W µ

scalar
and the ghost term Oµ(k, l), given in Eqs. (4.11)

and (4.15), respectively. The Oµ term for the three-gluon QCD vertex on the quark

line, in particular, is just one of the diagrams that contributes singularities in the

single-collinear region (2k,Hl), where we expect a factorization of the type shown in

Fig. 3. We have set aside contributions of this type until now, and we must still show

that their factorization requires no shifts of loop momentum, and hence no additional

counterterm. That is, we will verify that the factorization of the ghost contributions

is already local at the order to which we work. The contributions we have set aside

are all in the diagrams of Fig. 11c for the region (2k,Hl), with a three-gluon vertex

connecting a collinear gluon to the hard scattering. Precisely analogous arguments

apply to (1k,Hl).

This decomposition into scalar and ghost terms for the diagrams of Fig. 11c

originates with the contraction of a tree triple-gluon vertex with a longitudinal po-
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• Attribute different momentum 
routing to the various colour 
components of Feynman diagrams

CA

2CF
−

1
2CACF



ℋ(2),R
qq̄→ew(k, l) = M(2),R

qq̄→ew(k, l) − ℱ(2),R
qq̄ (k, l)[P1 ℳ̃ (0)

qq̄→ewP1] − ℱ(1),R
qq̄ (k)[P1 ℋ̃ (1),R

qq̄→ew(l)P1]

Locally finite integrands  for   electroweak 
production in quark annihilation

q + q̄ → V1 + V2 + …Vn , Vi = W, Z, γ*

• Finite two-loop 
amplitude 
integrand


• Free of all IR and 
UV singularities 
locally


• Integrable in D=4 
exactly 

• Two-loop 
amplitude 
integrand


• As derived with 
Feynman rules


• AND “Shift” 
counterterms


• Momentum 
flow 
assignment

• One-loop 
amplitude 
integrand for 
simplest 
process

2 → 1

• The external current 
is the finite one-loop 
amplitude intend


• I.e. the finite 
integrand of the 
previous 
perturbative order
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Table 7: Diagrams for the form factor amplitude q(p1) + q̄(p2) ! H through two

loops.

factor integrand is generated from the diagrams of Table 7 as

F (0) [H] = F (0)

1
[H] , (7.6)

F (1) [H] (k) = F (1)

1
[H] (k) , (7.7)

F (2) [H] (k, l) =
2X

i=1

F (2)

i
[H] (k, l) +

8X

i=3

F (2)

i
[H] (k, l) ,

+
2X

i=1

F (2)

LP,i
[H] (k, l) +

CA

2CF

h
F (2)

5
[H] (k, l � k)� F (2)

5
[H] (k, l)

i
. (7.8)
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• Two-loop amplitude integrand 
for simplest  process2 → 1



Locally finite integrands for a  class of 
two-loop QCD amplitudes (gluon fusion) 

g + g → V1 + V2 + …Vn , Vi = Higgs, W, Z, γ*

 CA, Julia Karlen, George Sterman, Ani Venkata (JHEP 11 (2024) 043)

ℋ(2),R
gg→colorless(k, l) = M(2),R

gg→colorless(k, l) − ℱ(1),R
scalar(k) ℳ(1),R

gg→colorless(l)

M(2),R
gg→colorless(k, l) = ℳ(2),R

gg→colorless(k, l) − Δℳ(2),R
gg→colorless(k, l)



Numerical integration

• Can such IR subtractions be used 
for evaluating loop amplitudes 
numerically? 


• They are an important ingredient! 
They remove “pinch” singularities.  


• Other singularities which can be 
avoided with appropriate contour-
deformations are equally 
important.


• Breakthroughs and excellent 
ideas. 

Z 1

�1
dxI[x]

 integrand with large variance

ReE
−ω

+ω

ImE

A novel contour deformation 
 method

Capatti, Hirschi,  
Kermaschah, Pelloni,  

Ruijl [1912.0929] 

A novel “threshold subtraction” 
method

 
Kermaschah [2110.06869]  

Kermaschah, Vicini [2407.21511,2407.18051] 

https://arxiv.org/abs/2407.21511


Nf-virtual contribution to NNLO electroweak cross-sections 
Kermanschah, Vicini arXiv:2407.18051

result serves a strong internal cross-check for our implementation. Note that while the
two contributions at NLO are constant in M after integration, the three contributions at
Nf -NNLO individually depend on M . Their sum, however, must be independent of M , as
confirmed by our results.

For the LO and NLO results, we provide reference benchmarks generated using Mad-
Graph [15, 178]. Therefore, for comparisons at NLO, we adopt, instead of the MS factorisa-
tion scheme, the BLHA normalisation convention [180, 181] that MadGraph implements.
This a�ects only the numerical result for ‡V,(0)

NLO , defined in eq. (3.13), and amounts to a
replacement of the MS remainder R(1)

singular in eq. (A.15) with

R(1),(BLHA)
singular = R(1)

singular ≠
fi2

6 CF M (0). (5.1)

Notably, the hard contribution ‡V,(1)
NLO is una�ected by the factorisation scheme and can

therefore be reused for ‡V,(1)
NNLO,Nf

as per eq. (3.15). The reference result for the Nf -
part of the NNLO triphoton production virtual cross section was obtained using the
FivePointAmplitudes-cpp library [22] in the MS factorisation scheme in combination
with our own phase space generator.

The parameters used for the runs are listed in table 4. We computed the virtual cross
sections at the LHC’s collision energy of 13 TeV. Transverse momentum cuts are imposed
for both massless and massive vector bosons, although the finiteness of the virtual cross
section relies only on the former. We used the CT10 NLO PDF set [182] from LHAPDF6
[175]. Five quark flavours were used for all virtual cross sections except those involving a
Z boson in the final state, for which only the PDFs of the d and d̄ quarks were used. Thus,
in the table, we denote the initial state by pdpd for these processes. The renormalisation
scale µ, factorisation scale µF , and UV mass M are all fixed to the Z boson mass MZ

unless explicitly specified in table 6. The invariant masses of all virtual photons are also

centre-of-mass energy ECM ©
Ô

s = 13 TeV

phase-space cuts pmin
T =

Y
]

[
50 GeV for massless bosons
25 GeV for massive bosons

PDFs CT10 NLO PDF, lhapdf id: 11000 [182]

flavours =

Y
]

[
d, d̄ if Z boson in final state
u, ū, d, d̄, c, c̄, s, s̄, b, b̄ otherwise

masses / scales MZ = 91.1876 GeV, M“ú
1

= 20 GeV, M“ú
2

= 50 GeV
µ = µF = M = M“ú = MZ

couplings at MZ –s = 0.118001, – = (132.5070)≠1,
aZd = 1

4 cos ◊W sin ◊W
, vZd = 3≠4 sin2 ◊W

12 cos ◊W sin ◊W
, sin2 ◊W = 0.22225

other constants Nc = 3, Nf = 5, TF = 1
2 , CF = 4

3

Table 4: Process specification parameters.
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Process Order Part Np [106] t/p [µs] Exp. Result [pb] � [%]

pp æ “““

LO
‡LO 10 0.3 10-3 2.5999 +- 0.0023 0.089

reference 10-3 2.5980 +- 0.0018 0.069

NLO

!–s
4fi

"
‡V,(0)

NLO 10 1 10-4 -1.0386 +- 0.0017 0.165
!–s

4fi

"
‡V,(1)

NLO 1420 6 10-4 2.5260 +- 0.0139 0.549
! –s

4fi

"
‡V,CS

NLO
10-4 1.4874 +- 0.0140 0.940

reference 10-4 1.5090 +- 0.0010 0.066

NNLO, Nf

!–s
4fi

"2
‡V,(0)

NNLO,Nf
10 1 10-6 1.4781 +- 0.0074 0.499

!–s
4fi

"2
‡V,(1)

NNLO,Nf
10-6 2.6355 +- 0.0145 0.549

!–s
4fi

"2
‡V,(2)

NNLO,Nf
7703 12 10-5 -2.9574 +- 0.0236 0.798

! –s
4fi

"2
‡V,CS

NNLO,Nf
10-5 -2.5460 +- 0.0237 0.929

reference 177 10-5 -2.5732 +- 0.0006 0.023

pdpd æ Z“ú
1“ú

2

LO
‡LO 11 5 10-3 1.3831 +- 0.0010 0.072

reference 10-3 1.3830 +- 0.0009 0.066

NLO

!–s
4fi

"
‡V,(0)

NLO 11 21 10-5 -2.6582 +- 0.0077 0.289
!–s

4fi

"
‡V,(1)

NLO 108 1056 10-4 2.7258 +- 0.0210 0.771
! –s

4fi

"
‡V,CS

NLO
10-4 2.4600 +- 0.0210 0.855

reference 10-4 2.4440 +- 0.0016 0.065

NNLO, Nf

!–s
4fi

"2
‡V,(0)

NNLO,Nf
19 20 10-7 -2.1367 +- 0.0204 0.954

!–s
4fi

"2
‡V,(1)

NNLO,Nf
10-6 2.8440 +- 0.0219 0.771

!–s
4fi

"2
‡V,(2)

NNLO,Nf
927 2403 10-5 -2.6932 +- 0.0228 0.845

! –s
4fi

"2
‡V,CS

NNLO,Nf
10-5 -2.4301 +- 0.0229 0.941

Table 7: Virtual contributions to 2 æ 3 cross sections.
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• No known analytic results, or master 
integrals. 


• Seamless combined integration of 
loop and phase-space integrations.


• Process universality



Conclusions
• A thriving programme of precision studies in cosmology 

from surveys of the Large Scale Structure and at the 
LHC. 


• Perturbative corrections can be tackled in common, with 
numerical methods. 


• New results for the two-loop power-spectrum in EFT of 
LSS.


• New results for triple electroweak production at the LHC. 


• An exciting time for precision phenomenology in particle 
physics and in cosmology. 


