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1 Introduction

In the last few years conformal field theories whose correlation functions have logarithmic

branch cuts have attracted some attention. The interest in these logarithmic conformal

field theories has been motivated from two different points of view. First of all, models

with this property seem to play an important role for the description of certain statistical

models, in particular in the theory of (multi)critical polymers [1, 2, 3], percolation [4],

two-dimensional turbulence [5, 6, 7], the quantum Hall effect [8, 9], the sandpile model [10]

and disordered systems [11, 12, 13, 14, 15, 16]. Secondly, this new class of conformal field

theories is of conceptual interest since it is likely to shed light on the structure of more

general conformal field theories beyond the familiar rational models. In particular, there

exists a family of ‘rational’ logarithmic conformal field theories, the simplest of which is

the triplet algebra at c = −2 [17, 18], that define in some sense rational theories, but

whose structure differs quite significantly from what one expects based on the experience

with, say, affine theories at integer level. For example, as we shall explain in detail, the

Verlinde formula [19] does not hold for these examples, and neither do the polynomial

relations of Moore & Seiberg [20]. If we are interested in understanding the structure of

general (rational) conformal field theories, it is therefore necessary to get to grips with

these logarithmic conformal field theories.

By now, quite a number of logarithmic models have been analysed. They include the

WZW model on the supergroup GL(1, 1) [21], the c = −2 model [22, 23], gravitationally

dressed conformal field theories [24], and WZW models at k = 0 [11, 12, 25, 26] and at

fractional level [27]. Singular vectors of some Virasoro models have been constructed in

[28] (see also [29]), correlation functions have been calculated in [30, 31, 32, 33] (see also

[34]), and more structural properties of the representation theory have been analysed in

[35]. Recently it has also been attempted to construct boundary states for a logarithmic

conformal field theory [36, 37, 38] (see also [39, 40]).

In these lecture notes we want to give a comprehensive introduction to logarithmic

conformal field theory. Our approach will be mostly algebraic in that we shall attempt to

describe the characteristic features in terms of the representation theory of the Virasoro

algebra. We shall discuss in detail the rational logarithmic model [17] and its corre-

sponding local theory [18]. We shall also explain the essential features of the logarithmic

conformal field theory corresponding to the WZW model of su(2) at fractional level [27].

We shall assume a basic familiarity with the concepts of conformal field theory1, but we

shall also, every now and then, pause to explain some more general facts about conformal

1Introductions to conformal field theory can be found in [41, 42]; see also [43] for a treatment in the

spirit of these lectures.
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field theory that may not be well known; in particular, we shall give a brief introduction

to the work of Zhu [44].

These lectures are organised as follows: in section 2 we begin with the simplest example

of a logarithmic conformal field theory, the Virasoro model at c = −2 [22]. We explain

how logarithmic branch cuts arise by solving the differential equations that determine

a certain four-point function. We then show how this result can be recovered from an

algebraic point of view in terms of an indecomposable representation of the Virasoro

algebra. Section 3 deals with the (chiral) triplet model [17]. We begin by describing

the various highest weight representations of this theory (using ideas of Zhu), and we

explain how to determine the fusion products of these representations. We also comment

on the characters of these representations and their modular properties. In section 4

we then discuss how to construct the corresponding local theory [18]. As we shall see,

the locality constraint determines the theory (and its structure constants) uniquely, and

the corresponding partition function is then automatically modular invariant. Section 5

deals with another example of a (chiral) logarithmic conformal field theory, the WZW

model corresponding to su(2) at fractional level [27]. We close with some conclusions

in section 6. We have included an appendix in which details of a key calculation in the

construction of Zhu’s algebra are given.
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2 The baby example

In this section we want to describe the simplest example of a logarithmic representation

for the c = −2 Virasoro theory. We shall do the analysis in two different ways, first

by solving the differential equation that characterises a certain correlation function, and

then by analysing the corresponding fusion product algebraically. This will demonstrate

how these two different points of view are related to one another. The description of the

analytic approach is due to Gurarie [22] who was the first to study conformal correlators

with logarithmic branch cuts systematically. The algebraic approach was first applied to

this problem in [23].

2.1 The analytic approach

We are interested in determining the ‘fusion product’ of the c = −2 representation with

highest weight µ for which

Ln µ = 0 for n > 0, L0 µ = −1

8
µ . (2.1)

To this end we want to determine the four-point function

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 . (2.2)

Using the Möbius symmetry (i.e. the kinematical constraints that have been discussed in

the lectures by Rahimi Tabar [34]) we can write this function as

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = (z1 − z3)
1

4 (z2 − z4)
1

4 [x(1 − x)]
1

4 F (x) , (2.3)

where F is a function that is yet to be determined (by dynamical constraints), and x is

the anharmonic ratio,

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (2.4)

In order to obtain a constraint for the function F we use the fact that the representation

generated from µ contains the null-vector,

N =
(
L−2 − 2L2

−1

)
µ . (2.5)

Exercise: Check that N is a null-vector, i.e. that L1 N = L2 N = 0, using the commuta-

tion relations of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n (2.6)
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with c = −2, as well as (2.1).

Next we use the fact that the null-vector must vanish in all correlation functions, and

therefore that in particular,

0 = 〈µ(z1)µ(z2)µ(z3)
[
(L−2 − 2L2

−1)µ
]
(z4)〉 . (2.7)

As we have heard in the lectures of Rahimi Tabar and Flohr [34, 29],

[L−1µ] (z) =
d

dz
µ(z) , (2.8)

and thus the term with L2
−1 becomes ∂2

∂z2
4

. In order to evaluate the term with L−2 further,

we observe that

L−2µ(z4) =
∮

z4
dz

1

(z − z4)
T (z)µ(z4) , (2.9)

where T (z) is the stress-energy tensor with mode expansion

T (z) =
∑

n∈ZZ

Lnz
−n−2 . (2.10)

We can thus rewrite L−2 in (2.7) using (2.9). The contour can then be ‘pulled off’ from

z4 so that the integral can be evaluated in terms of contour integrals around each of z1, z2

and z3. Using the operator product expansion of T (z) with µ(w),

T (z)µ(w) = −1

8

1

(z − w)2
+

1

(z − w)

d

dw
µ(w) +O(1) , (2.11)

this can thus be written in terms of derivatives acting on zi with i = 1, 2, 3. After a small

calculation one then arrives at the differential equation for F ,

x(1 − x)F ′′(x) + (1 − 2x)F ′(x) − 1

4
F (x) = 0 . (2.12)

The usual technique of constructing a solution to this differential equation is to make the

ansatz

F (x) = G(x) = xs(a0 + a1x+ a2x
2 + . . .) , a0 6= 0 , (2.13)

and then to determine the coefficients ai recursively. In order for this to be possible, we

first have to solve the ‘indicial equation’, i.e. we have to solve the term proportional to

xs−1 in (2.12). (This will determine the value of s.) In our case, the indicial equation is

simply

s(s− 1) + s = s2 = 0 . (2.14)

Thus the two solutions (or roots) for s coincide. It thus follows, that only one solution to

(2.12) is of the form (2.13), while the other is

F (x) = G(x) log(x) +H(x) , (2.15)
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where G(x) is the solution (2.13), and both G and H are regular at x = 0. In our case,

the second solution (2.15) is actually equal to G(1−x), where G is given by (2.13). Thus

the most general solution is

F (x) = AG(x) +BG(1 − x) , (2.16)

where A and B are arbitrary constants and we have

G(1 − x) = G(x) log(x) +H(x) . (2.17)

It thus follows that the four-point function (2.2) has necessarily a logarithmic singularity

somewhere on the Riemann sphere. Indeed, the solution (2.16) has a logarithmic sin-

gularity at x = 0 unless B = 0, and a logarithmic singularity at x = 1 unless A = 0.

We can interpret the result for the correlation function in terms of the operator product

expansion of µ with itself,

µ(z)µ(0) ∼ z
1

4 (ω(0) + Ω(0) log(z)) + . . . . (2.18)

Here the two states ω and Ω label the two different solutions of the differential equations

(that correspond to the two constants A and B).

2.2 The algebraic approach

We shall now explain how these results can be understood in terms of the representation

theory of the Virasoro algebra. From an algebraic point of view, fusion can be regarded

as some sort of tensor product of representations, that associates to two representations

of the Virasoro algebra (the representations inserted at z = z1 and z = z2) a product

representation.2 In fact, by considering the contour integral of the stress energy tensor

around both insertion points, a product of highest weight states naturally defines a rep-

resentation. Using this as the definition of the product representation, the action of the

Virasoro modes on this ‘tensor product’ can then be described in terms of a comultipli-

cation formula
∮

0
dw wm+1 〈φ|T (w) V (ψ, z1) V (χ, z2) Ω〉

=
∑〈

φ|V (∆(1)
z1,z2 (Lm)ψ, z1) V (∆(2)

z1,z2 (Lm)χ, z2) Ω
〉
, (2.19)

2We should stress, however, that this product representation is not simply the tensor product; in fact,

the usual tensor product representation has a central charge that is the sum of the two central charges,

but we are here interested in obtaining a representation with the same central charge.
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where φ is an arbitrary state inserted at infinity, and we have written

∆z1,z2(Lm) =
∑

∆(1)
z1,z2

(Lm) ⊗ ∆(2)
z1,z2

(Lm) . (2.20)

More explicitly, the comultiplication formula is given by [45]

∆z1,z2(Ln) =
n∑

m=−1


 n + 1

m+ 1


 zn−m1 (Lm ⊗ 1l) +

n∑

l=−1


 n+ 1

l + 1


 zn−l2 (1l ⊗ Ll) , (2.21)

where n ≥ −1. For n ≤ −2, there are two different formulae that correspond to two

different expansions of the same meromorphic function,

∆z1,z2(L−n) =
∞∑

m=−1


 n+m− 1

m+ 1


 (−1)m+1z

−(n+m)
1 (Lm ⊗ 1l) +

∞∑

l=n


 l − 2

n− 2


 (−z2)l−n (1l ⊗ L−l), (2.22)

and

∆̃z1,z2(L−n) =
∞∑

l=n


 l − 2

n− 2


 (−z1)l−n (L−l ⊗ 1l) +

∞∑

m=−1


 n+m− 1

m+ 1


 (−1)m+1z

−(n+m)
2 (1l ⊗ Lm) , (2.23)

where in both formulae n ≥ 2. The two formulae (2.22) and (2.23) must agree in all

correlation functions (since they were both derived from (2.19)); the actual fusion product

(H1 ⊗ H2)f of the two representations H1 and H2 is therefore the quotient space of the

product space where we quotient out states of the form

[
∆z1,z2(Lm) − ∆̃z1,z2(Lm)

]
(ψ1 ⊗ ψ2) , (2.24)

where m ∈ ZZ and ψi ∈ Hi are arbitrary states. The action of the Virasoro algebra on

(H1 ⊗H2)f is then given by (2.21) as well as either (2.22) or (2.23).

In general it is difficult to analyse the whole representation space. However, we can

analyse various quotient spaces fairly easily, in particular the ‘highest weight space’ [46]

(H1 ⊗H2)
(0)
f = (H1 ⊗H2)f /A− (H1 ⊗H2)f , (2.25)

where A− is the algebra of negative modes, i.e. the algebra generated by L−n with n > 0.

This quotient space describes the dual of the highest weight space, i.e. it consists of those

states that have a non-trivial correlation function with a highest weight state at infinity.
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There are also more complicated and bigger quotient spaces that can be determined and

that uncover more structure of the actual fusion product [23]; in these lectures we shall

however only work out the space (2.25) explicitly.

The analysis of the various quotient spaces is simplified by choosing z1 = 1 and z2 = 0.

Furthermore, one can use the fact that for n ≥ 2,

∆̃0,−1(L−n) = ∆̃1,0

(
eL−1L−ne

−L
−1

) ∼= ∆1,0

(
eL−1L−ne

−L
−1

)
, (2.26)

where the last identity holds in the quotient space (H1 ⊗H2)f because of (2.24). The

right hand side of (2.26) consists of negative modes only; to obtain the quotient space

(2.25) we can therefore divide out any state of the form ∆̃0,−1(L−n)ψ with n ≥ 2 (as well

as obviously states of the form ∆1,0(L−n) with n ≥ 1). The relevant comultiplication

formulae are then

∆1,0(L−n) =
∞∑

m=−1


 n+m− 1

m+ 1


 (−1)m+1 (Lm ⊗ 1l) + (1l ⊗ L−n) , (2.27)

and

∆̃0,−1(L−n) = (L−n ⊗ 1l) +
∞∑

m=−1


 n+m− 1

m+ 1


 (−1)n+1 (1l ⊗ Lm) , (2.28)

where again n ≥ 2. Let us now apply this analysis to the fusion product of Hµ with

itself, where Hµ denotes the irreducible highest weight representation generated from the

highest weight state µ satisfying (2.1). Using the above relations repeatedly (together

with (2.21) with n = −1 and the null vector relation (2.5)) it is not difficult to see that

the highest weight space

(Hµ ⊗Hµ)
(0)
f (2.29)

can be taken to be spanned by the two vectors

(µ⊗ µ) and (L−1µ⊗ µ) . (2.30)

Next, we want to determine the action of L0 on this two-dimensional highest weight space.

Using (2.21) (with z1 = 1, z2 = 0 and n = 0) and dropping the comultiplication symbol

∆ where no confusion can arise, we obtain

L0(µ⊗ µ) = (L−1µ⊗ µ) − 1

4
(µ⊗ µ)

L0(L−1µ⊗ µ) = (L2
−1µ⊗ µ) +

3

4
(L−1µ⊗ µ) . (2.31)
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Using the null vector (2.5) we have L2
−1µ = 1

2
L−2µ; thus we obtain

(L2
−1µ⊗ µ) =

1

2
(L−2µ⊗ µ)

∼= 1

2
(L−2µ⊗ µ) − 1

2
∆̃0,−1(L−2)(µ⊗ µ)

=
1

2
(µ⊗ L−1µ) +

1

2
(µ⊗ L0µ)

∼= 1

2
(µ⊗ L−1µ) − 1

2
∆1,0(L−1)(µ⊗ µ) − 1

16
(µ⊗ µ)

= −1

2
(L−1µ⊗ µ) − 1

16
(µ⊗ µ) . (2.32)

Putting this relation into (2.31) it follows that L0 maps the space spanned by (2.30) into

itself, and thus that it can be represented by the matrix

L0 =


 −1

4
1

− 1
16

1
4


 . (2.33)

This matrix has

tr(L0) = 0 det(L0) = 0 , (2.34)

and therefore is conjugate to the matrix


 0 1

0 0


 . (2.35)

By choosing a suitable basis (for which L0 is of Jordan normal form as in (2.35)), we can

take the space of ground states to be spanned by two vectors Ω and ω for which the action

of L0 is given as

L0 ω = Ω L0 Ω = 0 . (2.36)

In fact, ω and Ω are given in terms of the two states in (2.30) as

ω = (µ⊗ µ) ,

Ω = −1

4
(µ⊗ µ) + (L−1µ⊗ µ) .

We now claim that these states can be identified with the states that appeared in

the operator product expansion (2.18), thus demonstrating the equivalence of the two

approaches. In order to see this, let us consider the 3-point function with a suitable Ω′,

〈
Ω′(∞) µ(z)µ(0)

〉
= z

1

4

(
A+B log(z)

)
, (2.37)
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where A and B are constants (that depend now on Ω′). We are interested in the trans-

formation of this amplitude under a rotation by 2π; this is implemented by the Möbius

transformation exp(2πiL0),

〈
Ω′(∞) e2πiL0

(
µ(z)µ(0)

)〉
= e−

2πi
4

〈
Ω′(∞) µ(e2πiz)µ(0)

〉

= z
1

4

(
A+B log(z) + 2πiB

)
, (2.38)

where we have used that the usual transformation law of conformal fields is

λL0V (ψ, z)λ−L0 = V
(
λL0ψ, λz

)
. (2.39)

On the other hand, because of (2.18) we can rewrite

〈
Ω′(∞) e2πiL0

(
µ(z)µ(0)

)〉
= z

1

4

〈
Ω′(∞) e2πiL0

(
ω(0) + log(z)Ω(0)

)〉
. (2.40)

Comparing (2.38) with (2.40) we then find that

e2πiL0Ω = Ω (2.41)

e2πiL0ω = ω + 2πiΩ , (2.42)

i.e. we reproduce (2.36).

By analysing various bigger quotient spaces one can actually determine the structure

of the resulting representation (that we shall call R1,1) in more detail [23]. One finds that

it is generated from a highest weight state ω satisfying

L0 ω = Ω , L0 Ω = 0 , Ln ω = 0 for n > 0 (2.43)

by the action of the Virasoro algebra. The state L−1Ω is a null-state of R1,1, but L−1ω is

not null since L1L−1ω = [L1, L−1]ω = 2L0ω = 2Ω. Schematically the representation can

therefore be described as

• •

•×

×

� @
@

@I�
�

�	@
@

I

@
@

I�
�

	

h = 0

h = 1

Ω ω

R1,1

Here each vertex • denotes a state of the representation space, and the vertices × cor-

respond to null-vectors. An arrow A −→ B indicates that the vertex B is in the image

of A under the action of the Virasoro algebra. The representation R1,1 is not irreducible
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since the states that are obtained by the action of the Virasoro algebra from Ω form a

subrepresentation H0 of R1,1 (that is actually isomorphic to the vacuum representation).

On the other hand, R1,1 is not completely reducible since we cannot find a complementary

subspace to H0 that is a representation by itself; R1,1 is therefore called an indecomposable

(but reducible) representation.

The theory at c = −2 is not rational (it has infinitely many representations), but

it possesses a preferred class of ‘quasirational’ representations that are characterised by

the property that they possess a non-trivial null-vector [46]. The simplest quasirational

representation is the representation generated from µ that we have been discussing so far.

However, the theory also has other such quasirational representations; they are generated

from a highest weight state (i.e. a state that is annihilated by all Ln with n > 0) with L0

eigenvalue

h(r,s) =
(2r − s)2 − 1

8
, (2.44)

where r and s are positive integers. Since the formula for hr,s has the symmetry

hr,s = h1−r,2−s = hr−1,s−2 , (2.45)

we can restrict ourselves to the values (r, s) with s = 1, 2. The representation Hµ corre-

sponds to the choice (r, s) = (1, 2), while the vacuum representation, H0, is (r, s) = (1, 1).

By considering fusion products involving any two such quasirational representations

one finds that other indecomposable representation are generated. These representations

can be labelled by (m,n) (where, for c = −2, we always have n = 1), and their structure

is schematically described as

•

• •

•×

×

@
@

@I �
�

�	

@
@

@I�
�

�	@
@

I

@
@

I�
�

	

ξm,n

ψm,n

ρm,n

φm,n

φ′
m,n

ρ′m,n

• •

•×

×

� @
@

@I�
�

�	@
@

I

@
@

I�
�

	

ψ1,n

ρ1,n

φ1,n

φ′
1,n

ρ′1,n

Rm,n R1,n

The representation Rm,n is generated from the vector ψm,n by the action of the Virasoro

algebra, where

L0ψm,n = h(m,n)ψm,n + φm,n , (2.46)

12



L0φm,n = h(m,n)φm,n , (2.47)

Lkψm,n = 0 for k ≥ 2 . (2.48)

If m = 1 we have in addition L1ψm,n = 0, whereas if m ≥ 2, L1ψm,n 6= 0, and in fact

L
(m−1)(2−n)
1 ψm,n = ξm,n , (2.49)

where ξm,n is a Virasoro highest weight vector of conformal weight h = h(m−1,2−n). The

Verma module generated by ξm,n has a singular vector of conformal weight

h(m−1,2−n) + (m− 1)(2 − n) =
(2(m− 1) − (2 − n))2 + 8(m− 1)(2 − n) − 1

8
(2.50)

=
(2m− n)2 − 1

8
= h(m,n) , (2.51)

and this vector is proportional to φm,n; this singular vector is however not a null-vector in

Rm,n since it does not vanish in an amplitude with ψm,n. Again, the representation Rm,n is

reducible since the states generated from ξ form a subrepresentation. On the other hand,

it is impossible to find a complementary subspace that also defines a representation, and

therefore Rm,n is indecomposable. It was shown in [23] that the set of representations that

consists of all quasi-rational irreducible representations and the above indecomposable

representations closes under fusion, i.e. any fusion product of two such representations

can be decomposed as a direct sum of these representations.

We would like to stress that all but one of these indecomposable representations

(namely the representation R1,1) are not generated from a highest weight state. This

seems to suggest that generically, logarithmic representations will not be generated from

a highest weight state. We should also mention that it follows from the structure de-

scribed above that φ is necessarily null in the subrepresentation generated from ξ. In

order to see this, let us denote by h the conformal weight of φ, and let us assume that

χ is an arbitrary state of conformal weight h in the subrepresentation generated from ξ.

(Recall that L0 acts diagonally on the representation generated from ξ.) Then we find

that

〈χ |φ〉 = 〈χ |(L0 − h)ψ〉
= 〈(L0 − h)χ |ψ〉 = 0 , (2.52)

where we have used Dirac notation, i.e.

|φ〉 = lim
z→0

V (φ, z)〉 , 〈φ| = lim
z→∞

z2hφ〈V (φ, z) . (2.53)

Thus it follows that φ is orthogonal to any state in the subrepresentation generated by

ξ, and therefore that it defines a null-state in this (sub)representation. In particular,

this implies that any correlation function that involves φ as well as only states from the

subrepresentation generated by ξ necessarily vanishes.
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3 The triplet model

In the previous section we have described in some detail a ‘quasirational’ theory whose

fusion closes on a set of representations that involves irreducible as well as (logarithmic)

indecomposable representations. For some time it was thought that logarithmic represen-

tations could only occur for non-rational theories; in fact there was a conjecture in the

mathematical literature (due to Dong & Mason [47]) that the C2 condition of Zhu (which

implies in particular that the theory has only finitely many representations) implies that

the theory is ‘rational’ in the strong mathematical sense, i.e. that all of the allowed (high-

est weight) representations are actually completely decomposable. This has turned out

to be wrong, although the relevant counter example is quite complicated: it involves the

extension of the c = −2 model to the triplet algebra [48] that we want to discuss next.

(The following section is largely based on [17].)

3.1 The triplet algebra

The c = −2 Virasoro theory is not rational with respect to the Virasoro algebra (in

particular, the vacuum representation does not contain any non-trivial null-vectors, and

therefore the C2 condition of Zhu is not satisfied), but it is rational with respect to

some extension of the chiral algebra. Let us recall that the conformal weights of the

quasirational representations are given as

h(r,s) =
(2r − s)2 − 1

8
, (3.1)

and therefore that h3,1 = 3. The triplet algebra is the extension of the Virasoro theory

by a triplet of fields with h = h3,1 = 3 that we shall denote by W i. The corresponding

modes satisfy the commutation relations

[Lm, Ln] = (m− n)Lm+n −
1

6
m(m2 − 1)δm+n,

[Lm,W
a
n ] = (2m− n)W a

m+n,

[W a
m,W

b
n] = gab

(
2(m− n)Λm+n +

1

20
(m− n)(2m2 + 2n2 −mn− 8)Lm+n

− 1

120
m(m2 − 1)(m2 − 4)δm+n

)

+fabc

(
5

14
(2m2 + 2n2 − 3mn− 4)W c

m+n +
12

5
V c
m+n

)
,

where Λ = :L2:−3/10 ∂2L and V a = :LW a:−3/14 ∂2W a are quasiprimary normal ordered

fields. gab and fabc are the metric and structure constants of su(2). In an orthonormal

basis we have gab = δab, fabc = iǫabc.
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The triplet algebra (at c = −2) is only associative, because certain states in the vacuum

representation (which would generically violate associativity) are null. The relevant null

vectors are

Na =
(
2L−3W

a
−3 −

4

3
L−2W

a
−4 +W a

−6

)
Ω , (3.2)

Nab = W a
−3W

b
−3Ω − gab

(
8

9
L3
−2 +

19

36
L2
−3 +

14

9
L−4L−2 −

16

9
L−6

)
Ω

−fabc
(
−2L−2W

c
−4 +

5

4
W c

−6

)
Ω . (3.3)

Before we begin to discuss the allowed representations of the triplet algebra, let us first

explain, in some more generality, how representations of a conformal field theory are

constrained by the structure of the theory. Although the following is presumably well

known by many experts, it does not seem to be widely appreciated.

3.2 Interlude 1: Representations of a conformal field theory

Given the vacuum representation of a conformal field theory, we want to determine which

representations are compatible with the vacuum representation (in a sense that will be

explained below). Let us illustrate the relevant arguments with a simple example, the

WZW model of su(2) at level k [49]. This theory is generated by three fields of conformal

weight h = 1, J± and J3, whose modes satisfy the commutation relations

[J3
m, J

3
n] =

1

2
kmδm,−n

[J3
m, J

±
n ] = ±J±

m+n

[J+
m, J

−
n ] = 2J3

m+n + kmδm,−n . (3.4)

It defines a conformal field theory since one can construct a stress energy tensor out of

bilinears of the currents Ja. The corresponding modes, Lm, define a Virasoro algebra with

central charge

c =
3k

(k + 2)
, (3.5)

and satisfy the commutation relations

[Lm, J
a
n ] = −nJam+n . (3.6)

The theory is rational provided that k ∈ IN. In this case the irreducible vacuum repre-

sentation has a null-vector at level k + 1,

N =
(
J+
−1

)k+1
Ω . (3.7)
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Indeed, it follows directly from the commutation relations that J3
nN = J+

n N = 0 for

n > 0, and for J−
n N this is a consequence of LnN = 0 for n > 0 together with

J−
1 N =

k∑

l=0

(J+
−1)

l[J−
1 , J

+
−1](J

+
−1)

k−lΩ

=

[
k(k + 1) − 2

k∑

l=0

(k − l)

]
(J+

−1)
kΩ = 0 . (3.8)

The zero modes of the affine algebra ŝu(2) form the finite Lie algebra of su(2). For

every (finite-dimensional) representation R of su(2), i.e. for every spin j ∈ ZZ/2, we

can construct a Verma module for ŝu(2) whose Virasoro highest weight space transforms

as R. This (and any irreducible quotient space thereof) defines a representation of the

affine algebra ŝu(2). However, not every such representation defines a representation

of the conformal field theory. The additional constraint that every representation of the

conformal field theory has to satisfy is that it does not modify the structure of the vacuum

representation (see [50] for a more formal discussion of this point.) More precisely, if φi

are states in representations of the conformal field theory, then any correlation function

involving these fields together with a null state of the vacuum representation must vanish,

〈φ1(z1) · · ·φn(zn)V (N , u)〉 = 0 , (3.9)

where N is for example the null-state (3.7). [If this was not the case, then N would not be

a null state in the whole theory, and therefore the structure of the vacuum representation

would have been modified by the ‘representations’ φi.] One particular case of (3.9) arises

when n = 2, and φ1 and φ2 are in conjugate representations. Then we can write (3.9) as

〈φ1|V (N , u)|φ2〉 = 0 . (3.10)

We can expand this condition in terms of modes; the first non-trivial condition is then

simply that the zero mode of the null-vector N annihilates every allowed state in the

representation (see also [52]). It is most convenient to evaluate this condition on a highest

weight state; in this case the zero mode of N can be easily calculated, and one finds that

V0(N )φ =
(
J+

0

)k+1
φ . (3.11)

Thus in order for the ŝu(2) representation generated from φ to define a representation

of the conformal field theory, (3.11) must vanish. This implies that j can only take the

values j = 0, 1/2, . . . , k/2. Since N generates all other null-fields, one may suspect that

this is the only additional condition, and this is indeed correct [51].
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Incidentally, in the case at hand the vacuum theory is actually unitary, and the allowed

representations are precisely those representations of the affine algebra that are unitary

with respect to an inner product for which

(
J±
n

)†
= J∓

−n

(
J3
m

)†
= J3

−m . (3.12)

Indeed, if |j, j〉 is a Virasoro highest weight state with J+
0 |j, j〉 = 0 and J3

0 |j, j〉 = j|j, j〉,
then

(
J+
−1|j, j〉, J+

−1|j, j〉
)

=
(
|j, j〉, J−

1 J
+
−1|j, j〉

)

= (k − 2j)
(
|j, j〉, |j, j〉

)
, (3.13)

and if the representation is unitary, this requires that (k − 2j) ≥ 0, and thus that j =

0, 1/2, . . . , k/2. As it turns out, this is also sufficient to guarantee unitarity. In general,

however, the constraints that select the representations of the conformal field theory

from those of the Lie algebra of modes cannot be understood in terms of unitarity. (In

particular, this is not possible for the non-unitary minimal models where unitarity does

not seem to play any role.)

3.3 The representations of the triplet algebra

Let us now return to the question of determining the allowed representations of the triplet

theory. We are only interested in representations for which the spectrum of L0 is bounded

from below, and which therefore possess a highest weight state (although we do not assume

that the whole representation is generated from this state by the action of the modes). As

we have explained above, the zero modes of the null-states have to vanish on the highest

weight states, and this will restrict the allowed representations. Evaluating the constraint

coming from (3.3), we find

(
W a

0W
b
0 − gab

1

9
L2

0(8L0 + 1) − fabc
1

5
(6L0 − 1)W c

0

)
ψ = 0 , (3.14)

where ψ is any highest weight state, while the relation coming from the zero mode of

(3.2) is satisfied identically. Furthermore, the constraint from W a
1N

bc
−1, together with

(3.14) implies that W a
0 (8L0 − 3)(L0 − 1)ψ = 0. Multiplying with W a

0 and using (3.14)

again, this implies that

0 = L2
0(8L0 + 1)(8L0 − 3)(L0 − 1)ψ . (3.15)

For irreducible representations, L0 has to take a fixed value h on the highest weight states,

and (3.15) then implies that h has to be either h = 0,−1/8, 3/8 or h = 1. However, it
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also follows from (3.15) that a logarithmic highest weight representation is allowed since

we only have to have that L2
0 = 0 but not necessarily that L0 = 0. Thus in particular, a

two-dimensional space of highest weight states with relations

L0 ω = Ω L0 Ω = 0 . (3.16)

satisfies (3.15).

As we shall see this is not the only logarithmic representation that will play a role for

this theory, but it is the only logarithmic representation that is generated from a highest

weight state, i.e. from a state φ for which Vn(ψ)φ = 0 for all n > 0. This property

was assumed in the derivation of (3.15), and it is therefore not surprising that the other

logarithmic representation has not been detected by this analysis.

Returning to the classification of highest weight representations, it also follows from

(3.14) that

[W a
0 ,W

b
0 ] =

2

5
(6h− 1)fabc W

c
0 ,

which is a rescaled version of the su(2) algebra. After rescaling, the irreducible repre-

sentations of these zero modes can then be labelled by j and m, where j(j + 1) is the

eigenvalue of the Casimir operator
∑
a(W

a
0 )2, and m is the eigenvalue of W 3

0 . Because of

(3.14), W a
0W

a
0 = W b

0W
b
0 on the highest weight states, and thus j(j + 1) = 3m2. This can

only be satisfied for j = 0, 1/2, and this restricts the allowed representations to [53, 17]

• the singlet representations, j = 0, at h = 0,−1/8,

• the doublet representations, j = 1/2, at h = 1, 3/8.

The above analysis is really a physicist’s way of analysing (irreducible) representations

of Zhu’s algebra [44]. Since Zhu’s construction is a powerful and important technique, we

want to use the opportunity to give a brief explanation of his work.

3.4 Interlude 2: Zhu’s algebra

The above analysis suggests that to each representation of the zero modes of the fields

for which the zero modes of the null-fields vanish, a highest weight representation of the

conformal field theory can be associated, and that all highest weight representations of a

conformal field theory can be obtained in this way [54]. This idea has been made precise

by Zhu [44] who constructed an algebra, now commonly referred to as Zhu’s algebra,

that describes the algebra of zero modes modulo zero modes of null-vectors, and whose

representations are in one-to-one correspondence with those of the conformal field theory.

The following explanation of Zhu’s work follows closely [50].
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In a first step we determine the subspace of states whose zero modes always vanish on

Virasoro highest weight states. This subspace certainly contains the states of the form

(L−1 + L0)ψ, where ψ is an arbitrary state in the vacuum representation H0. Indeed, it

follows from (2.8) together with the mode expansion of an arbitrary chiral field,

V (ψ, z) =
∑

n∈ZZ

Vn(ψ)z−n−hψ (3.17)

that

Vn(L−1ψ) = −(n+ h)Vn(ψ) , (3.18)

and thus

V0 ((L−1 + L0)ψ) = V0 (L−1ψ) + hV0 (ψ) = 0 . (3.19)

Furthermore, the subspace must also contain every state whose zero mode is of the form

V0(χ)V0((L−1 + L0)ψ) or V0((L−1 + L0)ψ)V0(χ). In order to describe states of this form

more explicitly, it is useful to observe that if both φ and φ̄ are Virasoro highest weight

states

〈φ̄|V (ψ, 1)|φ〉 =
∑

l

〈φ̄|Vl(ψ)|φ〉

= 〈φ̄|V0(ψ)|φ〉 , (3.20)

since the highest weight property implies that Vl(ψ)|φ〉 = 0 for l > 0 and similarly

〈φ̄|Vl(ψ) = 0 for l < 0. Because of the translation symmetry of the amplitudes, this can

then be rewritten as

〈φ̄|φ(−1) ψ〉 = 〈φ̄|V0(ψ)|φ〉 . (3.21)

Let us introduce the operators

V (N)(ψ) =
∮

0

dw

wN+1
V
(
(w + 1)L0 ψ,w

)
, (3.22)

where N is an arbitrary integer, and the contour is a small circle that encircles w = 0

but not w = −1. Then if both φ and φ̄ are arbitrary Virasoro highest weight states and

N > 0, we have that

〈φ̄|φ(−1) V (N)(ψ)χ〉 = 0 , (3.23)

since the integrand in (3.23) does not have any poles at w = −1 or w = ∞. Here we

have used that, because of the highest weight property of φ, the leading singularity in the

operator product expansion is

V (ψ,w)V (φ, z) ∼ 1

(w − z)hψ

(
V (V0(ψ)φ, z) +O(w − z)

)
, (3.24)
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and similarly for φ̄. Because of (3.21) it now follows that the zero mode of the state

V (N)(ψ)χ with N > 0 vanishes on an arbitrary highest weight state (since the amplitude

with any other highest weight state vanishes). Let us denote by O(H0) the subspace of

H0 that is generated by states of the form V (N)(ψ)χ with N > 0, and define the quotient

space A(H0) = H0/O(H0). The above then implies that we can associate a zero mode

(acting on a highest weight state) to each state in A(H0). We can write (3.22) in terms

of modes as

V (N)(ψ) =
h∑

n=0

(
h

n

)
V−n−N(ψ) , (3.25)

where ψ has conformal weight h, and it therefore follows that

V (1)(ψ)Ω = V−h−1(ψ)Ω + hV−h(ψ)Ω = (L−1 + L0)ψ . (3.26)

Thus O(H0) contains the states in (3.19). Furthermore,

V (N)(L−1ψ) =
∮

0

dw

wN+1
(w + 1)hψ+1 dV (ψ,w)

dw

= −
∮

0
dw

d

dw

(
(w + 1)hψ+1

wN+1

)
V (ψ,w)

= (N − hψ)V (N)(ψ) + (N + 1)V (N+1)(ψ) , (3.27)

and this implies, for N 6= −1,

V (N+1)(ψ) =
1

N + 1
V (N)(L−1ψ) − N − hψ

N + 1
V (N)(ψ) . (3.28)

Thus O(H0) is actually generated by the states of the form V (1)(ψ)χ, where ψ and χ are

arbitrary states in H0.

As we shall show in the appendix, the vector space A(H0) actually has the structure

of an associative algebra, where the product is defined by

ψ ∗L χ ≡ V (0)(ψ)χ , (3.29)

and V (0)(ψ) is given as in (3.22) or (3.25); this algebra is called Zhu’s algebra. The

analogue of (3.23) is then

〈φ̄|φ(−1) V (0)(ψ)χ〉 = (−1)hψ〈V0(ψ)φ̄|φ(−1) χ〉
= (−1)hψ〈V0(ψ)φ̄|V0(χ)|φ〉 (3.30)

= 〈φ̄|V0(ψ)V0(χ)|φ〉 , (3.31)

and thus the product in A(H0) corresponds indeed to the action of the zero modes.
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As we mentioned before, this algebra plays the role of the algebra of zero modes.

Since it has been constructed in terms of the space of states of the vacuum representa-

tion, all null-relations have been taken into account, and one may therefore expect that

its irreducible representations are in one-to-one correspondence with the irreducible rep-

resentation of the conformal field theory. This is indeed true [44], although the proof is

rather non-trivial.

We should mention that there is a natural generalisation of this construction for n-

point functions [50]: one can construct a suitable quotient space of the vacuum repre-

sentation that describes the different sets of n-point functions involving n highest weight

states. While this is probably not an efficient tool for the actual calculation of n-point

functions, it is useful from a conceptual point of view. For example, using this idea, one

can show that the C2 condition of Zhu implies that the theory only has finitely many

n-point functions [56].

There is also a similar quotient space Aq(H0) that characterises the torus amplitudes

of the theory. Using this description, it was shown by Zhu that for a rational theory (in the

strong mathematical sense) for which the C2 condition is satisfied, the characters of the

irreducible representations transform into one another under the modular transformation,

i.e.

χi

(
−1

τ

)
=
∑

j

Sij χj(τ) , (3.32)

where Sij is a constant matrix. As was explained by Flohr in his lectures [29] (see also

below), for the case of the triplet theory Sij are not constants, but depend on τ . Since the

C2 condition is satisfied, it thus follows that the triplet theory is not a rational theory in

the strong mathematical sense. In fact, as we have seen above (and will see more below)

it does contain logarithmic (indecomposable) representations!

It is easy to see (and in fact shown by Zhu) that Zhu’s algebra must be semisimple if

the theory is rational in the strong mathematical sense. This suggests that logarithmic

theories may be characterised by the property that Zhu’s algebra is not semisimple.3 This

is certainly the case for the example of the triplet algebra; it would be interesting to show

that this is true in general.

3.5 Interlude 2 (ctd): Zhu’s algebra for the Yang-Lee model

In order to give some idea of the structure of Zhu’s algebra, let us now work out one

simple case in detail. The model we want to consider is the Virasoro minimal model with

c = −22
5
. In terms of the discrete series of minimal models where the central charge is

3This conjecture arose in discussions with Peter Goddard.
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parametrised by

c = cp,q = 1 − 6(p− q)2

pq
, (3.33)

this model corresponds to (p, q) = (2, 5). For every such model, the vacuum representation

H0 has a non-trivial null-vector at level (p− 1)(q − 1); for the (2, 5) model, we therefore

have a null-vector at level four, and it is explicitly given as

N =
(
L−4 −

5

3
L2
−2

)
Ω . (3.34)

For the case of the Virasoro field, the Zhu modes are

V (0)(L) = (L0 + 2L−1 + L−2)

V (1)(L) = (L−1 + 2L−2 + L−3)

V (2)(L) = (L−2 + 2L−3 + L−4) , (3.35)

as follows from (3.25). In order to determine the quotient space A(H0) we can discard

any state of the form V (N)(L)ψ with N > 0. In particular, we can therefore replace any

state of the form L−nψ with n ≥ 3, in terms of a linear combination of states L−mψ with

m < n. Repeating this algorithm (and using the fact that a spanning set for H0 can be

taken to consist of the states

L−n1
· · ·L−nmΩ , (3.36)

where n1 ≥ n2 ≥ · · · ≥ nm ≥ 2), we can thus take A(H0) to be spanned by the states

Ll−2Ω , (3.37)

where l = 0, 1, 2, . . .. Finally, because of the null vector at level four (3.34), we can restrict

(3.37) to l = 0, 1. Thus Zhu’s algebra is two-dimensional in our case.

In order to work out the algebra relation, we only have to calculate

L ∗ L = V (0)(L)L−2Ω

=
(
L2
−2 + 2L−1L−2 + L0L−2

)
Ω

=
(

3

5
L−4 + 2L−3 + 2L−2

)
Ω , (3.38)

where we have used the null vector relation (3.34) as well as L−1Ω = 0 in the last line.

Next we use the fact that we can discard states of the form V (N)(L)ψ with N > 0 to write

L ∗ L ∼=
(

3

5
L−4 + 2L−3 + 2L−2

)
Ω − 3

5
V (2)(L)Ω

=
(

3

5
L−4 + 2L−3 + 2L−2

)
Ω − 3

5
(L−4 + 2L−3 + L−2) Ω
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=
(

4

5
L−3 +

7

5
L−2

)
Ω

∼=
(

4

5
L−3 +

7

5
L−2

)
Ω − 4

5
V (1)(L)Ω

=
(

4

5
L−3 +

7

5
L−2

)
Ω − 4

5
(L−3 + 2L−2 + L−1) Ω

= −1

5
L−2Ω . (3.39)

Thus we have shown that in Zhu’s algebra we have the relation

L ∗ L+
1

5
L = L ∗

(
L+

1

5

)
= 0 . (3.40)

The only allowed highest weight representations are therefore

h = 0 (vacuum)

h = −1

5
. (3.41)

This reproduces precisely the representations in the Kac table for the (2, 5) model: as was

explained by Flohr in his lectures [29], the relevant conformal weights are

hr,s =
(rq − sp)2 − (p− q)2

4pq
(3.42)

where 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1 and hr,s = hp−r,q−s. For (p, q) = (2, 5), we therefore

have h1,1 = h1,4 = 0 and h1,2 = h1,3 = −1
5
.

More generally, as we have mentioned above the vacuum representation for c = cp,q

has a null-vector at level N = (p−1)(q−1). Furthermore, we can always take A(H0) to be

spanned by Ll−2Ω where l = 0, 1, . . .. The coefficient of the term L
N/2
−2 Ω in the null-vector

at level N = (p− 1)(q − 1) is non-trivial, and therefore, A(H0) is spanned by Ll−2Ω with

l = 0, 1, . . . , (p− 1)(q − 1)/2 − 1. Thus we have

dim(A(H0)) =
(p− 1)(q − 1)

2
, (3.43)

and this is in agreement with the number of representations in the Kac table. In fact, the

algebra structure of A(H0) is given as [57]

A(H0) = P [L]/
∏

(r,s)

(L− hr,s) , (3.44)

where P [L] is the polynomial algebra in the variable L, and the product in the denominator

runs over the set of inequivalent representations in the Kac table, i.e. 1 ≤ r ≤ p − 1,

1 ≤ s ≤ q − 1 and we have identified (r, s) with (p− r, q − s).
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3.6 The fusion rules of the triplet theory

Let us now return to the example of the triplet theory. As we have seen above, the analysis

of Zhu’s algebra implies that the theory has four irreducible representations:

• the singlet representation at h = 0, V0;

• the singlet representation at h = −1/8, V−1/8;

• the doublet representation at h = 1, V1;

• the doublet representation at h = 3/8, V3/8.

We can work out the fusion products of these representations using the algorithm we

described in section 2. We find that the fusion products involving V0 are trivial, and for

V1 we obtain [17]

(V−1/8 ⊗ V1)f = V3/8 , (V3/8 ⊗ V1)f = V−1/8 . (3.45)

Furthermore we find
(V1 ⊗ V1)f = V0 ,(

V−1/8 ⊗ V−1/8

)
f

= R0 ,(
V−1/8 ⊗ V3/8

)
f

= R1 ,(
V3/8 ⊗ V3/8

)
f

= R0 ,

(3.46)

where R0,R1 are generalised highest weight representations whose structure can (schemat-

ically) be described by the following diagram:

• •

• •
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ψ φ

ξ+, ξ−

R0 R1

Here each vertex represents an irreducible representation, V0 in the bottom row and V1

in the top row. An arrow A −→ B indicates that the vertex B is in the image of A under

the action of the triplet algebra. Let us describe the two representations in some more

detail.
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The representation R0 is generated from a highest weight vector ω of h = 0 forming

a Jordan cell with Ω. It is an extension of the vacuum representation, and its defining

relations are

L0 ω = Ω , L0 Ω = 0

Ln ω = 0 , for n > 0

W a
0 ω = 0 ,

W a
nω = 0 , for n > 0.

As we have seen before this representation is compatible with the vacuum representation

(see (3.16)). The two ground states are singlets under the action of W a
0 , but at higher

levels there are also Jordan cells for W a
0 .

The representation R1 is generated from a doublet φ± of cyclic states of weight h = 1.

It has two ground states ξ± at h = 0 and another doublet ψ± at h = 1 forming L0 Jordan

cells with φ±. The defining relations are

L0ψ = ψ , W a
0ψ = 2taψ ,

L0ξ = 0 , W a
0 ξ = 0 ,

L−1ξ = ψ , W a
−1ξ = taψ ,

L1φ = −ξ , W a
1φ = −taξ ,

L0φ = φ+ψ , W a
0φ = 2taφ .

We stress that ψ± and φ± form a Jordan cell with respect to L0 but that they remain

uncoupled with respect to W a
0 . On higher levels there are also Jordan cells for W a

0 .

It is clear from these relations (as well as the above diagram) that R1 is not a highest

weight representation: the states φ± from which it is generated by the action of the modes

are not highest weight states. Since φ± are not highest weight, they do not have to satisfy

the relation (3.15), and thus there is no contradiction with the fact that R1 is compatible

with the vacuum representation. (An analysis similar to what was described in section 3.3

can be performed, and one can show that V0(N
a)φ± = 0 and V0(N

ab)φ± = 0; however,

since φ± is not highest weight, the analysis is slightly more complicated than what was

described in section 3.3.)

Finally, we can calculate the fusion products involving the indecomposable represen-

tations.

(
V−1/8 ⊗R0

)
f

= 2V−1/8 ⊕ 2V3/8 ,
(
V−1/8 ⊗R1

)
f

= 2V−1/8 ⊕ 2V3/8 ,
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(
V3/8 ⊗R0

)
f

= 2V−1/8 ⊕ 2V3/8 ,
(
V3/8 ⊗R1

)
f

= 2V−1/8 ⊕ 2V3/8 ,

(V1 ⊗R0)f = R1 ,

(V1 ⊗R1)f = R0 ,

(R0 ⊗R0)f = 2R0 ⊕ 2R1 ,

(R0 ⊗R1)f = 2R0 ⊕ 2R1 ,

(R1 ⊗R1)f = 2R0 ⊕ 2R1 .

It follows from these results that the set of representations V0,V1,V−1/8,V3/8 and R0,R1, is

closed under fusion. The triplet algebra at c = −2 defines therefore a rational logarithmic

conformal field theory.

3.7 Characters and modular transformations

The characters of the irreducible representations of the triplet algebra have been calculated

in [3] (see also [2]). From these, and the explicit description of the indecomposable

representations, we can derive the characters of all the above representations. In more

detail we have

χV0
(τ) =

1

2

(
η(τ)−1θ1,2(τ) + η(τ)2

)
,

χV1
(τ) =

1

2

(
η(τ)−1θ1,2(τ) − η(τ)2

)
,

χV
−1/8

(τ) = η(τ)−1θ0,2(τ) ,

χV3/8
(τ) = η(τ)−1θ2,2(τ) , (3.47)

χR0
(τ) = 2η(τ)−1θ1,2(τ) ,

χR1
(τ) = 2η(τ)−1θ1,2(τ) .

Here the θm,k-functions are defined as

θm,k(τ) =
∑

j∈ZZ+m
2k

qk j
2

, q = e2πiτ , (3.48)

and η(τ) is the Dedekind eta-function,

η(τ) = q
1

24

∞∏

n=1

(1 − qn) . (3.49)
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It follows directly from the definition of the θm,k functions that we have the identity

θ1,2(τ) = θ3,2(τ) . (3.50)

Under the S transformation, S : τ 7→ −1/τ , the θm,k functions transform as [58]

θm,k

(
−1

τ

)
=

√
−iτ
2k

∑

l∈ZZmod 2kZZ

e−πil
m
k θl,k(τ) , (3.51)

while the Dedekind eta-function becomes

η
(
−1

τ

)
=

√
−iτ η(τ) . (3.52)

It therefore follows that the space generated by the last four characters in (3.47) is invari-

ant under the action of the modular group, and that each has a suitable transformation

property under S. On the other hand the S transformation of χV0
(τ) and χV1

(τ) involves

coefficients which are themselves functions of τ , i.e.

χV0
(−1/τ) =

1

4
χV

−1/8
(τ) − 1

4
χV3/8

(τ) − iτ

2
η(τ)2 ,

χV1
(−1/τ) =

1

4
χV

−1/8
(τ) − 1

4
χV3/8

(τ) +
iτ

2
η(τ)2 .

As Flohr has explained in his lectures [29] (see also [2]) it is tempting to interpret this

in terms of a conventional modular matrix relating generalised characters. Given Zhu’s

work it seems plausible that these generalised characters have an interpretation in terms

of torus amplitudes, and it would be very interesting to understand this more precisely.

The representations R0 and R1 contain the irreducible subrepresentations V0 and V1,

respectively, and the set of representations V−1/8,V3/8 and R0,R1 is already closed under

fusion. This suggests that the fundamental building blocks of the theory are these four

representations (c.f. also [35]). Two of its characters are the same, and so the definition of

the modular matrices is ambiguous. It turns out that there is a one parameter freedom to

define these matrices so that the relations of the modular group, S4 = 1l and (ST )3 = S2

are satisfied,4 and a unique solution for which the charge conjugation matrix S2 is a

permutation matrix. In the basis of χR0
, χR1

, χV
−1/8

, χV3/8
this solution is given as

S =




−1
2
i 1

2
i 1

4
−1

4

1
2
i −1

2
i 1

4
−1

4

1 1 1
2

1
2

−1 −1 1
2

1
2




T =




e2πi/12 0 0 0

0 e2πi/12 0 0

0 0 e−πi/12 0

0 0 0 e11πi/12



.

4All different choices lead to equivalent representations of the modular group.
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It is intriguing that a formal application of Verlinde’s formula [19] leads to fusion rule

coefficients which are positive integers. These do not reproduce the fusion rules we have

calculated. This is not surprising, as, for example, this set of representations does not

contain the vacuum representation, i.e. a representation which has trivial fusion rules.

Even more drastically, the fusion matrix corresponding to the representation V−1/8 which,

in the above basis, is given as

N−1/8 =




0 0 1 0

0 0 0 1

2 2 0 0

2 2 0 0



,

is not diagonalisable, and the same is true for the matrix corresponding to V3/8. However,

a slight modification of Verlinde’s observation still holds: the above S matrix transforms

the fusion matrices into block diagonal form, where the blocks correspond to the two

one-dimensional and the one two-dimensional representation of the fusion algebra.
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4 The local triplet theory

As we have seen in the previous section, the c = −2 triplet theory is a chiral conformal field

theory that is rational in the sense that it only possesses finitely many indecomposable

representations that close under fusion. However, as we have also seen, some of the

correlation functions contain logarithmic branch cuts, and the modular properties of the

representations are quite unusual. It is therefore an interesting question whether one can

define a consistent local theory whose two chiral halves are the chiral triplet theory. As

we shall see, this is indeed possible (and the corresponding partition function is indeed

modular invariant), but a number of novel features arise [18].

As in the usual case, we shall begin by trying to construct a local theory whose space of

states is the direct sum of tensor products of the various chiral representations. As we have

argued above, the natural set of representations to consider consists of the two irreducible

representations V−1/8 and V3/8 together with the two indecomposable representations R0

and R1. Thus our ansatz for the total space of states is

Hansatz =
(
V−1/8 ⊗ V̄−1/8

)⊕(
V3/8 ⊗ V̄3/8

)⊕(
R0 ⊗ R̄0

)⊕(
R1 ⊗ R̄1

)
. (4.1)

As we shall see momentarily, Hansatz is not quite correct. One reason for this is actually

easy to understand: the Möbius symmetry implies that the 2-point function satisfies

z∂z〈φ1(z, z̄)φ2(0, 0)〉 + 〈L0φ1(z, z̄)φ2(0, 0)〉 + 〈φ1(z, z̄)L0φ2(0, 0)〉 = 0 ,

and similarly for the barred coordinates. Integrating the difference of these differential

equations along a circle around the origin, we then get

〈φ1(e
−2πiz, e2πiz̄)φ2(0, 0)〉 = e2πi(h1−h̄1+h2−h̄2)〈e2πiSφ1(z, z̄)e

2πiSφ2(0, 0)〉 ,

where (hj, h̄j) are the left and right conformal weights of the states φj and S = L
(n)
0 − L̄(n)

0

is the nilpotent part of L0 − L̄0. The conditions for the two-point function to be local are

thus

h1 − h̄1 + h2 − h̄2 ∈ ZZ , 〈Snφ1(z, z̄)S
mφ2(0, 0)〉 = 0 ∀n,m ∈ ZZ≥0, m+ n > 0 .

This has to hold for any combination of φ1 and φ2. Since every N -point function involving

φ1, say, can be expanded in terms of such two-point functions (by defining φ2 to be a

suitable contour integral of the product of the remaining N − 1 fields), it follows that we

have to have

h− h̄ ∈ ZZ , Sφ = 0 ,

where (h, h̄) are the conformal weights of any non-chiral field φ. The first condition is

well-known, but the second only arises for theories for which L0 (and L̄0) has a nilpotent
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part. It is therefore new, and leads to a non-trivial constraint. Consider for example the

local fields associated to R0 ⊗ R̄0. The ‘ground states’ are

ω ⊗ ω̄
ω ⊗ Ω̄

Ω ⊗ ω̄
Ω ⊗ Ω̄ . (4.2)

Now

S(ω ⊗ ω̄) = (Ω ⊗ ω̄) − (ω ⊗ Ω̄) (4.3)

S(Ω ⊗ ω̄) = (Ω ⊗ Ω̄) . (4.4)

Thus Sφ = 0 is not satisfied on all of R0 ⊗ R̄0.

The natural resolution of this problem is to consider instead of R0 ⊗ R̄0 a suitable

quotient space

R00̄ ≡
(
R0 ⊗ R̄0

)
/N00̄ , (4.5)

where N00̄ is chosen so that S|R00̄
= 0. To determine this quotient space, we observe that

S commutes with the action of both chiral algebras. This implies that every state that is

in the image space of S, is in the subrepresentation generated from S(ω ⊗ ω̄).5 Thus the

‘minimal’ choice for N00̄ is to take it to be the subrepresentation of R0 ⊗ R̄0 generated

from S(ω ⊗ ω̄) = (ω ⊗ Ω̄) − (Ω ⊗ ω̄). In particular, we note that N00̄ then also contains

the state L0S(ω ⊗ ω̄) = (Ω ⊗ Ω̄).

By construction, S|R00̄
= 0, and R00̄ is still a representation of A⊗ Ā. The fact that

R00̄ is non-trivial is a consequence of the property of R0 and R̄0 not to be irreducible as

representations of A and Ā, respectively.

The representation R00̄ is still not an irreducible representation of A⊗Ā: its space of

ground states is two-dimensional and can be taken to be spanned by

ω ≡ ω ⊗ ω̄ and Ω ≡ 1

2

(
ω ⊗ Ω̄ + Ω ⊗ ω̄

)
. (4.6)

We then find that

L0 ω = Ω ⊗ ω̄ =
1

2

(
ω ⊗ Ω̄ + Ω ⊗ ω̄

)
+

1

2

(
(Ω ⊗ ω̄) − (ω ⊗ Ω̄)

)

≃ 1

2

(
ω ⊗ Ω̄ + Ω ⊗ ω̄

)
= Ω , (4.7)

and similarly for L̄0 ω = Ω.

For R1 ⊗ R̄1, the situation is analogous, and the relevant quotient space is

R11̄ =
(
R1 ⊗ R̄1

)
/N11̄ , (4.8)

5Here and in the following every ‘representation’ is a representation of A⊗Ā, where A and Ā are the

left- and right-moving triplet algebra, respectively.
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where N11̄ is the subrepresentation generated from φα ⊗ ψ̄ᾱ − ψα ⊗ φ̄ᾱ. The structure of

the resulting representations is therefore
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(0,1)

(1,1)

weight

Here φαᾱ is the equivalence class in R11̄ with representative (φα ⊗ φ̄ᾱ).

The above constraints are those that arise from the requirement that the 2-point

functions are local. The analysis of the locality of the higher correlation functions is

actually quite complicated (see [18] for a detailed description), but the final constraint is

rather simple: in order to obtain local correlation functions the states at grade (0, 1) and

the states at (1, 1) in the two representations R00̄ and R11̄ have to be identified
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Ω ω

ψαᾱ φαᾱ

ραᾱ

ρ̄αᾱ

R

(0,0)

(1,0)

(0,1)

(1,1)

weight

The resulting representation R does not have one cyclic state, but instead is generated

from a state ω of weight (0, 0) and the four states φαᾱ of weight (1, 1). The non-trivial
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defining relations are

L0ω = Ω, W a
0ω = 0,

L0Ω = 0, W a
0 Ω = 0,

L−1ω = Θ̃ᾱαρ
αᾱ, W a

−1ω = taαβ Θ̃ᾱαρ
βᾱ,

L0ρ
αᾱ = ραᾱ, W a

0 ρ
αᾱ = 2taαβ ρ

βᾱ,

L1ρ
αᾱ = ΘαᾱΩ, W a

1 ρ
αᾱ = taαβ ΘβᾱΩ,

L−1ρ̄
αᾱ = ψαᾱ, W a

−1ρ̄
αᾱ = taαβ ψ

βᾱ,

L0φ
αᾱ = φαᾱ +ψαᾱ, W a

0φ
αᾱ = 2taαβ φ

βᾱ,

L0ψ
αᾱ = ψαᾱ, W a

0ψ
αᾱ = 2taαβ ψ

βᾱ,

L1φ
αᾱ = −ρ̄αᾱ, W a

1φ
αᾱ = −taαβ ρ̄βᾱ,

together with their anti-chiral counterparts. Here taαβ are the matrix elements of the spin
1
2

representation of su(2), and Θαβ̄ and Θ̃ᾱβ are tensors that are described in detail in

[18].

In addition to the sates in R we also have the states that are associated to the tensor

products of the irreducible representations,

V−1/8,−1/8 =
(
V−1/8 ⊗ V̄−1/8

)
and V3/8,3/8 =

(
V3/8 ⊗ V̄3/8

)
. (4.9)

As was shown in [18] it is then possible to ‘solve the bootstrap’ for this space of states,

i.e. to find operator product coefficients for all possible operator products involving these

states so that the amplitudes of the resulting theory are local.

4.1 The partition function

In the above we have analysed the locality of the various amplitudes. As we have men-

tioned, these constraints were already sufficient to determine the structure of the resulting

representation R uniquely. Given the structure of the various local representations, we

can ask whether the partition function of the whole theory is modular invariant.

First of all, the characters of the non-chiral irreducible representations are simply the

product of a left and right chiral character

χV
−1/8,−1/8

(τ) = χV
−1/8

(τ)χ̄V
−1/8

(τ̄) =
∣∣∣η(τ)−1θ0,2(τ)

∣∣∣
2
,

χV3/8,3/8
(τ) = χV3/8

(τ)χ̄V3/8
(τ̄) =

∣∣∣η(τ)−1θ2,2(τ)
∣∣∣
2
,

where we are using the same notation as in section 3.7. To determine the character

of the reducible representation R, let us recall that each vertex in the diagrammatical
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representation of R corresponds to an irreducible representation of the left and right

triplet algebra. Putting the different contributions together we find

χR(τ) = 2χR0
(τ)χ̄R0

(τ̄) + 2χR1
(τ)χ̄R0

(τ̄ ) + 2χR0
(τ)χ̄R1

(τ̄ ) + 2χR1
(τ)χ̄R1

(τ̄)

= 2 |χR0
(τ) + χR1

(τ)|2

= 2
∣∣∣η(τ)−1θ1,2(τ)

∣∣∣
2
.

The partition function of the full theory is thus

Z = χV
−1/8,−1/8

(τ) + χV3/8,3/8
(τ) + χR(τ) = |η(τ)|−2

3∑

k=0

|θk,2(τ)|2 ,

and this is indeed modular invariant as follows directly from (3.51) and (3.52). Actually,

the above partition function is the same as that of a free boson compactified on a circle

of radius
√

2 [61]. However, in our case the partition function is not simply the sum of

products of left- and right- chiral representations of the chiral algebra as the non-chiral

representation R is not the tensor product of a left- and right-chiral representation, but

only a quotient thereof. As we have explained before, this follows directly from locality.

4.2 Symplectic fermions

Up to now we have constructed the local theory abstractly, starting from the chiral repre-

sentations of the triplet algebra and determining the constraints that arise from locality.

In this section we want to show that the resulting conformal field theory is actually the

same as the bosonic sector of a free field theory of ‘symplectic’ fermions. Here we shall

only summarise the essential features of this fermion model; further details may be found

in [59] and [3].

The chiral algebra of the symplectic fermion model is generated by a two-component

fermion field χα of conformal weight one whose anti-commutator is given by

{χαm, χβn} = mdαβ δm+n ,

where dαβ is an anti-symmetric tensor with components d±∓ = ±1. This algebra has a

unique irreducible highest weight representation generated from a highest weight state Ω

satisfying χαmΩ = 0 for m ≥ 0; we may call this representation the vacuum representation.

It contains the triplet W -algebra since

L−2Ω =
1

2
dαβχ

α
−1χ

β
−1Ω ,

W a
−3Ω = taαβχ

α
−2χ

β
−1Ω ,
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satisfy the triplet algebra [48, 3]. Here dαβ is the inverse metric to dαβ , and taαβ are the

matrix elements of the spin 1
2

representation of su(2).

Let us consider the maximal highest weight representation of this chiral algebra that

contains the vacuum representation. It is generated by the negative modes χαm, m < 0

from a four dimensional space of ground states. This space is spanned by two bosonic

states Ω and ω, and two fermionic states, θα, and the action of the zero-modes χα0 is given

as

χα0ω = −θα ,
χα0 θ

β = dαβΩ ,

L0ω = Ω .

Imposing the locality constraints as above, the corresponding non-chiral representation is

then generated by the negative modes χαm, χ̄
ᾱ
m, m < 0 from the ground space representation

χα0ω = −θα , χ̄ᾱ0ω = −θ̄ᾱ ,
χα0θ

β = dαβΩ , χ̄ᾱ0 θ̄
β̄

= dᾱβ̄Ω ,

χα0 θ̄
ᾱ

= ΘαᾱΩ , χ̄ᾱ0θ
α = −ΘαᾱΩ ,

where Θαᾱ is given as before. The space of ground states contains two bosonic states, Ω

and ω, and two fermionic states since the four fermionic states θα and θ̄
ᾱ

are related as

θα = Θαᾱdᾱβ̄θ̄
β̄
, θ̄

ᾱ
= −Θαᾱdαβθ

β .

One can show (see [59] for further details) that the bosonic sector of this representation

is isomorphic to the representation R. For example, the higher level states of R can be

expressed as fermionic descendents as

ραᾱ = χα−1θ̄
ᾱ
,

ρ̄αᾱ = −χ̄ᾱ−1θ
α ,

ψαᾱ = χα−1χ̄
ᾱ
−1Ω ,

φαᾱ = χα−1χ̄
ᾱ
−1ω .

We should mention that, as the bosonic sector of the symplectic fermion representation,

the representation R is generated from a single cyclic state ω.

The other two representations of the triplet model, the irreducible representations

V−1/8,−1/8 and V3/8,3/8, also have an interpretation in terms of the symplectic fermion

theory: they correspond to the bosonic sector of the (unique) ZZ2-twisted representation.

In this sector, the fermions are half-integrally moded, but all bosonic operators (including
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the triplet algebra generators that are bilinear in the fermions) are still integrally moded.

The ground state of the twisted sector, µ, has conformal weight h = h̄ = −1/8 and

satisfies

χαrµ = χ̄ᾱrµ = 0 , for r > 0 ,

while

ναᾱ = χα− 1

2

χ̄ᾱ1
2

µ .

With respect to the symplectic fermions, ω and µ are cyclic states, and all amplitudes can

be reduced to those involving µ and the four ground states of the vacuum representation.

This can be done using the (fermionic) comultiplication formula and its twisted analogue

[60]. The amplitudes involving the ground states can then be determined by solving

differential equations. One can check that the amplitudes of the symplectic fermion theory

reproduce the amplitude constructed above [18], and therefore that the two theories agree.

This concludes our analysis of the triplet theory at c = −2. In the next section we

want to discuss another theory that also exhibits logarithmic behaviour.
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5 Logarithmic representations at fractional level

One of the best understood conformal field theories is the WZW model that can be defined

for any (simple compact) group [49]. If the so-called level is chosen to be a positive integer,

the theory is unitary and rational, and in fact these models are the paradigm for rational

conformal field theories. The fusion rules are well known [62, 58, 63, 64], and they can

be obtained, via the Verlinde formula [19], from the modular transformation properties

of the characters.

From a Lagrangian point of view, the model is only well defined if the level is integer,

but the corresponding vertex operator algebra (or the meromorphic conformal field theory

in the sense of [50]) can also be constructed even if this is not the case. Furthermore, it was

realised some time ago that there exists a preferred set of admissible (fractional) levels

for which the characters corresponding to the ‘admissible’ representations have simple

modular properties [65]. This suggests that these admissible level WZW models define

‘almost’ rational conformal field theories. However, there are clearly some subtleties since

the fusion rule coefficients that can be obtained by the application of the Verlinde formula

are integers, but not all positive integers [66, 67].

The fusion rules of WZW models at admissible fractional level have been studied

quite extensively over the years. In particular, the simplest case of su(2) at fractional

level has been analysed in detail [68, 69, 70, 71, 72, 73, 74, 75, 76, 77] (for a good review

about the various results see in particular [77]). All of these fusion rule calculations

essentially determine the possible couplings of three representations. More precisely, given

two representations, the calculations determine whether a given third representation can

be contained in the fusion product of the former two.

Two different sets of ‘fusion rules’ have been proposed in the literature: the fusion

rules of Bernard and Felder [68] whose calculations have been reproduced in [71, 74],

and the fusion rules of Awata and Yamada [70] whose results have been recovered in

[72, 73, 75, 76, 77]. The two calculations differ essentially by what class of representations

is considered: in Bernard & Felder only admissible representations that are highest weight

with respect to the whole affine algebra (and a fixed choice of a Borel subalgebra) are

considered, while in Awata & Yamada also representations that are highest weight with

respect to an arbitrary Borel subalgebra were analysed. As a consequence, the fusion

rules of Awata & Yamada ‘contain’ the fusion rules of Bernard & Felder. In addition, the

fusion analysis of Awata & Yamada is based on a generalised notion of fusion for which

the correlation functions are also regarded as functions of the variables that characterise

the different Borel subalgebras. (This was clarified in [72, 78].) This modified notion of

fusion is physically not very well motivated, and it falls outside the usual framework of
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vertex operator algebras; in the following we shall therefore consider the usual definition

of fusion. As we shall see, the corresponding fusion rules are commutative and associative,

and they close on a certain set of representations that we shall describe in detail [27].

In deriving the ‘fusion rules’ from the calculations in [68, 71, 74], it is always assumed

implicitly that the actual fusion product is a direct sum of representations of the kind

that are considered. (This is to say, there are no additional fusion channels that one

has overlooked by restricting oneself to the class of representations in question.) In par-

ticular, it has been assumed that the fusion rules ‘close’ on (conformal) highest weight

representations (since these are the only representations that were considered). However,

as we shall explain in some detail in the following, this is not true in general. In fact, the

fusion product of two highest weight representations (with respect to the affine algebra)

contains sometimes a representation whose L0 spectrum is not bounded from below [27].

(The representation has, however, the property that Vn(ψ)χ = 0 for n ≥ N , where N

depends on both ψ and χ; this is sufficient to guarantee that the corresponding correlation

functions do not have essential singularities.) Furthermore, some of the representations

that occur are not completely decomposable, and indeed are logarithmic in the sense

that the action of L0 is not diagonal [27]. For WZW models at level k = 0 logarithmic

representations have been discovered before in [11, 12, 25, 26]; however these models are

somewhat pathological (at k = 0 the vacuum representation is trivial), and the relevant

logarithmic representations are quite different from what will be described below.

5.1 The example of k = −4/3

In the following we shall concentrate on the simplest example, the su(2) model for

k = −4/3. As we have mentioned before (in section 3.2) the chiral algebra of this confor-

mal field theory contains the affine algebra ŝu(2), whose modes satisfy the commutation

relations

[J+
m, J

−
n ] = 2J3

m+n + kmδm,−n

[J3
m, J

±
n ] = ±J±

m+n

[J3
m, J

3
n] =

k

2
mδm,−n . (5.1)

By virtue of the Sugawara construction, we can define Virasoro generators as bilinears in

the currents J

Ln =
1

(k + 2)

∑

l

(
1

2
: J+

l J
−
n−l : +

1

2
: J−

l J
+
n−l : + : J3

l J
3
n−l

)
, (5.2)
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where : · : denotes ‘normal ordering’, i.e.

: JanJ
b
m :=




JanJ

b
m if n ≤ m

J bmJ
a
n if n > m.

(5.3)

These Virasoro modes satisfy the commutation relations

[Lm, J
a
n] = −nJam+n

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n ,

where c is given in terms of the level k as

c =
3k

(k + 2)
. (5.4)

In our case we have k = −4/3 and thus c = −6.

At k = −4/3, the vacuum representation has a null-vector at level 3 that is explicitly

given by

N =
(
J3
−3 +

3

2
J+
−2J

−
−1 −

3

2
J+
−1J

−
−2 +

9

2
J3
−1J

+
−1J

−
−1 +

9

2
J3
−1J

3
−1J

3
−1 −

9

2
J3
−2J

3
−1

)
Ω . (5.5)

As we have explained before in section 3.2, every representation of the conformal field

theory must only contain states that are annihilated by the zero mode of N . In particular,

if the representation contains a highest weight state ψ, i.e. a state ψ that is annihilated

by all Jan with n > 0, we obtain the condition

V0(N )ψ =
[
9

2

(
J−

0 J
+
0 J

3
0 + J3

0J
3
0J

3
0 + J3

0J
3
0

)
+ J3

0

]
ψ

=
[(

9

2
C + 1

)
J3

0

]
ψ , (5.6)

where we have denoted by C the Casimir operator of the zero mode su(2) algebra,

C =
1

2
(J+

0 J
−
0 + J−

0 J
+
0 ) + J3

0J
3
0 . (5.7)

Thus it follows from (5.6) that the theory has two types of highest weight representations:

(a) the vacuum representation H0

(b) any representation for which C = −2/9 on the highest weight states.

It follows from (5.2) that on a highest weight state ψ,

L0 ψ =
1

(k + 2)
C ψ . (5.8)
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Thus the ground state of the vacuum representation has h = 0, while the ground states

of the representations in (b) have h = −1/3. In particular, it therefore follows from this

analysis that L0 acts diagonally on every allowed highest weight representation! Thus it

would seem at first sight that this theory cannot contain any logarithmic representations.

As we shall explain further below, this is however not quite correct.

It also follows from the above analysis that the theory is very far from being ‘rational’

since there exists a continuum of highest weight representations of type (b). First of all,

(b) includes the representation D+
j with j = −2/3 and j = −1/3, where D+

j is generated

from a highest weight state |j〉, satisfying

Jan|j〉 = 0 for any a and n > 0,

J+
0 |j〉 = 0

J3
0 |j〉 = j|j〉 .

In particular, the last two lines imply that the eigenvalue of C on |j〉 is equal to

C|j〉 = j(j + 1)|j〉 . (5.9)

Thus we have C = −2/9 provided that j = −1/3 or j = −2/3. Similarly, (b) also includes

the representation D−
j with j = 2/3 and j = 1/3, where D−j is generated from a highest

weight state |j〉, satisfying

Jan|j〉 = 0 for any a and n > 0,

J−
0 |j〉 = 0

J3
0 |j〉 = j|j〉 .

These four representations are special in that the J3
0 spectrum on the highest weight

states is bounded from above (below) for D+
j (D−

j ). They are precisely the admissible

representations of Kac & Wakimoto [65].

However, there are also other representations that are compatible with the vacuum

representation and for which the spectrum of J3
0 on the highest weight states is not

bounded: for every t ∈ [0, 1) with t 6= 1
3
, 2

3
, there exists a representation Et that is

generated from the highest weight states |m〉 with m− t ∈ ZZ for which we have

Jan|m〉 = 0 for any a and n > 0

J3
0 |m〉 = m|m〉

J+
0 |m〉 = |m+ 1〉 (5.10)

J−
0 |m〉 =

(
−2

9
−m(m− 1)

)
|m− 1〉 .

It is easy to check that we have C|m〉 = −2/9|m〉, and thus that Et defines an allowed

highest weight representation of the conformal field theory.
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5.2 An interesting symmetry

As we shall show further below, the fusion rules of this theory are actually quite compli-

cated. A first indication of this fact may be seen as follows. It is well known that the

affine ŝu(2) algebra has an outer automorphism given by

πs(J
±
m) = J±

m∓s

πs(J
3
m) = J3

m − k

2
sδm,0 , (5.11)

where s ∈ ZZ. The induced action on the Virasoro generators is given by

πs(Lm) = Lm − sJ3
m +

1

4
ks2δm,0 . (5.12)

If s is even, the automorphism is inner in the sense that it can be obtained by the adjoint

action of an element in the loop group of SU(2); on the other hand, if s is odd, the

automorphism can be obtained by the adjoint action of a loop in SO(3) that does not

define an element in the loop group of SU(2) [79, 80].

As we have explained before in section 3.2, for positive integer k, the allowed highest

weight representations have highest weights that transform in the su(2) representation

with j = 0, 1
2
, . . . , k

2
. In this case, the induced action of the automorphism π1 on the

highest weight representations is given by

π1 : j 7→ k

2
− j . (5.13)

In particular, πs with s even maps each integrable positive energy representations into

itself; this simply reflects the fact that every such representation gives rise to a represen-

tation of the full loop group, and that the automorphism for s even is inner (in the sense

described above).

For positive integer k, the fusion rules respect this symmetry in the sense that

(
πs(H1) ⊗ πt(H2)

)
f
= πs+t

(
(H1 ⊗H2)f

)
. (5.14)

This seems to be quite a general property of ‘twist’-symmetries such as (5.11) (see for

example [60] for another example of this type for the case of the N = 2 algebras); we

shall therefore assume in the following that the fusion rules also satisfy this property in

the fractional case. In any case, this is consistent with what was found in [27], where

the fusion products were analysed using the analogue of the fusion algorithm described

in section 2.2.

If we take (5.14) seriously it follows immediately that the fusion rules of highest weight

representations will not in general define highest weight representations. Indeed, it is easy
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to check that

π1(H0) = D−
2

3

(5.15)

π−1(H0) = D+
− 2

3

(5.16)

π1(D
+
− 1

3

) = D−
1

3

. (5.17)

Thus we have

(
D+

− 2

3

⊗D+
− 2

3

)
f

=
(
π−1(H0) ⊗ π−1(H0)

)
f

= π−2(H0) , (5.18)

where we have used (5.14) in the last line (as well as the fact that the fusion product

of the vacuum representation with itself is again the vacuum representation). It is now

easy to check that π−2(H0) is not a highest weight representation since its L0 spectrum

is unbounded from below! However, it follows from (5.12) that

π−2(L0) − k = L0 + 2J3
0 . (5.19)

Furthermore, in the vacuum representation the spectrum of |J3
0 | is bounded by L0, i.e.

L0 − |J3
0 | ≥ 0 . (5.20)

Thus we can conclude that we have

π−2(L0) − k ≥ J3
0 . (5.21)

In particular, for each fixed eigenvalue of J3
0 , the L0-spectrum of π−2(H0) is bounded from

below. This property is sufficient to deduce, for example, that for any ψ ∈ H0 and any

χ ∈ π−2(H0), there exists a N(ψ, χ) such that

Vn(ψ)χ = 0 for all n ≥ N(ψ, χ). (5.22)

This in turn is sufficient to conclude that the correlation functions involving states in

π−2(H0) will not give rise to essential singularities.

5.3 Fusion rules

As we have explained in the previous section, it follows from the symmetry (5.14) that

the fusion products of conventional highest weight representations (such as D±
j ) will, in

general, not be highest weight, and will in fact involve representations whose L0 spectrum

is unbounded from below. We shall now attempt to give a detailed description of the full

41



fusion rules. These fusion rules have been determined using the analogue of the fusion

algorithm described in section 2.2. In the following we shall only sketch the results; more

details can be found in [27].

Because of the above remarks, all fusion products involving H0, D
±
∓ 2

3

are already

determined by virtue of the symmetry (5.14). If we start with the Kac-Wakimoto repre-

sentations D±
j the only fusion rule that is not determined by this symmetry is then

(
D+

− 1

3

⊗D−
1

3

)

f
= H0 ⊕E0 , (5.23)

where E0 is the (conformal) highest weight representation for which the highest weight

space is described by (5.10). Thus it follows that the fusion rules do not close on the Kac-

Wakimoto representations (and their images under πs). In order to analyse the complete

fusion rules we therefore have to determine the fusion rules involving E0. Again, because

of (5.14) the only fusion product that has to be calculated involves D−
1

3

, and we find

(
D−

1

3

⊗HE

)

f
= R 1

3

. (5.24)

The structure of the representation R 1

3

is schematically sketched in figure 1.

Figure 1: The representation R 1

3

.

Here we have arranged the circles representing the states according to their charges, with

the horizontal axis corresponding to J3
0 , and the vertical axis to L0. The horizontal array

of circles represent the states of the form (m − 1
3
,−1

3
) with m ∈ ZZ, where the quantum

numbers of a state (m, h) are given as

J3
0 (m, h) = m(m, h) (5.25)

L0(m, h) = h(m, h) . (5.26)
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On the other hand, the diagonal array of circles represents the states (m−1
3
, m−1

3
),m ∈ ZZ.

The two arrays intersect at (−1
3
,−1

3
), and the circle at this intersection corresponds to

the state (−1
3
,−1

3
)1. The arrows indicate the action of J±

0 (for the horizontal line) and

J±
∓1 (for the diagonal line). Finally, the empty circle represents the state (−1

3
,−1

3
)2 whose

position in the charge lattice has been slightly shifted so that it does not lie on top of the

other state with these charges. More specifically, we have the relations

J+
0

(
−1

3
,−1

3

)
=

(
2

3
,−1

3

)
, (5.27)

J−
0

(
2

3
,−1

3

)
= J+

−1

(
−4

3
,−4

3

)
, (5.28)

and

J−
0 J

+
0

(
−1

3
,−1

3

)

1
=

1

3

(
−1

3
,−1

3

)

2
= J+

−1J
−
1

(
−1

3
,−1

3

)

1
. (5.29)

Furthermore we find that

L0

(
−1

3
,−1

3

)

1
= −1

3

(
−1

3
,−1

3

)

1
+
(
−1

3
,−1

3

)

2
(5.30)

L0

(
−1

3
,−1

3

)

2
= −1

3

(
−1

3
,−1

3

)

2
. (5.31)

Thus the representation R− 1

3

is in fact a logarithmic representation. This does not con-

tradict what we have found before since R− 1

3

is not a highest weight representation. In

fact, it was shown in [27] that with these relations one finds that

V0(N )
(
−1

3
,−1

3

)

1
= 0 , (5.32)

where N is the null-vector in (5.5).

The representation R 1

3

is not the only logarithmic representation that occurs in fusion

products of the Kac-Wakimoto representations. In fact, the relevant representations also

contain an extension of the vacuum representation R0

(E0 ⊗ E0)f = R0 ⊕E0 , (5.33)

whose structure can be schematically described by figure 2.

Here, as before, the different states have been arranged according to their J3
0 and L0

charge. The horizontal line represents states with charges (m, 0), m ∈ ZZ, and the arrows

correspond to the action of J±
0 . The state (0, 0) corresponds to ω, and the empty circle

represents the state Ω whose position in the charge lattice has been slightly shifted so that

it does not lie on top of the state ω. The arrows along the diagonal arrays correspond to

the action of J±
±1 and J±

∓1, respectively. More specifically, we have the relations

J−
−1J

+
1 ω = Ω = J+

−1J
−
1 ω , (5.34)
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Figure 2: The representation R0.

J−
0 J

+
0 ω = γΩ = J−

0 J
+
0 ω , (5.35)

and

L0ω =
(
3 +

3

2
γ
)

Ω , (5.36)

where γ 6= 0,−2 is a constant (that was not determined in [27]). Thus the two states ω

and Ω form again the familiar Jordan block!

One can actually determine at least some of the remaining fusion rules explicitly;

under some natural assumption (that is described in [27]) one then finds that the fusion

rules close among the representations H0, D
±
j , E0, R0 and R 1

3

, together with their images

under πs. More specifically, one finds
(
D−

1

3

⊗R0

)

f
= R 1

3

(5.37)
(
D−

1

3

⊗R 1

3

)

f
= 2 π1(E0) ⊕ π1(R0) (5.38)

(E0 ⊗R0)f = 2E0 (5.39)
(
E0 ⊗R 1

3

)
f

= 2R 1

3

(5.40)

(R0 ⊗R0)f = 2R0 (5.41)
(
R0 ⊗R 1

3

)
f

= 2R 1

3

(5.42)
(
R 1

3

⊗R 1

3

)
f

= 2 π1(R0) ⊕ 4 π1(E0) . (5.43)

Together with (5.14) this then determines all fusion products.
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6 Conclusions

In these lectures we have described how logarithmic conformal field theories can be un-

derstood from an algebraic (representation theoretic) point of view. We have explained

how this point of view is related to the description of logarithmic conformal field theory in

terms of amplitudes with logarithmic branch cuts. We have also shown that the algebraic

approach is quite general and that it allows one to describe logarithmic representations

that would be difficult to characterise otherwise. In particular, this is the case for loga-

rithmic representations that are not obtained by the action of the chiral algebra from a

highest weight state.

We have mainly considered the triplet theory at c = −2 which is the best understood

(rational) logarithmic conformal field theory. We have analysed its fusion rules in detail,

and we have described how to construct the corresponding local theory. Most of the

logarithmic conformal field theories that have been studied so far are closely related to

the c = −2 Virasoro model or an extension thereof.

In the last section we have shown that the su(2) model at k = −4/3 is also a log-

arithmic conformal field theory. This result suggests that the same will presumably be

the case for all other WZW models at fractional level. The logarithmic representations of

these theories are presumably not highest weight representations, and their structure is

therefore likely to be subtle. It would be very interesting to study these representations

in more detail, and to get some better understanding of their general structure.

Given that already WZW models at fractional level appear to be logarithmic, it seems

reasonable to speculate that most non-rational theories will actually be logarithmic. If

one wants to obtain some more general understanding of non-rational theories, it will in

particular be necessary to get to grips with logarithmic conformal field theories. It is

hoped that the present notes will prove useful for that purpose.
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Appendix A: The algebra structure of Zhu’s algebra

In this appendix we want to show that the product defined by (3.29) makes A(H0) into

an algebra. In order to exhibit the structure of this algebra it is useful to introduce a

second set of modes by

V (N)
c (ψ) = (−1)N

∮
dw

w

1

(w + 1)

(
w + 1

w

)N
V
(
(w + 1)L0ψ,w

)
. (A.1)

These modes are characterised by the property that

〈φ̄|φ(−1) V (N)
c (ψ) χ〉 = 0 for N > 0, (A.2)

〈φ̄|φ(−1) V (0)
c (ψ) χ〉 = 〈φ̄| (V0(ψ)φ) (−1) χ〉 . (A.3)

It is obvious from (3.25) and (A.1) that

V (1)(ψ) = V (1)
c (ψ) ,

and the analogue of (3.28) is

V (N+1)
c (ψ) = − 1

N + 1
V (N)
c (L−1ψ) − N + hψ

N + 1
V (N)
c (ψ) . (A.4)

The space O(H0) is therefore also generated by the states

O(H0) = span
{
V (1)
c (ψ)χ : ψ, χ ∈ H0

}
.

Let us introduce, following (3.30) and (A.3), the notation

VL(ψ) ≡ V (0)(ψ)

VR(ψ) ≡ V (0)
c (ψ)

N(ψ) = V (1)(ψ) = V (1)
c (ψ) .

We also denote by N(H0) the vector space of operators that are spanned by N(ψ) for

ψ ∈ H0; then O(H0) = N(H0)H0. Finally it follows from the fact that the vacuum Ω is

annihilated by all modes Vn(ψ) with n > −hψ together with V−hψ(ψ)Ω = ψ that

VL(ψ)Ω = VR(ψ)Ω = ψ . (A.5)

The equations (3.30) and (A.3) suggest that the modes VL(ψ) and VR(χ) commute up

to an operator in N(H0). In order to prove this it is sufficient to consider the case where
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ψ and χ are both eigenvectors of L0 with eigenvalues hψ and hχ, respectively. Then we

have

[VL(ψ), VR(χ)] =
∮ ∮

|ζ|>|w|

dζ

ζ
(ζ + 1)hψ

dw

w
(w + 1)hχ−1V (ψ, ζ)V (χ,w)

−
∮ ∮

|w|>|ζ|

dw

w
(w + 1)hχ−1dζ

ζ
(ζ + 1)hψV (χ,w)V (ψ, ζ)

=
∮

0

{∮

w

dζ

ζ
(ζ + 1)hψV (ψ, ζ)V (χ,w)

}
dw

w
(w + 1)hχ−1

=
∑

n

∮

0

{∮

w

dζ

ζ
(ζ + 1)hψV (Vn(ψ)χ,w)(ζ − w)−n−hψ

}

dw

w
(w + 1)hχ−1

=
∑

hχ≥n≥0

n+hψ−1∑

l=0

(−1)l
(

hψ
l + 1 − n

)

∮

0

dw

w(w + 1)

(
w + 1

w

)l+1

(w + 1)hχ−nV (Vn(ψ)χ,w)

∈ N(H0) . (A.6)

Because of (A.4), every element in N(H0) can be written as VR(φ) for a suitable φ, and

(A.6) thus implies that [VL(ψ), N(χ)] ∈ N(H0); hence VL(ψ) defines an endomorphism of

A(H0).

For two endomorphisms, Φ1,Φ2, of H0, which leave O(H0) invariant (so that they

induce endomorphisms of A(H0)), we shall write Φ1 ≈ Φ2 if they agree as endomorphisms

of A(H0), i.e. if (Φ1 − Φ2)H0 ⊂ O(H0). Similarly we write φ ≈ 0 if φ ∈ O(H0).

In the same way in which the action of V (ψ, z) is uniquely characterised by locality

and its action on the vacuum (see [55]), we can now prove the following

Uniqueness Theorem for Zhu modes [50]: Suppose Φ is an endomorphism of H0 that

leaves O(H0) invariant and satisfies

ΦΩ = ψ

[Φ, VR(χ)] ∈ N(H0) for all χ ∈ H0.

Then Φ ≈ VL(ψ).

Proof: This follows from

Φχ = ΦVR(χ)Ω ≈ VR(χ) Φ Ω = VR(χ)ψ = VR(χ)VL(ψ) Ω ≈ VL(ψ)χ ,

where we have used that VL(ψ)Ω = VR(ψ)Ω = ψ.
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It is then an immediate consequence that

VL(VL(ψ)χ) ≈ VL(ψ)VL(χ) , (A.7)

and a particular case of this (using again the fact that every element in N(H0) can be

written as VL(φ) for some suitable φ) is that

VL(N(ψ)χ) ≈ N(ψ)VL(χ) . (A.8)

In particular this implies that the product (3.29) φ ∗L ψ is well-defined for both φ, ψ ∈
A(H0). Furthermore, (A.7) shows that this product is associative, and thus A(H0) has

the structure of an algebra.

We can also define a product by φ ∗R ψ = VR(φ)ψ. Since

φ ∗L ψ = VL(φ)ψ = VL(φ)VR(ψ)Ω ≈ VR(ψ)VL(φ)Ω = VR(ψ)φ = ψ ∗R φ

this defines the reverse ring (or algebra) structure.
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