
Introduction to QCD
lecture 1: Introduction to color, quarks and gluons



Quarks in flavour SU(3)

• Why do Hadrons (baryons and mesons) fit the pattern ? 

The eightfold way (1961)

discovered as predicted in 1964!



Quarks in flavour SU(3)
1964: Gell-Mann and Zweig propose quarks

u

d

s “Explains” the pattern
Fractional charge!

No free quarks to be seen!

mu ≈ 3− 9MeV

md ≈ 1− 5MeV

ms ≈ 75− 170MeV



More quarks

e

u ?
d s

µ
νe νµ

Bjorken and Glashow 
proposed a fourth quark 

to fit the pattern.

GIM mechanism (1970)

1971:       discovery at 
Brookhaven and SLAC

J/Ψ

J/Ψ = (cc̄)c
mc ≈ 1.1− 1.3GeV



More quarks

• 1975-1976 naked charm

• 1975: tau discovered at SLAC

• 1977:            discovered at Fermilab (E288)

• 1980:                naked beauty

• 1995: top quark identified at Tevatron

b

t

Υ =( bb̄)

Λ0
b = (udb)

mb ≈ 4.0− 4.4GeV

mt ≈ 171GeV



The spin-statistics issue
∆++ is a spin 3/2 particle with 3 “identical” up quarks !

St. Pauli’s exclusion 
principle endangered!



Color SU(3)
Greenberg proposes a new degree of freedom: 

Color

u u u There are now 3 
kinds of up quarks

u u
u

∆++

Why 3?



Adler-Bell-Jackiw 
anomaly

Z

γ

γ

Loop diagrams introduce violation of symmetries of the 
Lagrangian (in this case the chiral symmetry)

example: 

The anomaly has to 
cancel when summing 

over fermions.

∑

f

e2
faf =

1
2

(
−1 + Nc(

4
9
− 1

9
)
)

bγµ + aγµγ5

aup = 1
adown = −1

ae = −1

Nc = 3→ anomaly cancelation



pion decay

π0 = (qq̄)

Γ(π0 → γγ) = N2
c (e2

u − e2
d)

2 a2
emm3

π

64π3

1
f2

π

= 7.63eV (
N2

c

3
)

7.84± 0.56eVExperimental value:

Nc = 3→ pion decay ok.



Hadron production

σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= Nc

∑
e2
q = Nc

11
9

q

q̄

You can therefore measure the number 
of colors. Experiment yields Nc ≈ 3.2



DIS introduction

l = (E,!l)

l′ = (E′,!l′)

q = l − l′ = p′ − p

p = (M,!0)

p′ = (Ef , !p′)

ν = E − E′

Q2 = −q2 = −(p− p′)2 = −M2 − p′2 + 2M(M + ν)



DIS introduction

l = (E,!l)

l′ = (E′,!l′)

q = l − l′ = p′ − p

p = (M,!0)

p′ = (Ef , !p′)

In the elastic scattering case

Q2 = −q2 = −(p− p′)2 = −M2 − p′2 + 2M(M + ν) = 2Mν

p′2 = M2 →

xB =
Q2

2Mν
So deviation from elastic scattering

“Bjorken - x”



DIS introduction 

Assuming elastic scattering 
with a point-like proton

(of spin 1/2)

dσ

dQ2
=

4πa2

Q4
e2
q

E

E′

(
cos2(θ/2) +

Q2

2M2
sin2(θ/2)

)

l = (E,!l)

l′ = (E′,!l′)

q = l − l′ = p′ − p

p = (M,!0)

p′ = (Ef , !p′)



DIS introduction 

Assuming elastic scattering 
with a point-like proton

(of spin 1/2)

l = (E,!l)

l′ = (E′,!l′)

q = l − l′ = p′ − p

p = (M,!0)

p′ = (Ef , !p′)

dσ

dQ2dν
=

4πa2

Q4
e2
q

E

E′

(
cos2(θ/2) +

Q2

2M2
sin2(θ/2)

)
δ(ν − Q2

2M
)



DIS introduction 

Assuming elastic scattering 
with a point-like proton

(of spin 1/2)
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q = l − l′ = p′ − p
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=
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DIS introduction 

Assuming elastic scattering 
with a point-like proton 

(of spin 1/2)

l = (E,!l)

l′ = (E′,!l′)

q = l − l′ = p′ − p

p = (M,!0)

p′ = (Ef , !p′)

dσ

dQ2dν
=

4πa2

Q4

E

E′
(
W2(Q2, ν)cos2(θ/2) + 2W1(Q2, ν)sin2(θ/2)

)

W2(Q2, ν) = e2
qδ(ν −

Q2

2M
) W1(Q2, ν) = e2

q
Q2

4M2
δ(ν − Q2

2M
)

Structure functions



DIS introduction 

If you assume elastic 
scattering with a 

constituent carrying a 
fraction of the proton 

momentum
W1(Q2, ν) =

∑

i

∫
dxf(xi)e2

i
Q2

4xiM2
δ(ν − Q2

2Mxi
) =

∑

i

e2
i fi(xB)

1
2M

W2(Q2, ν) =
∑

i

∫
dxf(xi)e2

i δ(ν −
Q2

2Mxi
) =

∑

i

e2
i fi(xB)

xB

ν



DIS introduction 

If you assume elastic 
scattering with a 

constituent carrying a 
fraction of the proton 

momentum

F1(x) = MW1(Q2, ν) =
1
2

∑

i

e2
i fi(x)

F2(x) = νW1(Q2, ν) =
1
2

∑

i

e2
i xfi(x)

Structure functions redefined! 



Bjorken scaling

So, assuming that there are constituents of spin 1/2 and 
that the scattering is elastic on them, the structure 

functions should only depend on Bjorken-x 
(not on     or    independently)  Q2 ν



Callan-Gross relation

Moreover one expects that 

F2(x) = 2xF1(x)
F1(x) = MW1(Q2, ν) =

1
2

∑

i

e2
i fi(x)

F2(x) = νW1(Q2, ν) =
1
2

∑

i

e2
i xfi(x)



DIS SLAC-MIT 
experiment

They actually expected  rapidly falling structure 
functions as predicted by the uniform charge 
distribution assumption (Hofstadter, 1956)



MIT-SLAC experiment
They found (a) a much 
milder behavior of the  

structure function 
related part of the 

cross section



MIT-SLAC experiment

...and (b) that both 
structure functions obey 

Bjorken scaling 
(they only depend on 

Bjorken-x) 

Friedman’s nobel lecture, RevModPhys.63.615



Modern DIS data



DIS with neutrina 
(charges of quarks)

F eP
2 (x) =

∑

i

e2
i xf(x) = x

(
4
9
(u(x) + ū(x)) +

1
9
(d(x) + d̄(x))

)

F eN
2 (x) =

∑

i

e2
i xf(x) = x

(
4
9
(d(x) + d̄(x)) +

1
9
(u(x) + ū(x))

)

F eCa
2 (x) = x

5
18

(
d(x) + d̄(x) + u(x) + ū(x)

)

F
νµCa
2 (x) = x

(
d(x) + d̄(x) + u(x) + ū(x)

) } charge 
measurement



Momentum sum rules
Gluons

18
5

∫ 1

0
dxF eCa

2 (x) =
∫ 1

0
dx(u(x) + d(x) + ū(x) + d̄(x)) ≈ 0.5

The structure functions come from experiment. 
The sum over all quarks is less than one!

There are other particles inside the proton. 
Particles that don’t interact 

electromagnetically or weakly!  



Scaling violations

Bjorken scaling is only approximate - early calculations showed 
that in any interacting field theory gross corrections appear to 

all orders in perturbation theory. 

“however, a mild violation of scaling would be possible in a 
special class of theories that are asymptotically free-

characterized by effective couplings that approach zero as the 
renormalization scale increases indefinitely. But, there was no 

known example of such a theory at that time.”



Summary

• Hadrons are composed of quarks

• Quarks are spin 1/2 particles

• They have a color degree of freedom

• The number of different colors is 3

• There is another particle in the hadrons 
that interacts only strongly


