
Introduction to QCD

FS 10, Series 9

Due date: 05.05.2010, 1 pm

Exercise 1 The plus distributions may be defined as
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where f is some smooth function of z on the integration domain 0 < z < 1. This definition

is only valid when the plus distribution is being integrated over 0 < z < 1. Show that
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Hint: Use a suitable θ-function to remap the integrand from 0 to 1.

Exercise 2 The hadronic tensor W µν can be factorised into a perturbative part Ŵ convoluted

with a nonperturbative part fi(x,Q2) (the parton distribution function):
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The real correction to the process qγ∗ → q′ was given as
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where dΦ2 denotes the 2 → 2 particle phase space measure.

a) Show that in the center of mass frame of the incoming quark q and the virtual photon γ∗

(of virtuality −Q2 ) the momenta may be parameterised as
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where s = (qγ + q)2 shall denote the center of mass energy of the system. Assuming that

q is collinear to the proton (q = ξp) show that

s =
Q2(1 − z)

z

where we define x = Q2/2p.qγ and z = ξ/x.

b) Show that the (remaining) Lorentz invariants then take the following form
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c) Hence show that
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(where we used dΦ2 = d cos θ/16π see Series 1).

d) We are interested in the collinear singularity. Expand around θ = 0 ( to O(θ0)) to isolate

the collinear pole
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e) We see that apart from the collinear singularity there is also a soft singularity associated

with z → 1. Argue that if we had added the virtual correction, which lives at z = 1, this

soft singularity should have canceled. Use the plus description to accomplish this. Further

more argue that the virtual correction could add another term proportional to δ(1 − z).

And that we should thus have arrived at
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where

Pqq(z) =
1 + z2

(1 − z)+
+ Cqqδ(1 − z)

is the q → q Altarelli-Parisi splitting function.

f) Use the DGLAP equation for qNS in Mellin space and the fact that
∫ 1
0 dxqNS(x) =

constant to prove that

γqq(1) =

∫ 1

0
dzPqq(z) = 0.

Derive Cqq = 3/2.


