Introduction to QCD
F'S 10, Series 9

Due date: 05.05.2010, 1 pm

Exercise 1 The plus distributions may be defined as
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where f is some smooth function of z on the integration domain 0 < z < 1. This definition
is only valid when the plus distribution is being integrated over 0 < z < 1. Show that
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Hint: Use a suitable §-function to remap the integrand from 0 to 1.

Exercise 2 The hadronic tensor WH" can be factorised into a perturbative part W convoluted
with a nonperturbative part f;(x, Q?) (the parton distribution function):
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The real correction to the process gy* — ¢’ was given as
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where d®5 denotes the 2 — 2 particle phase space measure.

a) Show that in the center of mass frame of the incoming quark ¢ and the virtual photon +*
(of virtuality —Q? ) the momenta may be parameterised as
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where s = (¢y + q)? shall denote the center of mass energy of the system. Assuming that
q is collinear to the proton (¢ = {p) show that
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where we define z = Q?/2p.q, and z = {/x.

b) Show that the (remaining) Lorentz invariants then take the following form
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2q.¢ = Cj—z(l + cos @).

c) Hence show that
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(where we used d®y = dcos /167 see Series 1).

d) We are interested in the collinear singularity. Expand around 6 = 0 ( to O(6°)) to isolate
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the collinear pole

e) We see that apart from the collinear singularity there is also a soft singularity associated
with z — 1. Argue that if we had added the virtual correction, which lives at z = 1, this
soft singularity should have canceled. Use the plus description to accomplish this. Further
more argue that the virtual correction could add another term proportional to §(1 — z).
And that we should thus have arrived at
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is the ¢ — ¢ Altarelli-Parisi splitting function.
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f) Use the DGLAP equation for ¢V in Mellin space and the fact that fol dxqNS(z) =

constant to prove that
1
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Derive Cyq = 3/2.



