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Exercise 1

a) Consider electron positron annihilation into photons in QED, i.e. e+e− → γγ. At leading

order the Feynman diagrams contributing to this process are
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b) Verify that the QED Ward identity
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is fulfilled. Conclude that QED amplitudes are purely transverse.

Exercise 2

a) Now consider the process qq̄ → gg in QCD. At leading order the following diagrams

contribute
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Show that the above diagrams yield
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b) Confirm that the QCD Ward identity is fulfilled

(p3)µM
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qq̄→gg = pν

4MGhost.

Exercise 3 Consider soft radiative QCD corrections to a quark scattering off an electromag-

netic current.
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a) Show that (in the soft limit) the Matrix element becomes
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Hence prove that Jαa
ij kα = 0 to show that that the current J is conserved.

b) Compute the square of the matrixelement, i.e.
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and show that the Matrix element square factorises into a soft (eikonal) part times the

squared amplitude of the underlying leading order process (|Mµν
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