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1.1. Defining a group

Consider the following minimalistic definition of a group:

A group is a set G together with a map

G×G→ G, (g, h) 7→ gh (1.1)

satisfying the following axioms:

• associativity:
a(bc) = (ab)c for all a, b, c ∈ G; (1.2)

• unit element: there exists an e ∈ G such that

ea = a for all a ∈ G; (1.3)

• inverse: for all a ∈ G there exists an a−1 ∈ G such that

a−1a = e. (1.4)

a) Show, using only the axioms above, that aa−1 = e. Using this show that ae = a and
finally that the unit is unique.

b) Replace the unit axiom (1.3) above with

ae = a for all a ∈ G. (1.5)

Find a set that fulfils the modified axioms (1.2), (1.5), (1.4) and is not a group.

Hint: Think of a subset of 2× 2 matrices.

−→
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1.2. Familiarising with groups

Consider the following sets and establish whether they form a group or not.

a) The set of all non-zero real numbers with ordinary multiplication as the group oper-
ation. What changes if we include also the element zero?

b) The set of all real numbers (including zero) with ordinary addition as the group
operation.

c) The set of permutations Sn acting on the set of n symbols An := {1, 2, . . . , n}. What
is the number of elements, i.e. the order, of Sn?

Consider in particular S3. All its elements can be generated by the iterated products of
two elements σ1 and σ2 satisfying the conditions

σ2
1 = σ2

2 = e, (1.6)

σ1σ2σ1 = σ2σ1σ2. (1.7)

d) Find all the elements of S3, and argue that no further elements are generated.

e) Find a suitable action for σ1, σ2 on the set A3.

f) Find a 3-dimensional representation for these elements.

Hint: Think of A3 as a basis for the 3-dimensional representation space.

g) optional: Find a non-trivial 2-dimensional representation for these elements.

h) optional: Find a non-trivial 1-dimensional representation for these elements.

1.2
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2.1. Maps between groups

For the whole exercise let G and H be groups and g, g1, g2 ∈ G and h, h1, h2 ∈ H.

a) A group homomorphism is a map ϕ : G→ H that respects the group structure:

ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G. (2.1)

Show that ϕ(eG) = eH and ϕ(g−1) = ϕ(g)−1, where eG and eH denote the identity
elements of G and H, respectively.

b) A bijective group homomorphism is called group isomorphism. Consider the set of
automorphisms of a group G defined as

Aut(G) := {ϕ : G→ G;ϕ is a group isomorphism}. (2.2)

Show that Aut(G) together with the composition of maps ◦ forms a group.

c) Show that the direct product G× H defined with multiplication

(g1, h1)(g2, h2) := (g1g2, h1h2) (2.3)

is a group.

d) Let G act on H by a group homomorphism ϕ : G→ Aut(H), in particular ϕ(g1g2) =
ϕ(g1) ◦ ϕ(g2) and ϕ(g)(h1h2) = ϕ(g)(h1)ϕ(g)(h2).

Show that the semi-direct product H oϕ G defined with the multiplication

(h1, g1)(h2, g2) :=
(
h1ϕ(g1)(h2), g1g2

)
(2.4)

is again a group.

2.2. On triangles and hexagons

a) What are the symmetries of an equilateral triangle? This group is commonly denoted
as D3. Write down its multiplication table.

b) Label the vertices of your triangle as 1, 2, 3 and consider the action of the symmetric
group S3 on these vertices. Write down an explicit isomorphism from S3 to D3.

c) Write down the elements of the group D6, the symmetries of a regular hexagon. Give
an injective homomorphism from D3 into D6 and use this to show that its image is
a subgroup of D6 (i.e., a subset of D6 which itself forms a group with the restricted
multiplication map).

d) Give an injective homomorphism from D6 into S6. Stare out the window for a bit and
convince yourself the image is again a subgroup.

Hint: It suffices to give the map for a set of generators and check the generator
relations.

e) Can you give a surjective homomorphism from D6 to D3?

−→
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2.3. Some small problems on permutation groups

Recall the cycle notation for permutations: a cycle (a1, . . . , an) means that a1 is sent to a2,
a2 is sent to a3, etc. In this way, any permutation can be written as a product of disjoint
cycles. 1-Cycles, which correspond to fixed points, are usually left out for convenience
sake. Conventionally, the lowest number occurring in a cycle is written first.

a) Write down the elements of S496 which send the number 20, 146, and 400 among
themselves. Show that this is a subgroup of S496.

b) Recall that Sn is generated by the 2-cycles. Prove that An ⊂ Sn, the subgroup of even
permutations, is generated by the 3-cycles of Sn.

c) Let H be a subgroup of Sn which is not contained in An. Prove that exactly half of
the elements of H are even permutations.

2.2
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3.1. The group SO(3)

Consider the set of proper rotations in three dimensions

SO(3) =
{
R ∈ Aut(R3);RTR = 1, detR = 1

}
. (3.1)

a) Show that SO(3) together with the matrix multiplication forms a group.

b) Show that each element A ∈ SO(3) is a rotation about some axis, i.e. show that for
all A ∈ SO(3) there exists a ~v ∈ R3 such that A~v = ~v.

Hint: When is ker(A− 1) non-trivial?

c) Fix a vector ~v ∈ R3\{0}. The stabiliser subgroup of SO(3) with respect to ~v is defined
as

SO(3)~v := {A ∈ SO(3);A~v = ~v}. (3.2)

For a given A ∈ SO(3) show that

SO(3)A~v = A SO(3)~v A
−1 := {ARA−1;R ∈ SO(3)~v} (3.3)

and furthermore that SO(3)~v ≡ SO(2).

d) Consider a cube centred at the origin. How many rotations are there that map the
cube to itself?

3.2. Euler angles

Any rotation in three dimensions R ∈ SO(3) can be expressed as

R = Rz
φR

y
θR

z
ψ (3.4)

in terms of the three Euler angles 0 ≤ ψ, φ < 2π, 0 ≤ θ ≤ π and the rotation matrices
around the z-axis and the y-axis

Ry
θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , Rz
ψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (3.5)

a) Find the Euler angles for the rotation around the x-axis 0 ≤ α < 2π

Rx
α =

1 0 0
0 cosα − sinα
0 sinα cosα

 . (3.6)

b) Show that it is indeed sufficient to restrict to the angles 0 ≤ θ ≤ π. In other words,
show that a rotation from the domain π < θ < 2π can be expressed through a rotation
in the domain 0 ≤ θ ≤ π.

−→
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3.3. Group representations and the group algebra

Let G be a group and let k be a field (you may take k = C). Let k[G] denote the vector
space over k with basis {eg; g ∈ G}. Define a multiplication on k[G] by

eg · eh = egh. (3.7)

This turns k[G] into an associative algebra with unit ee, called the group algebra of G.

a) Let
ρ : G→ Aut(V) (3.8)

be a representation of G, where V is a vector space over k. Show that ρ induces a
linear map

ρ̃ : k[G]→ End(V) (3.9)

that satisfies

ρ̃(ab) = ρ̃(a)ρ̃(b),

ρ̃(ee) = 1. (3.10)

b) Conversely, suppose we are given a map ρ̃ : k[G]→ End(V) as above. Show that we
can recover a representation ρ : G→ Aut(V) of G from ρ̃.

3.2
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4.1. From curves to Lie algebras

Let G ⊂ Aut(V) be a continuous matrix group and A(t) ⊂ G a differentiable curve
parametrised by t, such that A(0) = 1, where 1 is the identity element of G. Then the
derivative

a :=
d

dt
A(t)

∣∣∣∣
t=0

(4.1)

defines an element of the tangent space g of the identity.

a) Show that the set of all derivatives of such curves defines a real vector space.

Hint: Take two curves A1(t), A2(t) and consider A3(t) = A1(λ1t)A2(λ2t). Show that
A3(t) uniquely defines an element a3 of g, and write it in terms of a1, a2.

b) Define the adjoint action of a group element R ∈ G on the Lie algebra as

Ad(R)(a1) :=
d

dt

(
RA1(t)R

−1)∣∣∣∣
t=0

∈ g, where a1 =
d

dt

(
A1(t)

)∣∣∣∣
t=0

∈ g. (4.2)

Show that Ad(R)(a1) is indeed an element of the Lie algebra for any R ∈ G.

c) Optional: To which space does the object (d/dt)[RA1(t)]|t=0 belong? How about
(d/dt)A1(t)R

−1|t=0? Can you find a bijection from these spaces to the Lie algebra g?

d) Consider now Ad(A2(s))(a1) ⊂ g, where A2(s) ⊂ G is another curve in G such that
A2(0) = 1. This defines a curve on the Lie algebra g, and since derivatives of curves
on a vector space are themselves elements of the vector space, then

d

ds

(
Ad(A2(s))(a1)

)∣∣∣∣
s=0

∈ g. (4.3)

Evaluate this derivative. What happens if we exchange A1 and A2?

Hint: Show that (d/dt)[A(t)−1]|t=0 = −a.

e) Consider now the group G = SO(3). Starting from the properties of the curves
R(t) ⊂ G, construct the corresponding Lie algebra so(3), find an explicit basis Ji
i = 1, 2, 3, and compute the Lie brackets of the basis elements JJi, JjK.

f) Consider the curve R(t) ⊂ SO(3) given by

R(t) =

 cos θ(t) sin θ(t) 0
− sin θ(t) cos θ(t) 0

0 0 1

 , θ(0) = 0. (4.4)

Determine the corresponding Lie algebra element, and expand it on the basis you
found before.

g) Starting again from the notion of curves, construct the Lie algebra corresponding to
the SU(2) group and find a basis for it.

Can you find a relationship between the so(3) and su(2) algebras?

−→
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4.2. Lorentz transformations

The Lorentz transformations are the coordinate transformations that leave the Minkowski
metric tensor η = diag(−1,+1,+1,+1), and correspondingly the distance squared xTηx =
−(x0)2 + (x1)2 + (x2)2 + (x3)2, invariant, i.e.

SO(3, 1) :=
{
A ∈ Aut(R4);ATηA = η

}
. (4.5)

Find its Lie algebra, determine a set of basis generators, interpret them physically, and
find their commutation relations.

4.2
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5.1. The Lie algebra so(4)

a) Determine the generators and their Lie brackets for the Lie algebra so(4). Here so(4)
is the Lie algebra associated to the group SO(4) consisting of real orthogonal 4 × 4
matrices with determinant 1.

Hint: Consider the combination Rij := −̊ıEij + ı̊Eji, where Eij is a matrix with a 1
at position (i, j) and zeros everywhere else.

b) Show that, as a real Lie algebra, so(4) ≡ so(3)⊕ so(3), where the direct sum g1 ⊕ g2
is defined to be the direct sum of g1 and g2 as vector spaces with the requirement
that Jg1, g2K = 0.

Hint: Consider linear combinations of Rij and Rkl with distinct i, j, k, l ∈ {1, 2, 3, 4}.

5.2. BCH formula

Let g be a Lie algebra and A,B ∈ g. The Baker–Campbell–Hausdorff (BCH) formula
states that

exp(A)· exp(B) = exp(A ? B), (5.1)

where A ? B ∈ g equals

A ? B = A+B + 1
2
JA,BK + 1

12

q
A, JA,BK

y
+ 1

12

q
B, JB,AK

y
+ . . . . (5.2)

Prove the BCH formula to this order assuming that A,B are matrices.

Hint: Replace A,B by tA, tB and expand both sides to the appropriate order in t.

−→
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5.3. Universal enveloping algebra

For a general Lie algebra g, the Lie bracket J·, ·K : g⊗ g→ g is merely an abstract binary
operation that a priori has nothing to do with matrices, multiplication or commutators.
In this exercise we will embed g into an associative algebra U(g) such that the Lie bracket
is mapped to the commutator in U(g), i.e. we would like that Ja, bK = a·b − b·a for all
a, b ∈ g ⊂ U(g). To achieve this we need to construct the associative algebra U(g) with
this multiplication rule.

In the former few parts you will derive what is the underlying space U(g), which are its
properties, and whether they are coherent with our wishes. This will allow us to define
U(g) explicitly, and to study it in the latter few parts.

a) Show that the Jacobi identity is satisfied if multiplication in U(g) is associative.

b) As a first attempt we consider the space K⊕g⊕(g⊗g) where K is the field (usually R
or C) over which g is defined. The product A·B := A⊗B is defined by the associative
tensor product ⊗ over g; for example, for any a, b ∈ g and c, d ∈ K the product is
given by a·b = a⊗ b as well as c·a = a·c = ca and c·d = cd. This allows us to multiply
Lie algebra elements as well as numbers, and to implement the Lie bracket as the
commutator.

Why does this not define an associative algebra?

c) Extend K ⊕ g ⊕ (g ⊗ g) until you obtain a space T (g) that can be turned into an
associative algebra with the above multiplication.

Now that we have seen that T (g) has a consistent tensor product, we implement the
Lie bracket relationship on T (g) by declaring the following equivalence relation for any
a, b ∈ g:

a⊗ b− b⊗ a ∼ Ja, bK. (5.3)

d) Show that this equivalence defines a left and right ideal I(g) ⊂ T (g), and describe
its elements.

Define the universal enveloping algebra U(g) of g as the quotient

U(g) := T (g)
/
I(g) = T (g)

/
∼, (5.4)

where the equivalence relation becomes an identity or where elements of the ideal I(g)
are identified with zero.

e) Let {xi} be a basis of g. Write the Lie algebra g and its enveloping algebra U(g) in
terms of generators and generator relations.

f) Show that there is a one-to-one correspondence between representations of a Lie
algebra g and representations of its universal enveloping algebra U(g).

Hint: A representation of an associative algebra A is a map

ρ : A→ End(V) (5.5)

to a vector space End(V) over a field K such that ρ(a·b) = ρ(a)ρ(b) and ρ(1) = id.

g) Optional: Consider

C(m) = κi1i2...imxi1·xi2· . . . ·xim ∈ U(g). (5.6)

What property must the coefficients κ satisfy for C(m) to be a Casimir operator, i.e.
to satisfy JC(m), xjK = 0 for all xj ∈ g?

5.2



Symmetries in Physics Problem Set 6
ETH Zurich, 2020 FS Prof. N. Beisert, Ö. Aksoy, J. Zosso

6.1. Orbit-stabiliser theorem

Given the action of a finite group G on a set X, we define the stabiliser of an element
x ∈ X as the subset of transformations that map x onto itself,

Gx :=
{
g ∈ G; g·x = x

}
. (6.1)

The orbit-stabiliser theorem states that the order |G| of the group G can be calculated
as the product of the order of the stabiliser of x times the cardinality |Xx| of the orbit
Xx = G·x := {g·x; g ∈ G}

|Xx| · |Gx| = |G|, (6.2)

for any x ∈ X.

a) Consider the symmetry group O of the cube. Verify the orbit-stabiliser theorem by
considering the action of O on

i. the set F of faces of a cube;
ii. the set V of vertices of a cube.

b) Prove the orbit-stabiliser theorem in the general case.

Hint: fix an element x ∈ X, then

i. show that the relation g ∼ h if g·x = h·x is an equivalence relation on G;
ii. show that the number of elements of G in each equivalence class is equal and

compute it;
iii. show that the number of equivalence classes into which G is partitioned via ∼ is

equal to the cardinality of Xx.

6.2. Eigenvalues of representations of finite groups

Consider a finite-dimensional representation ρ of a finite group G. Show that the eigen-
values of ρ(g) are roots of unity for any g ∈ G.

6.1
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7.1. Characters of irreducible representations

Given two representations ρA and ρB of a finite group G, we define the inner product of
their characters as

〈χA, χB〉 :=
1

|G|
∑
g∈G

χA(g−1)χB(g). (7.1)

By Schur’s lemma the characters χk of irreducible representations ρk are orthonormal,
〈χk, χj〉 = δkj. The following parts should be addressed using this relationship along with
properties of scalar products.

a) Confirm the orthogonality relation for the irreducible representations of the group S3.

b) Show that for a representation ρA and irreducible representation ρk, the inner product
〈χA, χk〉 gives the multiplicity with which ρk appears in ρA. In particular, confirm that
for the group S3 the three-dimensional representation ρ3 decomposes as ρ3 = ρ2⊕ ρ1.

c) Show that a representation ρA is irreducible if and only if 〈χA, χA〉 = 1.

d) Using these results, show that the tensor product of any irreducible representation
with a one-dimensional representation is again an irreducible representation.

7.2. Irreps and characters of quaternions

Consider the group of elementary quaternions H = {±1,±ı̂,±̂,±k̂}.

a) Find the conjugacy classes of H. What does this tell you about the irreducible repre-
sentations of H and their dimensions?

b) Let Z(H) := {x ∈ H;xy = yx for all y ∈ H} denote the centre of H. Show that
H/Z(H) is isomorphic to Z2 × Z2.

c) Show that representations of H/Z(H) induce representations of H and combine this
with the above to find the four one-dimensional irreducible representations of H.
What is the remaining two-dimensional representation?

d) Write down the character table of H.

7.3. Irreducible representations of abelian groups

Using Schur’s lemma, show that the irreducible representations of a finite abelian group
G are all one-dimensional.

7.1
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8.1. Representations of the dihedral group

Recall that the dihedral group Dn is generated by two elements r and s satisfying the
relations

rn = s2 = e, srks = r−k for all k ∈ Z. (8.1)

a) Argue that a general element of this group can be written as ra or sra with a ∈ Zn.

b) A simple dihedral group is D3 = S3, the symmetry group of an equilateral triangle.
Identify the elements r and s with symmetries of the triangle and verify that the
relations (8.1) are satisfied. Compute the multiplication table of D3.

c) Write the result of the conjugation of {ra, sra} by {rb, srb} as a general element of
the form above using the defining relations.

d) Using the following steps, find the conjugacy classes of Dn for the case of even n = 2`:

i. Consider elements of the form ra. How many conjugacy classes do you find, and
with how many elements?

ii. Consider elements of the form sra. How many conjugacy classes do you find,
and with how many elements?

iii. Check that the conjugacy classes that you found contain all elements of Dn.
iv. Check that you have the right results by verifying the orbit-stabiliser theorem for

the adjoint action of the group by considering a representative of each conjugacy
class.

e) Repeat part d) for the case of odd n = 2`+ 1.

Hint: Some details in steps i and ii are different.

f) Find all the irreducible representations of the dihedral group Dn for the case of even
n = 2` using the following steps:

i. Recall that there are as many irreducible representations as there are conjugacy
classes. Recall also that

|Dn| =
m∑
i=1

(dimVi)
2, (8.2)

where the sum runs over m inequivalent irreducible representations.
Knowing that the irreducible representations of Dn have either dimension 1 or 2,
how many one-dimensional and two-dimensional representations do you expect
to find?

ii. Find all the irreducible representations of Dn. Check that they are indeed in-
equivalent using their characters.
Hint: The two-dimensional representations of r and s are rotations and reflections
in R2, respectively.

g) Repeat part f) for the case of odd n = 2`+ 1.

h) Decompose the tensor products of all irreducible representations.

8.1
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9.1. Three-dimensional Lie algebras

Consider the following three-dimensional complex Lie algebras defined in terms of gener-
ators x, y, z and the commutation relations

i. Jx, yK = 0, Jx, zK = 0, Jy, zK = 0, (abelian algebra)

ii. Jx, yK = z, Jx, zK = 0, Jy, zK = 0, (Heisenberg algebra)

iii. Jx, yK = x, Jx, zK = 0, Jy, zK = 0, (direct product)

iv. Jx, yK = y, Jx, zK = y + z, Jy, zK = 0, (Bianchi type IV)

v. Jx, yK = y, Jx, zK = −z, Jy, zK = x. (sl(2)) (9.1)

Calculate the following for each Lie algebra:

a) Every Lie algebra acts on itself via the adjoint action ad : g × g → g defined as
ad(g)h := Jg, hK. In particular, ρ(g) := ad(g) defines a representation, the adjoint
representation.

Find the adjoint representation in matrix form.

b) Find the Killing form defined as κ(g, h) := tr(ad(g) ad(h)) in the x,y,z-basis.

c) Find the derived algebra g1 := Jg, gK = {[g, h]; g, h ∈ g}, the second derived algebra
g2 := Jg, g1K = {[g, h]; g ∈ g, h ∈ g1} and the derived algebra g1,1 := Jg1, g1K of g1.

d) Which of these algebras is simple, i.e. has no non-trivial ideal?

An ideal is a subalgebra i ⊂ g such that Jg, iK ⊂ i.

9.2. Simple Lie groups and simple Lie algebras

A simple Lie group is a connected non-abelian Lie group with no proper connected normal
subgroups (a subgroup H of a group G is called normal if for all h ∈ H and g ∈ G,
ghg−1 ∈ H). We want to understand what this condition means in terms of the Lie
algebra of the group.

Note: In this exercise, we will always consider compact connected Lie groups, for which
the exponential map is onto, i.e. each g ∈ G can be written as g = eA for some A ∈ g,
and you may assume that the BCH formula converges.

a) A subalgebra is a subspace of an algebra which is closed under multiplication. In the
case of a Lie algebra this means that a subalgebra h of g obeys

h ⊂ g, Jh, hK ⊂ h. (9.2)

Show that the exponential map maps a subalgebra h into a subgroup H of G.

b) An ideal h of g is a subalgebra h ⊂ g with the property that

Jg, hK ⊂ h. (9.3)

A proper ideal of g is an ideal which is neither trivial nor all of g. Show, using the
exponential map, that a Lie group is simple if and only if its Lie algebra contains no
proper ideals.

9.1
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10.1. The Killing form

Consider a Lie algebra g together with its Killing form κ : g× g 7→ C, which is given by
κ(X, Y ) = tr[ad(X) ad(Y )] and satisfies

κ
(
ad(X)Y, Z

)
+ κ
(
Y, ad(X)Z

)
= 0, (10.1)

for any X, Y, Z ∈ g.

a) A Lie algebra g is called semi-simple if the only abelian ideal subalgebra of g is {0}.
Show that if κ is non-degenerate, i.e. ker(κ) := {Y ∈ g;κ(X, Y ) = 0 for all X ∈ g} =
{0}, then g is semi-simple.

Hint: Note that for Y ∈ g and fixed X ∈ g, A ∈ a, where a ⊂ g is an abelian ideal of
g, the map n(Y ) := ad(X) ad(A)Y maps g to a. Then show that n is nilpotent.

b) Show that if κ is non-degenerate then the centre of g is Z(g) = {0}.

c) Suppose a ⊂ g is an ideal subalgebra of g. Show that

a⊥ = {X ∈ g;κ(X, Y ) = 0 for all Y ∈ a} ⊂ g (10.2)

is an ideal subalgebra of g as well.

10.2. Root systems

Consider a semi-simple Lie algebra g, which can be decomposed as

g = h⊕
⊕

α∈∆⊂h∗
gα, (10.3)

where h is a Cartan subalgebra of g, i.e. a maximal abelian subalgebra of g. Recall that
the rank r of g is given by r = dim(h).

a) Knowing that dim(gα) = 1, show that |∆| = dim(g)− r.

b) Show that if α ∈ ∆, then −α ∈ ∆.

Hint: Prove first that if α + β 6= 0 then κ(gα, gβ) = {0}.

c) Consider Eα ∈ gα, Fα ∈ g−α. Show that JEα, FαK = κ(Eα, Fα)Tα, where Tα ∈ h is
defined such that κ(Tα, H) = α(H) for all H ∈ h.

Show that {Tα, Eα, Fα} forms a subalgebra of g isomorphic to sl(2,C).

d) In class you have defined the simple roots αi, i = 1, . . . , r, as the set of positive roots
which cannot be expressed as combinations of other positive roots. Show that if αi
and αj are simple roots, then αi − αj is not a root.

e) The Cartan matrix is an r × r matrix defined as

Ajk :=
2〈αj, αk〉
〈αj, αj〉

= αk(Hj). (10.4)

What are the diagonal elements of the Cartan matrix? Knowing that 〈αi, αj〉 < 0 for
i 6= j, show that AijAji < 4 for i 6= j.

Hint: Use the Cauchy–Schwarz inequality.

f) Using the results above, find all semi-simple Lie algebras with rank r = 2.

10.1
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11.1. Representation of su(3)

Construct explicitly the finite-dimensional irreducible representation ρ : su(3)→ End(V)
that is generated from the highest-weight state |µ〉 satisfying

ρ(L12)|µ〉 = ρ(L13)|µ〉 = ρ(L23)|µ〉 = 0, (11.1)

with the weight given by (Hjk := Ljj − Lkk)

ρ(H12)|µ〉 = 2|µ〉, ρ(H23)|µ〉 = 0. (11.2)

Determine, in particular, the dimension of ρ and the eigenvalues (with multiplicities) of
ρ(H12) and ρ(H23). Proceed as follows:

a) Show that V is spanned by the vectors W |µ〉, where W is any word in ρ(L21) and
ρ(L32).

b) Acting on |µ〉 with ρ(L21) and ρ(L32), construct a basis of V. For any new vector,
compute its eigenvalues under ρ(H12) and ρ(H23), and verify that you can go back
to the vectors previously constructed (and thus, by recursion, to |µ〉) by acting with
ρ(L12) and ρ(L23). If this is not possible the vector must be 0, since by assumption
the representation is irreducible.

11.2. Representation theory of sl(5,C)

Develop the representation theory of the complexification sl(5,C) of the Lie algebra su(5).

a) Identify the Cartan subalgebra h and define a suitable basis for the dual space h∗.
Find the roots of the algebra and describe them in terms of this basis h∗.

b) Identify subalgebras sl(2,C) inside sl(5,C), and deduce the structure of the possible
weights of any finite-dimensional representation of sl(5,C).

c) Choose a linear functional on the dual Cartan subalgebra, and partition the roots into
positive and negative roots. Then identify the possible highest weights of any finite
dimensional representation. Show that these highest weights can be labelled by four
non-negative integers. Describe the defining and conjugate defining representation by
suitable numbers.

11.1
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12.1. Tensor Product Representations

Let ρ1 : g → V1 and ρ2 : g → V2 be two irreducible representations of the Lie algebra g.
We define the tensor product representation ρ : g→ V1 ⊗V2 such that for any X ∈ g we
have

ρ(X) := ρ1(X)⊗ 1 + 1⊗ ρ2(X), (12.1)

where 1 denotes the identity map in both vector spaces V1 and V2.

a) Show that if two states |λ1〉 ∈ V1 and |λ2〉 ∈ V2 have definite weights λ1 and λ2 then
the state |λ1λ2〉 := |λ1〉 ⊗ |λ2〉 ∈ V1 ⊗ V2 has the weight λ1 + λ2.

b) Show that if |µ1〉 ∈ V1 and |µ2〉 ∈ V2 are the highest-weight states of the represen-
tations ρ1 and ρ2, respectively, then so is the state |µ〉 := |µ1〉 ⊗ |µ2〉 of the tensor
product representation ρ.

Hint: Consider the action of the positive root generators.

Consider the defining representation 3 of the Lie algebra su(3). Denote the basis of the
representation space V3 = C3 by the three states |u〉, |d〉 and |s〉 with the corresponding
weights (1, 0), (0,−1) and (−1, 1) in some basis of h∗, and assume that |u〉 is the highest-
weight state.

c) List all the states |ab〉 := |a〉 ⊗ |b〉 in the tensor product representation 3 ⊗ 3. Find
their weights and corresponding multiplicities.

d) Construct the irreducible representation based on the highest-weight state defined in
part b) by acting on it with negative root generators. This representation does not
span the entire space V3 ⊗ V3. Find the states that span the remaining part of the
space, and identify the highest-weight state of the corresponding irrep.

e) Repeat part c) and part d) for the tensor product representation 3⊗3∗ involving the
conjugate defining representation 3∗.
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13.1. Algebra isomorphism

Consider the algebra g(M) defined by

g(M) :=
{
A ∈ End(Cn);ATM = −MA

}
, (13.1)

where M is an invertible n × n matrix. We want to show that g(M) ≡ so(n,C) if M is
symmetric.

a) Prove that g(M) is a Lie algebra.

b) Consider a matrix T = P TMP for some invertible matrices P and M . Show that the
Lie algebras g(M) and g(T ) are isomorphic.

c) Prove that g(M) ≡ so(n,C) for a symmetric M .

d) optional: Show that [M−1MT, A] = 0 for all A ∈ g(M) and argue why one should
choose M to be either symmetric or anti-symmetric.

13.2. Dynkin diagram of so(2r + 1,C)

Consider the algebra g(S) with n = 2r + 1 as defined in problem 13.1, where S is the
invertible symmetric matrix in (r, r, 1) block form

S :=

 0 idr 0
idr 0 0
0 0 1

 . (13.2)

a) Write the elements of g(S) as block matrices adapted to the blocks of S.

b) Let h be the Cartan subalgebra, which is spanned by diagonal matrices of the form

Hi := Li,i − Li+r,i+r, (13.3)

where the Li,j are matrices with 1 in row i and column j and 0 everywhere else.

Find the generators Lα corresponding to the roots α as well as the corresponding
Cartan generators defined by Hα := JLα, L−αK. Check that JHα, LαK 6= 0 for all
roots.

Hint: It may be convenient to introduce the generator H[h] :=
∑r

i=1 hiHi such that
the coefficients hi serve as coordinates on h.

c) A basis for the dual Cartan subalgebra is then given by the simple roots

βi := (Hi −Hi+1)
∗,

βr := (Hr)
∗. (13.4)

Identify the simple-root generators, then determine the Cartan matrix and the corre-
sponding Dynkin diagram.

13.1
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