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1.1. Transition amplitude for the harmonic oscillator

A standard exercise regarding path integrals in quantum mechanics is the computation
of the transition amplitude for a harmonic oscillator. The harmonic oscillator is specified
by the Lagrange function

L(q, q̇) = 1
2
mq̇2 − 1

2
mω2q2, (1.1)

where q and q̇ are the position and velocity variables.

Compute the transition amplitude for the harmonic oscillator

U(qf, qi, t) := 〈qf, tf|qi, ti〉 =

∫
Dq exp

[
ı̊

~

∫ tf

ti

dt L(q, q̇)

]
, (1.2)

where t := tf − ti. Show that it equals

U(qf, qi, t) =

[
mω

2π~̊ı sin(ωt)

]1/2

exp

[̊
ımω

~

1
2
(q2

i + q2
f ) cos(ωt)− qiqf

sin(ωt)

]
. (1.3)

Walkthrough:

a) Split up the path q(t) in n intermediate steps qk, k = 1, . . . , n− 1,

U(qf, qi, t) = lim
n→∞

∫ [n−1∏
j=1

dqj

][ nm

2π~̊ıt

]n/2
exp

[
ı̊

~

n∑
k=1

t

n
Lk

]
, (1.4)

where q0 := qi, qn := qf and Lk = 〈qk|L(q̂, ˆ̇q)|qk−1〉.
Write the Lagrangian expectation value Lk in terms of the qk. Choose a suitable
definition of “ordering” of the operators with

〈qk|ˆ̇q|qk−1〉 =
qk − qk−1

t/n
; (1.5)

make some choice for evaluating V (q̂).

b) Reexpress the exponential in (1.4) as a Gaußian function of the form

exp

[
ı̊

~

n∑
k=1

t

n
Lk

]
= exp

[̊
ınm

~t

(
1
2
~q TM~q + ~BT~q + C

)]
, (1.6)

where ~q = (q1, q2, . . . , qn−1) is an (n−1)-dimensional vector, M is an (n−1)× (n−1)

matrix, ~B is an (n−1)-dimensional vector and C a constant (the latter two depending
on q0 = qi, qn = qf). With this form, you should be able to compute the integral
(rather) easily.

−→
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c) Let Mj denote the minor of M of size j × j with the last n− 1− j rows and columns
eliminated. Show that the determinant of Dj := detMj satisfies the equality

Dj+1 − 2Dj +Dj−1

(t/n)2
= −a2Dj. (1.7)

Determine the constant a, then solve the equation.

Hint: This difference equation is the discretised version of a well-known differential
equation. In order to solve it, you can solve the continuum equations for D(τ), re-
express the solution in discretised time and match the coefficients to some small values
of j. You should find

Dj '
n

ωt
sin(ωt) + (j − n+ 1) cos(ωt) +O(1/n) for j ≈ n→∞. (1.8)

d) Now you are left with the computation of the coefficients of q2
i , q2

f and qiqf in the
exponent. You can compute them by computing the appropriate minors of M and
get the correct result. Enjoy!

1.2
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2.1. Generating functionals

Consider a Lagrangian for scalars with a quartic interaction

L = L0 + Lint, L0 = −1
2
∂µφ ∂

µφ− 1
2
m2φ2, Lint = − 1

24
λφ4. (2.1)

From the lecture you know that the interacting generating functional is then

Z[j] = exp

[̊
ı

∫
dx4 Lint

(
−̊ıδ
δj(x)

)]
Z0[j], (2.2)

expressed in terms of the free generating functional

Z0[j] =

∫
Dφ exp

[̊
ı

∫
dx4

(
L0 + j(x)φ(x)

)]
. (2.3)

a) Show that

Z0[j] = Z0[0] exp

[
ı̊

2

∫
dx4 dy4 j(x)GF(x, y)j(y)

]
, (2.4)

where GF(x, y) is exactly the Feynman propagator (and not just any Green function).

b) Compute the vacuum contributions to Z[j] to order λ2,

Z[0]

Z0[0]
=

1

Z0[0]
exp

[̊
ı

∫
dx4 Lint

(
−̊ıδ
δj(x)

)]
Z0[j]

∣∣∣∣
j=0

= 1 + λ

∫
dx4C1GF(x, x)2

+ λ2

∫
dx4 dy4

[
C2,1GF(x, x)2GF(y, y)2

+ C2,2GF(x, x)GF(y, y)GF(x, y)2 + C2,3GF(x, y)4
]

+O(λ3), (2.5)

being particularly careful in the computation of the combinatorial factors C1, C2,1,
C2,2, C2,3. These factors can be computed either from the functional derivative ex-
pression or as symmetry factors of the related diagrams.

Describe graphically each term and identify connected and disconnected terms.

c) Show that the functional

W [j] := −̊ı log

[
Z[j]

Z0[0]

]
(2.6)

at j = 0 generates only the connected contributions to the vacuum amplitude.

−→
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2.2. Propagator of a free Klein–Gordon field

In this problem we will derive the Feynman propagator of a free scalar field using the path
integral formalism. To that end, we will frequently need some generic Gaußian integrals.

a) Compute the Gaußian integrals∫
dxn exp

(
−1

2
xTMx

)
and

∫
dxn xjxk exp

(
−1

2
xTMx

)
, (2.7)

where x is an n-dimensional vector and M is a symmetric n× n matrix.

Hint: For the first integral, diagonalise M by a change of variables. Express the
prefactor of the second integral using a derivative w.r.t. a suitable element of M .

To compute the relevant path integral

〈0|T[φ(x1)φ(x2)]|0〉 = lim
T→∞(1−̊ıε)

∫
Dφφ(x1)φ(x2) exp

(̊
ı
∫ +T

−T dx4 L
)∫

Dφ exp
(̊
ı
∫ +T

−T dx4 L
)

=

∫
dk4

(2π)4

−̊ı e−̊ık(x1−x2)

k2 +m2 − ı̊ε
. (2.8)

we discretise spacetime by considering a four-dimensional lattice with N lattice points
per side of length L. In the continuum limit, the lattice spacing L/N goes to zero, and
the lattice size L goes to infinity. We perform a discrete mode expansion of the free scalar
field

φ(x) =
1

L4

∑
n

e−̊ıknx φ(kn), (2.9)

where kµn = 2πnµ/L is the discretised momentum, with −N/2 ≤ nµ ≤ N/2 an integer.
The individual Fourier coefficients φ(kn) are complex but the field φ(x) is real, so that
φ(kn)∗ = φ(−kn). However, we can treat the real and imaginary part φr(k), φi(k) of
φ(k) as independent variables if we restrict ourselves to modes with k0

n > 0. Finally, the
integrals are replaced by (the range ‘n,+’ indicates the restriction to modes with k0

n > 0)∫
Dφ→

∫ ∏
n,+

(
dφr(kn) dφi(kn)

)
,

∫
dk4

(2π)4
→ 1

L4

∑
n

. (2.10)

b) Find the discretised equivalent to the action of the Klein–Gordon field

S =

∫
dx4

(
−1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ(x)2

)
. (2.11)

Hint: Use reality of φ(x) to express the result quadratically in φr(kn) and φi(kn).

c) Making use of the results obtained in part a), compute the discrete equivalent of∫
Dφ eı̊S . (2.12)

d) Now compute the discretised version of (2.8) by inserting the mode expansion for
φ(x1)φ(x2). Make use of the symmetry of the integrand (even or odd in φ) to maintain
only non-vanishing terms. Can you relate your expressions to what you found in
part a)? Finally, take the continuum limit and recover the Feynman propagator.

2.2
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3.1. Classical and quantum field configurations

Consider the action for φ4-theory

S[φ] =

∫
dxD

[
−1

2
∂µφ ∂

µφ− 1
2
m2φ2 − 1

4!
λφ4

]
, (3.1)

and its generating functional Z[j] in the path integral

Z[j] =

∫
Dφ exp ı̊

[
S[φ] +

∫
dxD φ(x)j(x)

]
. (3.2)

Z[j] may be approximated via the method of stationary phase. Namely, if φC[j] is the
field configuration where the functional derivative of the exponent’s argument vanishes,

δS

δφ
[φC[j]] :=

δS[φ]

δφ

∣∣∣∣
φ=φC[j]

= −j, (3.3)

the path integral is approximated by evaluating the exponent at this point (up to an
irrelevant factor independent of j)

Z[j] ' exp ı̊

[
S[φC[j]] +

∫
dxD φC[j](x) j(x)

]
. (3.4)

This implies for the connected functional

W [j] = −̊ı logZ[j] ' S[φC[j]] +

∫
dxD φC[j](x) j(x) =: T [j], (3.5)

where the last equality defines T [j].

In the following two tasks use algebraic equations to obtain your answers, then give a
graphical representation of results.

a) Compute the classical field configuration φC[j] that solves the classical equation of
motion (3.3), in position space, using perturbation theory up to and including order
λ2.

b) Compute the two-point correlation function that stems from ı̊T [j] by taking functional
derivatives. What can be stated about higher-order perturbative corrections to this
result?

−→
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The quantum effective action G[φ] is defined as the Legendre transform of the connected
functional W [j]:

φ =
δW

δj
[jQ[φ]], G[φ] = W [jQ[φ]]−

∫
dxD jQ[φ](x)φ(x). (3.6)

c) The generating functional constructed using the quantum effective action then reads

ZG[j] :=

∫
Dφ exp ı̊

[
G[φ] +

∫
dxD φ(x)j(x)

]
. (3.7)

In the spirit of evaluating this path integral with the method of stationary phase, in
ZG[j]’s “classical limit” the only field configuration that contributes is the solution
φQ of the quantum equation of motion

δG

δφ
[φQ[j]] = −j. (3.8)

Prove that the quantum field configuration φQ is given by

φQ[j] =
δW [j]

δj
= 〈φ〉j. (3.9)

d) Compute φQ[j] in position space up to and including order λ using functional manip-
ulations. After having drawn the diagrams that correspond to the terms you found,
extend your answer to order λ2 using graphical methods.

e) Recursively invert the functional φQ[j] to obtain the functional jQ[φ] at order λ2. In
other words, solve the definition of the functional jQ[φ] in (3.6) at order λ2.

f) Use the result for jQ[φ] to reconstruct the quantum effective action G[φ], as an ex-
pansion in λ at order λ2, from its functional derivative (3.8)

δG[φ]

δφ
= −jQ[φ]. (3.10)

3.2
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4.1. BCH formula

The Baker–Campbell–Hausdorff (BCH) formula states that

exp(A) exp(B) = exp(A+B + A ? B), (4.1)

where A ? B is an element of the Lie algebra generated by A and B given by

A ? B = 1
2
JA,BK + 1

12

q
A, JA,BK

y
+ 1

12

q
B, JB,AK

y
+ . . . . (4.2)

Prove the BCH formula to this order assuming that A and B are matrices.

Hint: Replace the exponents X by εX and expand both sides to cubic order in ε.

4.2. Simple Lie groups and simple Lie algebras

A simple Lie group is a connected non-abelian Lie group with no proper connected normal
subgroups (a subgroup H of a group G is called normal if ghg−1 ∈ H for all h ∈ H, g ∈ G;
a subgroup of a group G is called proper if it is neither trivial nor the whole of G). We
want to understand what this condition means in terms of the Lie algebra g of the group.

In this exercise, we will only consider compact connected Lie groups, for which the expo-
nential map is onto, i.e. each g ∈ G can be written as g = eA for some A ∈ g.

a) A subalgebra is a subspace of an algebra which is closed under multiplication. In the
case of a Lie algebra this means that a subalgebra h of g obeys

h ⊂ g, Jh, hK ⊂ h. (4.3)

Show that the exponential map maps a subalgebra h into a subgroup H of G.

Hint: recall the Baker–Campbell–Hausdorff formula discussed in Problem 4.1.

b) An ideal h of g is a subalgebra h ⊂ g with the property that

Jg, hK ⊂ h. (4.4)

A proper subalgebra of g is a subalgebra which is neither trivial nor all of g.

Show, using the exponential map, that a Lie group is simple if and only if its Lie
algebra contains no proper ideals.

Hint: it is sufficient to work with infinitesimal elements of the group, i.e. exp(εA) =
1 + εA+O(ε2).

−→

4.1



4.3. Tensor product representations

Representations of a Lie algebra g can be combined to give bigger representations via
direct sums and tensor products

R1⊕2(a) =

(
R1(a) 0

0 R2(a)

)
, R1⊗2(a) = R1(a)⊗ id2 + id1⊗R2(a). (4.5)

Here R1, R2 are representations of g on the spaces V1,V2 and a ∈ g.

a) Verify that the tensor product of two representations is again a representation.

b) Consider the tensor product R⊗2 of two identical representations R. Show that it can
be decomposed as the direct sum R⊗2 = R+ ⊕ R− of representations R± acting on
the symmetric and anti-symmetric subspaces V± ⊂ V⊗ V

R± := P±R⊗2, P± := 1
2
(id±P ), (4.6)

where P± are projectors onto the subspaces V± and P is the permutation on V⊗ V
acting as P (v ⊗ w) = w ⊗ v for any two vectors v, w ∈ V.

Hint: It is useful to show that P±R⊗2 = R⊗2P±.

4.4. Dual and complex conjugate representations

The dual of a representation R of a Lie algebra g on the vector space V is defined as the
representation R∗ on the dual vector space V∗ by R∗(a) = −R(a)T for all a ∈ g.

a) Verify that R∗ is a representation.

b) For a unitary representation R of a real Lie algebra, show that R∗ is the complex
conjugate representation R̄.

c) Show that the tensor product R⊗R∗ contains the trivial representation.

Hint: Consider the representation acting on the state vi⊗ v∗i , where vi is a basis of V
and v∗i is the dual basis of V∗ with v∗i (v

k) = δki .

4.5. Killing form and Casimir invariant

The Killing bilinear form for a Lie algebra g is defined as

K(a, b) := Tr
(
Rad(a)Rad(b)

)
for a, b ∈ g. (4.7)

It can be expanded in a basis Ta of g as the matrix kab := K(Ta, Tb). For semi-simple g
this matrix is invertible and its inverse shall be denoted by kab. Define the representation
R of the quadratic Casimir invariant C2 = K−1 as

R(C2) := kabR(Ta)R(Tb). (4.8)

a) For generic a, b, c ∈ g show that

K(a, b) = K(b, a), K(Jc, aK, b) +K(a, Jc, bK) = 0. (4.9)

Express these relationships in terms of kab and fabc := fab
dkdc.

b) Show that R(C2) is invariant, i.e. [R(a), R(C2)] = 0 for all a ∈ g.

c) Argue that R(C2) = CR
2 idR for an irreducible representation R.

4.2
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5.1. Completeness relation and Casimirs for su(N)

The special unitary algebra su(N) is defined as the commutator algebra on the space of
anti-hermitian traceless matrices. We can use an imaginary basis T def

a , a = 1, . . . N2 − 1,
so that T def

a is hermitian (T def
a )† = T def

a . The Killing metric kab is

tr[T def
a T def

b ] = Bdefkab. (5.1)

a) Let X be a generic N ×N complex matrix. Prove the completeness relation

kab tr[T def
a X]T def

b = Bdef
(
X −N−1 tr[X] id

)
. (5.2)

Hint: consider the space of N × N complex matrices as an N2-dimensional vector
space over C and find a suitable basis by extending the basis of su(N).

b) Knowing the previous identity (5.2), prove the completeness relation

kabT def
a XT def

b = Bdef
(
tr[X] id−N−1X

)
. (5.3)

c) Consider the symmetric structure constants dab
c as defined by

{T def
a , T def

b } = dab
cT def
c + q kab id . (5.4)

By choosing the coefficient q appropriately, show that dab
c is traceless in the first two

indices,
kabdab

c = 0. (5.5)

d) Show that the quadratic and cubic Casimir invariants for the defining representation,
kabT def

a T def
b = Cdef

2 id and dabcT def
a T def

b T def
c = Cdef

3 id, are given by

Cdef
2 =

N2 − 1

N
Bdef, Cdef

3 =
(N2 − 4)(N2 − 1)

N2
(Bdef)2. (5.6)

5.2. Chromodynamics

The chromodynamics Lagrangian is given by

L = ψ̄(γµDµ −m)ψ − 1

2g2
YM

tr(FµνF
µν), (5.7)

where Fµν is the field strength tensor of a SU(3) gauge field Aµ and ψ is 3-vector of Dirac
fields transforming in the defining representation of SU(3).

a) Write down the equations of motion for the fields.

b) Show that the fermionic current (Jµ)αβ = ı̊ψ̄βγ
µψα is covariantly conserved

[Dµ, J
µ] = 0. (5.8)

c) Expand the terms in the Lagrangian in terms of the gauge field Aµ = gT def
a Aaµ and

interpret pictorially the individual terms.

d) Can you write down a Lagrangian for a scalar field that is invariant under SU(3)?

−→
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5.3. Wilson lines

Consider a group-valued smooth function U(y, x) called comparator which allows to re-
late the gauge phase of fields at different points in spacetime. The comparator satisfies
U(x, x) = 1, as well as U(y, x)−1 = U(x, y). Under a gauge transformation V (x) it
transforms as

U ′(y, x) = V (y)U(y, x)V −1(x). (5.9)

Expanding the comparator for a short distance in direction nµ yields

U(x+ εn, x) = 1 + ı̊εnµAµ(x) + 1
2
ε2
[̊
ınµnν∂νAµ(x)− (nµAµ(x))2]+O(ε3). (5.10)

a) Using the comparator, we can construct a quantity W (x) which connects a spacetime
point x to itself along a small quadrangle spanned by the vectors εm and εn

W (x) = U(x, x+ εn)U(x+ εn, x+ εn+ εm)

· U(x+ εn+ εm, x+ εm)U(x+ εm, x). (5.11)

Show that this quantity is gauge covariant at x. Expand W (x) to second order in ε
and compare to the field strength Fµν = −̊ı[Dµ, Dν ].

Hint: You may restrict to the abelian case to get started.

The comparator is the infinitesimal version of an object called the Wilson line. Let us
first consider the abelian case. Then the Wilson line for a path γ is defined by

U [γ] = exp

[̊
ı

∫
γ

A

]
. (5.12)

Here A(x) = dxµAµ(x) is the gauge field one-form. If the path γ is closed, U [γ] is called
a Wilson loop.

b) Using Stokes’ theorem, rewrite an abelian Wilson loop U [γ] in terms of the field
strength F = 1

2
dxµ ∧ dxν Fµν . Conclude that the abelian Wilson loop is gauge

invariant. Show that the Wilson loop U [γ] reduces to W (x) at leading non-trivial
order for a small quadrangular path γ as described in part a).

c) Consider a fixed parametrised path γ : τ 7→ yµ(τ), and denote by γt,s the sub-path
on the interval τ ∈ [s, t].

Show that U [γt,s] satisfies the differential equations (ẏµ := dyµ/dτ)

∂tU [γt,s]− ı̊ẏµ(t)Aµ(y(t))U [γt,s] = ∂sU [γt,s] + ı̊ẏµ(s)U [γt,s]Aµ(y(s)) = 0. (5.13)

Hint: Parametrise the integral of the Wilson line as∫
γt,s

A =

∫ t

s

dτ ẏµ(τ)Aµ(y(τ)). (5.14)

Consider now a non-abelian gauge field for which the Wilson line is given by

U [γt,s] = P

{
exp

[̊
ı

∫ t

s

dτ ẏµ(τ)Aµ(y(τ))

]}
. (5.15)

Here P denotes path ordering which means that the terms in the expansion of the expo-
nential are ordered in such a way that higher values of τ stand to the left.

d) Show that the non-abelian Wilson line satisfies the same differential equations as in
the abelian case paying close attention to the particular ordering in (5.13).

e) Show that the differential equation (5.13) is gauge covariant. Note that U [γt,s] trans-
forms analogously to (5.9): U ′[γt,s] = V (y(t))U [γt,s]V (y(s))−1.

5.2



Quantum Field Theory II Problem Set 6
ETH Zurich, FS17 K. Ferreira, S. Lionetti, S. Trifinopoulos, Prof. N. Beisert

21. 03. 2017

6.1. Gauge fixing in the path integral

a) Consider the action for pure electrodynamics

SED =

∫
dxD

[
−1

4
FµνF

µν
]
. (6.1)

Perform the gauge fixing via the Faddeev–Popov method, using the non-linear gauge
condition

G[A,Ω] = ∂µA
µ + 1

2
ζAµA

µ −Ω. (6.2)

Invert the kinetic operators that appear in the action to find the propagators for the
photon field and for the ghost field.

Is the ghost field decoupled in this gauge? Show that in the limit ζ → 0 the modified
Lorenz gauge with gauge-fixing parameter ξ is restored.

b) Consider the action for pure Yang–Mills theory

SYM =

∫
dxD

[
−1

4
kabF

a
µνF

b µν
]
. (6.3)

Perform the gauge fixing via the Faddeev–Popov method using the axial gauge con-
dition along a fixed four-vector nµ

G[A,Ω]a = nµAaµ −Ωa. (6.4)

Invert the kinetic operators that appear in the action to find the propagators for the
ghost field and for the gluon field.

Under which condition do ghosts decouple from gluon fields in this gauge? How can
this be exploited in practice?

−→
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6.2. Construction of BRST transformations

Consider the Yang–Mills Lagrangian with fermions

LYM = −1
4
(F a

µν)
2 + ψ̄(γµDµ −m)ψ. (6.5)

One possibility to construct BRST transformations for this theory is to proceed as follows:
Start from the infinitesimal change of fields under a gauge transformation parametrised
by αa(x),

δAaµ(x) = (Dµ)abα
b(x), δψi(x) = ı̊gαa(x)(Ta)

i
jψ

j(x), (6.6)

where (Dµ)ab is the covariant derivative in the adjoint representation

(Dµ)ab = δab∂µ − gfbcaAcµ. (6.7)

Then promote the parameter αa(x) to a set of dynamical anti-commuting fields Ca(x)
and a constant anti-commuting variational parameter δε

αa(x) = δεCa(x). (6.8)

This defines the BRST transformation Q for matter and gauge fields via

δφ ≡ δεQφ, (6.9)

where φ is a generic field.

a) By requiring that the BRST transformation for a matter field is nilpotent, Q2ψi = 0,
determine the BRST variation QCa of ghost fields.

b) Check explicitly that, using the same rule for the transformation of Ca, applying the
Q operator two times on a gauge field Aaµ or a ghost field Ca gives zero.

Because the BRST transformation acts exactly as a gauge transformation on matter
fields, the Yang–Mills Lagrangian is obviously BRST-invariant. Moreover, since Q has
been constructed in such a way that Q2 = 0, any extra term

LBRST = QKBRST, (6.10)

will make the total Lagrangian L = LYM + LBRST BRST-invariant.

c) Show that the choice

KBRST = kabC̄
a(1

2
ξBb − ∂µAbµ), (6.11)

together with
QC̄a = Ba, QBa = 0, (6.12)

still preserves trivially Q2 = 0 and gives the gauge-fixing Lagrangian for modified
Lorenz gauges with gauge-fixing parameter ξ, the ghost kinetic term and ghost inter-
actions.

6.2
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7.1. Passarino–Veltman reduction

We will study a method to reduce one-loop tensor integrals to linear combinations of
scalar integrals. The integrals are defined in D dimensions with Wick-rotated momenta.
Specifically, we define the integrals as

A0(m2) :=

∫
dkD

(2π)D
1

k2 +m2
, (7.1)

B0,µ,µν :=

∫
dkD

(2π)D
(1, kµ, kµkν)

[k2 +m2
1][(k − p)2 +m2

2]
. (7.2)

For simplicity, we shall suppress the arguments (p;m2
1,m

2
2) of the functions B.

The goal is to reduce the integrals Bµ, Bµν to a linear combination of integrals A0, B0 with
suitable coefficient functions. The ansatz is to decompose the tensor integrals according
to their Lorentz structure; the allowed structures for the two tensor integrals are

Bµ = pµB1, (7.3)

Bµν = pµpνB21 + ηµνB22, (7.4)

where B1, B21, B22 are linear combinations of A0 and B0 which are to be determined.

a) Express B1 in (7.3) as a linear combination of A0(m2
1), A0(m2

2) and B0.

Hint: Write Bµ as the integral of (7.2), contract both sides of (7.3) with pµ and then
rewrite the numerator of the integrand as a linear combination of the factors in the
denominator of the integrand as well as m2

1, m2
2 and p2. You should find

B1 = − 1

2p2
A0(m2

1) +
1

2p2
A0(m2

2) +
p2 +m2

2 −m2
1

2p2
B0. (7.5)

b) For the tensor integral Bµν , we can obtain a 2 × 2 linear system of equations by
contracting both sides of (7.4) with ηµν and pµpν , respectively.

Repeat the steps for the manipulation of the numerator of the integrands. Show that
the linear system expressing B21, B22 in terms of the scalar integrals A0, B0 is

p2B21 +DB22 = X1A0(m2
2) +X2B0, (7.6)

p2B21 +B22 = Y1A0(m2
2) + Y2B1, (7.7)

where Xi, Yi are some functions to be determined. Finally, solve for B21, B22.

Hint: You may recycle the results of part a); furthermore, recall the integral∫
dkD

(2π)D
kµ

k2 +m2
= 0. (7.8)

−→
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7.2. Feynman’s parametrisation of loop integrals

Prove the following identity, which is used to combine the denominators of integrands in
loop integrals

1

Da1
1 . . . Dan

n

=
Γ(
∑n

j=1 aj)

Γ(a1) . . .Γ(an)

∫ 1

0

dx1 . . .

∫ 1

0

dxn
δ(1−

∑n
j=1 xj)x

a1−1
1 . . . xan−1

n

[x1D1 + . . .+ xnDn]a1+...+an
. (7.9)

Hint: carry out the proof by induction, starting from n = 2; to prove the n = 2 case,
you will need the following definition for the Gaußian hypergeometric function 2F1 (for
Re(c) > Re(b), Re(a) > 0, |z| < 1)

2F1(a, b; c; z) :=
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

dx xb−1(1− x)c−b−1(1− zx)−a

=
Γ(c)

Γ(a) Γ(b)

∞∑
k=0

Γ(a+ k) Γ(b+ k)

Γ(c+ k)

zk

k!
. (7.10)

It makes sense to show that

2F1(a+ b, a; a+ b; z) = (1− z)−a. (7.11)

7.3. Renormalisation of cubic scalar theory in 6D

Consider a scalar theory in D = 6 with cubic interaction

L = −1
2
∂µφ0 ∂

µφ0 − 1
2
m2

0φ
2
0 − 1

6
λ0φ

3
0. (7.12)

In this problem we want to derive the one-loop renormalisation of the bare couplings in
dimensional regularisation at D = 6− 2ε.

a) Show, by power counting, that the theory is renormalisable in D = 6.

b) Rewrite the Lagrangian in terms of the renormalised field φ = κ−1φ0. Then adjust
the interaction term by a suitable power of the scale parameter µ for dimensional
regularisation such that the coupling constant λ0 becomes dimensionless.

c) Derive the Feynman rules for the theory.

d) Compute the one-loop self energy contribution to the effective action. Express the
final result as a function of ε, and extract the divergent contribution at ε→ 0.

Hint: Perform the integral over the Feynman parameter at the very end.

Next we introduce the renormalised massm and coupling λ, and express the bare constants
κ,m0, λ0 as functions of them

κ = 1 + c1λ
2 +O(λ4), m2

0 = m2
(
1 + c2λ

2 +O(λ4)
)
, λ0 = λ+ c3λ

3 +O(λ5). (7.13)

e) Write the two-point contributions to the effective action (tree level plus one loop) as a
function of the renormalised mass and coupling. Determine the one-loop contributions
to (7.13) such that the divergences due to the self energy cancel.

f) Compute the one-loop correction to the vertex. Identify the divergent part, and
determine the remaining coefficient in (7.13) to make the effective action finite.

7.2
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8.1. Ward–Takahashi identity

The Ward–Takahashi identities in QED are the extension of the conservation of the
Noether current for the U(1) global symmetry

Nµ(x) = ı̊qψ̄(x)γµψ(x) (8.1)

to correlation functions. The Ward–Takahashi identity reads

∂µz
〈
Nµ(z)ψ(x1)ψ̄(y1) . . . ψ(xn)ψ̄(yn)Aν1(z1) . . . Aνp(zp)

〉
(8.2)

= −q
〈
ψ(x1)ψ̄(y1) . . . ψ(xn)ψ̄(yn)Aν1(z1) . . . Aνp(zp)

〉 n∑
i=1

(
δ4(z − yi)− δ4(z − xi)

)
.

Define the full propagator for the electron in momentum space as

−̊ıG(k)δ4(k − p) :=

∫
dy4 dz4

〈
ψ(y)ψ̄(z)

〉
eı̊p·z−ik·y . (8.3)

and the electromagnetic vertex function V µ(k, l) as∫
dx4 dy4 dz4 e−̊ı(p·x+k·y−l·z) 〈Nµ(x)ψ(y)ψ̄(z)

〉
=: ı̊qG(k)V µ(k, l)G(l)δ4(p+ k − l). (8.4)

a) Show that the Ward–Takahashi identity implies that

pµV
µ(k, k + p) = ı̊G−1(p+ k)− ı̊G−1(k). (8.5)

b) Define the counterterms Z1 and Z2 as

V µ(k, k) = (Z1)−1γµ, (8.6)

and
−̊ıZ2 = lim

k2→−m2
(̊ıγµkµ +m)G(k). (8.7)

Note that V µ(k, k) is the complete vertex function when the momentum of the external
photon goes to zero, and Z2 is defined for on-shell electrons with momentum kµ. Show
that, with these definitions,

Z1 = Z2. (8.8)

−→
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8.2. Axial anomaly in two dimensions

Consider a massless Dirac spinor field ψ in two spacetime dimensions coupled to a fixed
background gauge field A

L = ψ̄γµ(∂µ − ı̊Aµ)ψ. (8.9)

The Dirac matrices satisfy the Clifford algebra {γµ, γν} = 2ηµν . The matrix γ3 is the
two-dimensional analog of γ5 in four dimensions

γ3 = −1
2
εµνγ

µγν = −γ0γ1, (8.10)

where εµν is the totally anti-symmetric tensor in two dimensions with ε01 := +1. It
satisfies

γ3γµ = −γµγ3 = ηµνενργ
ρ. (8.11)

a) Choose the spinor field and gamma-matrices as follows:

ψ =

(
ψ+

ψ−

)
, γ0 =

(
0 +1
−1 0

)
, γ1 =

(
0 −1
−1 0

)
, γ3 =

(
+1 0
0 −1

)
. (8.12)

Write the Lagrangian (8.9) in terms of these components, and derive the equations
of motion. What do you observe?

b) Use the equations of motion to show that the vector and axial currents

Nµ
V = −̊ıψ̄γµψ, Nµ

A = −̊ıψ̄γ3γµψ. (8.13)

are separately conserved.

c) optional: Compute the correlator of two currents at A = 0

〈
Nµ

V(p)N ν
V(q)

〉
A=0

= Nµ
V(p) Nν

V(q) = (2π)2δ2(p+ q)
ı̊

π

(
ηµν − pµpν

p2

)
. (8.14)

Hint: Use dimensional regularisation and assume massless tadpole integrals to vanish.

d) Express the vector current expectation value 〈Nµ
V(p)〉 at one loop and to linear order

in the vector field A in terms of the current correlator (8.14). In other words, compute
the graph

Nµ
V(p) A . (8.15)

Check that the current is conserved at this order.

e) Show that the axial current is no longer conserved at the quantum level. To this end
compute the expectation value 〈Nµ

A(p)〉 at one loop and at linear order in A

Nµ
A(p) A (8.16)

using your results of part d) together with (8.11) to relate the currents.

f) Can you obtain the anomaly from a computation in position space? What do you
find for 〈∂·NV(x)〉 and 〈∂·NA(x)〉? Can you make it agree with parts d) and e)?

Hint: No regularisation is required here.

8.2
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9.1. The Higgs mechanism in the standard model

In this exercise we review the Higgs mechanism in the standard model. Let us consider
first of all the mass terms of matter fields. Take the first lepton generation, i.e. the
electron and its neutrino. The electroweak gauge group is SU(2)I × U(1)Y (weak isospin
and hypercharge). Left- and right-handed fermions appear in different structures in the
Lagrangian. The left-handed leptons form a doublet with respect to SU(2)I

LL :=

(
νL

eL

)
, L′L = eı̊θ

aIa LL, (9.1)

where the generators of SU(2)I in the fundamental representation may be chosen to be
Ia = 1

2
σa (σa are the Pauli matrices). The right-handed electron is a singlet under SU(2)I .

e′R = eR. (9.2)

Neutrinos are taken to be massless: the corresponding right-handed field is thus not
needed.

Under U(1)Y the fields transform as

L′L = e−̊ıθ/2 LL, e′R = e−̊ıθ eR. (9.3)

a) Why is a mass term of the form

Lmass := −me(ēLeR + h.c.), (9.4)

not allowed?

b) In order to assign a mass to our fields we introduce a new scalar field H. This field
couples to the electron and neutrino as

LYukawa := −y(L̄LHeR + h.c.), (9.5)

where y is the coupling constant. How should H change with respect to a gauge
transformation?

c) Show that it is always possible to find a gauge transformation U that sets the first
component of H to zero and makes the second one real,

UH = U

(
H+

H0

)
=

(
0
Hr

)
. (9.6)

The gauge that brings H in this form is called unitary gauge.

−→
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d) Consider a gauge-invariant, renormalisable potential term for the scalar field

Lpot = µ2(H†H)− 1
2
λ(H†H)2. (9.7)

Find the minima of this potential and show that for µ2 > 0 they correspond to field
configuration(s) H 6= 0.

e) Assume µ2 > 0 and redefine

Hr =
1√
2

(v + η), (9.8)

to make excitations of H with respect to the ground state more explicit. η is thus
the new physical Higgs boson field. Write down (9.5) in terms of the Higgs field and
the vacuum expectation value v. Note that the fermions acquire a mass term, and
express the fermion mass in terms of y and v. What is the coupling of the Higgs
boson to the fermions in terms of me and v?

The standard model Lagrangian density also contains a kinetic term for the Higgs doublet

Lkin := −(DµH)†(DµH). (9.9)

The covariant derivative acting on the Higgs doublet involves the gauge fields for the
SU(2)I and U(1)Y symmetry W a

µ and Bµ, respectively

Dµ = ∂µ − ı̊gIaW a
µ − ı̊g′Y Bµ. (9.10)

In the following you should try to find the masses and the couplings to the Higgs boson
of the physical standard model fields.

f) Diagonalise the quadratic term by introducing the physical fields

W+
µ = (W−

µ )† =
1√
2

(W 1
µ − ı̊W 2

µ), Z0
µ =

gW 3
µ − g′Bµ√
g2 + g′2

, Aµ =
gBµ + g′W 3

µ√
g2 + g′2

. (9.11)

Read off the masses and couplings of the theory in terms of g, g′, v, λ and µ by
comparing the resulting expression for Lkin to

(DµH)†(DµH) = 1
2
(∂µη)2

+ 1
2
m2
ZZ

0
µZ

0,µ + 1
2
ρZηZ

0
µZ

0,µ + 1
4
λZη

2Z0
µZ

0,µ (9.12)

+m2
WW

+
µ W

−,µ + ρWηW
+
µ W

−,µ + 1
2
λWη

2W+
µ W

−,µ.

g) The original doublet H included four degrees of freedom. Which symmetry was bro-
ken? Where are the degrees of freedom hidden after spontaneous symmetry breaking?
Why did the photon field Aµ not acquire a mass term? Why does it couple to the
fermion vector currents, but not to the axial currents?

9.2
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10.1. The QED running coupling at one loop

Consider the Lagrangian of quantum electrodynamics,

L = ψ̄0(γµD
µ
0 −m0)ψ0 − 1

4
(F µν

0 )2, (10.1)

where the covariant derivative is given by

Dµ
0 = ∂µ − ı̊q0A

µ
0 . (10.2)

The gauge may be fixed in a covariant way by adding the term

Lgf = − 1

2ξ0

(∂µA
µ
0)2. (10.3)

This theory may be renormalised via a multiplicative redefinition of each field and pa-
rameter appearing in the Lagrangian,

ψ0 = Z
1/2
ψ ψ, A0 = Z

1/2
A A, m0 =

Zm
Zψ

m, q0 =
Zq

Z
1/2
A Zψ

q, ξ0 =
ZA
Zξ

ξ. (10.4)

a) Determine which one-particle irreducible correlation functions are superficially diver-
gent in the UV and thus need to be renormalised.

The Ward–Takahashi identity for the connected generating functional can be obtained
from the one for the partition function Z, by expressing expectation values as functional
derivatives and substituting Z = exp(̊ıW ). With sources

Lsrc = ψ̄ρ+ ρ̄ψ − J ·A, (10.5)

it reads

− 1

ξ0

∂2
x∂

µ
x

ı̊δW

δJµ(x)
+ ı̊q0

(
ρ̄(x)

1

ı̊

δW

δρ̄(x)
− 1

ı̊

δW

δρ(x)
ρ(x)

)
− ı̊∂µxJµ(x) = 0. (10.6)

b) Generate an identity for the photon two-point function by taking a functional deriva-
tive of equation (10.6) with respect to Jν(y) and setting sources to zero. Use it to show
that the gauge-fixing term does not need renormalisation, i.e. that it is consistent to
set Zξ = 1 to all orders.

c) Compute the one-loop correction to the photon propagator. Use dimensional regu-
larisation in D = 4 − 2ε to handle UV-divergences, and let µ0 be the regularisation
scale that is introduced by this procedure.

Hint: While it is necessary to carry out the integral over the loop momentum, evalu-
ating the last integral over Feynman parameters in a closed form is not required.

−→
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d) Determine the renormalisation constant ZA by imposing the condition that the prop-
agator for a photon of momentum p equals its tree-level value for a euclidean point
p2 = µ2. This renormalisation prescription is known as momentum subtraction. Note
that, within such scheme, the renormalisation scale µ that is introduced is distinct
from the regularisation scale µ0.

e) Find the anomalous dimension of the photon field at one loop

γA :=
∂ logZ

1/2
A

∂ log µ
, (10.7)

in the high energy limit µ2 � m2.

From this point onwards, it is convenient to use Feynman gauge (ξ = 1) to make calcu-
lations less cumbersome.

f) Compute the one-loop correction to the electron propagator. Determine the renor-
malisation constants Zψ and Zm by imposing the condition that the propagator for
an electron of momentum p equals its tree-level value for a euclidean point p2 = µ2.

g) Write down a Ward identity for the photon-electron-positron three-point function by
taking two consecutive functional derivatives of equation (10.6) with respect to ρ(y)
and ρ̄(z) and setting sources to zero. Use it to show that Zψ and Zq have the same
divergent part to all orders.

h) Compute the one-loop correction to the QED vertex with on-shell fermions. Take the
limit of massless electrons to make this part of the calculation easier. Determine the
renormalisation constant Zq by imposing the condition that the vertex for a photon
momentum p equals its tree-level value for a euclidean point p2 = µ2.

i) Show that, consistently with the Ward identity,

∂ logZψ
∂ log µ

=
∂ logZq
∂ log µ

. (10.8)

j) Using the fact that the bare coupling cannot depend on the renormalisation scale,
compute the beta-function of QED

β(µ) :=
∂ log q

∂ log µ
. (10.9)

Solve this differential equation in the limit of high energies µ2 � m2 to find the QED
running coupling α(µ) and plot the corresponding function. Assuming α(m) ' 1/137
with m ' 0.5 MeV the electron mass, compute the value of α(µEW) where µEW '
MW 'MZ ' 100 GeV is the electroweak scale.

k) Does the fermion mass also depend on the renormalisation scale in this scheme?

10.2
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11.1. The Coleman–Weinberg Potential

The Coleman–Weinberg model represents quantum electrodynamics of a scalar field in
four dimensions. The Lagrangian is

L = −1
4
F µνFµν − (Dµφ)∗Dµφ+ µ2φ∗φ− 1

4
λ(φ∗φ)2, (11.1)

where φ(x) is a complex scalar field and Dµ = ∂µ − ı̊qAµ is the covariant derivative.

a) Assume that µ2 > 0, so that the U(1) symmetry of the Lagrangian is spontaneously
broken by means of the Higgs mechanism. Define the complex field φ in such a way,
that one of its two degrees of freedom is gauged away by a proper gauge transformation
and expand the other degree of freedom around its saddle point. Finally by expanding
the Lagrangian itself, show that the field Aµ acquires a mass.

b) Consider a generic action S[φ] of a scalar field φ. Show that the one-loop effective
action takes the form

G[φ] = S[φ] +
ı̊

2
log Det

[
−̊ı δ

2S

δφ2

]
+ . . . . (11.2)

In order to compute the underlying partition function Z, we employ the so-called
background field method and write the quantum scalar field φ̂(x) as a classical back-
ground field φ(x) plus quantum fluctuations η(x)

φ̂(x) = φ(x) + η(x). (11.3)

Hint: Use the argument φ of the effective action G[φ] as the background field, expand
the exponent of Z[j] to quadratic order in η and choose j and φ in accordance with
the saddle point condition

δS

δφ
+ j = 0. (11.4)

c) Let us return to the Lagrangian (11.1). Compute the one-loop correction to the
effective potential

Veff(φ) = −G[φ], (11.5)

where φ is a constant background field. Eliminate the arising divergences by adjusted
minimal subtraction (MS-bar) at the renormalisation scale M .

Hint: After performing the gauge transformation of part a), expand the remaining
scalar degree of freedom according to (11.3). Then use (11.2) to compute the one-loop
effective action due to the scalar and vector degrees of freedom for which the formula
holds equivalently. Note, that only terms quadratic in the fluctuating fields Aµ and
η contribute to the functional determinant of (11.2).

d) In the result of part b), take the limit µ2 → 0. The result should be an effective
potential that is scale-invariant up to logarithms of M . For λ very small, of order
q4, show that V (φ) has a symmetry-breaking minimum at a value of φ for which no
logarithm is large and so the perturbation theory analysis is still valid. Thus the
µ2 = 0 theory, for this choice of coupling constants, still has spontaneously broken
symmetry, due to the influence of first-order quantum corrections.

−→
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e) The beta-functions for the running couplings q and λ and the gamma-function of φ
are defined by the equations

M
∂λ̄

∂M
= βλ(λ̄, q̄), M

∂q̄

∂M
= βq(λ̄, q̄), M

∂φ̄

∂M
= −γφ(λ̄, q̄)φ̄. (11.6)

Explicit calculation yields the following one-loop results

βq =
q3

48π2
, βλ =

15λ2 − 36λq2 + 72q4

32π2
, γφ = − 2q2

16π2
. (11.7)

Construct the RG-improved effective potential for the µ2 = 0 model and discuss
qualitatively whether the spontaneous symmetry breaking still occurs.

Finally, compute the mass of the scalar particle m as a function of q2, λ and M and
determine the ratio m/mA to leading order in q2, for λ� q2.

Hint: The RG-improved effective potential should be such that when expanded in
terms of the coupling constants around the energy M , it will recover the result in
part d).

11.2
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