Niklas Beisert – 2019 HS

Copyright

© 2019 Niklas Beisert

This document as well as its parts is protected by copyright. This work is licensed under the Creative Commons "Attribution-ShareAlike 4.0 International" License (CC BY-SA 4.0).

To view a copy of this license, visit: https://creativecommons.org/licenses/by-sa/4.0

The current version of this work can be found at: http://people.phys.ethz.ch/~nbeisert/ClimateBreak/ Figure sources linked; Warming Stripes: Ed Hawkins, G.S. Völker

And now for something completely different:

Goals

- reinforce awareness
- basic understanding of mechanisms
- encourage discussions in everyday context
- meet other people interested in topic
- ETH Zürich / academia has a significant climate impact; need to understand own actions in order to adjust
- expertise for potential future in other institutions, business, education, industry

Potential Topics

- micro-presentations:
 - physics of global heating
 - contributing sectors
 - reduction paths, implementations
 - reduction options, comparison
 - measuring footprint
 - mechanisms in society
 - pitfalls
- discussions / your contributions
- what can we do? in our immediate environment?
- issues of current interest
- ask questions / find answers
- up to you ...; please let me know!

Current Opportunities

- explore interdisciplinary courses/events on this topic
- Global Week of Climate Action: 20-27 September 2019
- can show support and voice own demands at marches:
 - Zurich Fri 27 Sep
 - Bern Sat 28 Sep

(encourage society to act on scientific results)

 study programmes of political parties in view of reaching goals of Paris agreement (= lowest common denominator)

Your suggestions? questions? remarks?

Earth as Greenhouse

Energy Balance

Earth surface temperature $T_{\rm E}$ determined by radiation balance. Leading order effect:

Resulting equilibrium surface temperature of bare earth:

$$T_{\rm E} \simeq -18^{\circ}{\rm C}$$

Energy Balance Including Atmosphere

Include (one layer of) atmosphere (gas, clouds, aerosols, ...)

Effect of atmosphere:

- reflect, absorb, transmit
- white: high transmission
- IR: low transmission

Resulting equilibrium earth surface temperature:

$$T_{\rm E} \simeq +14^{\circ}{\rm C}$$

Atmosphere and Temperature

More accurately: many layers of atmosphere. Then:

- Temperature gradient in atmosphere.
- Blackbody radiation $-18^{\circ}C$ effectively from some altitude.
- Higher surface temperature (increases with effective BB altitude).

Asymptotic temperature depends on:

- atmospheric composition (water vapor, CO2, methane, ...),
- albedo (ice, water, stone, desert, plants, clouds, ...).

Parameters of atmosphere and surface can change. Currently:

 $T_{\rm E} \approx +14.9^{\circ}{\rm C}$

Equilibrium/Dynamics:

- temperature surplus will be radiated out to space,
- decay constant \sim month(s),
- heat transport into ground and ocean slow (oceans lagging).

Climate Models

Much more elaborate and accurate models:

- surface resolution of surface (water, desert, plants, ...)
- spacial resolution of atmosphere (clouds, aerosols, gases)
- temporal evolution, dynamics
- greenhouse gas absorption/emission (water/permafrost/plants)
- air/water cycles (horizontal/vertical mixing)
- non-linear, statistical, Monte-Carlo

• ...

 ${\sf Post/predict\ climate\ well}.$

Current Issues

Current Issues

Germany: Klimapaket

- starting in 2021
- equalised by Pendlerpauschale (more than)
- bailout of bankrupt air carrier

Switzerland: Demos regarding climate change

- 27 September: Klimastreik Zürich
- 28 September: Nationale Klimademo Bern

Global Heating

Surface Temperature Anomaly

Observe mean surface temperature increase:

CO2 Concentration

consistent with dominant cause of surface temperature trend. $_{\rm Climate\ Break,\ HS19,\ Niklas\ Beisert}$

Historic Data

Has such an increase happened before?

Data available for 2000 years:

• lake and ocean sediments, ice cores, stalagmites, tree-rings

Paleo-Climatology

- CO2 from antarctic ice cores; temp from ocean sediment cores
- CO2 concentration remained below $300 \cdot 10^{-6}$ (now > $400 \cdot 10^{-6}$)
- temperatures gauged to glacial/inter-glacial periods of ${\it \Delta T}pprox 4^\circ$
- current rate of warming 10-20 times faster than ice age recovery

Climate Break, HS19, Niklas Beisert

Week 3 - References

Announcement, References

Switch Thursday \rightarrow Monday:

- more time before/after lectures;
- continue this Thursday, next Monday.

References, Data:

- NASA Goddard Institute for Space Studies temperature anomaly: http://data.giss.nasa.gov/gistemp/graphs/
- NOAA Mauna Loa Observatory, Keeling Curve: https://scripps.ucsd.edu/programs/keelingcurve/
- data collections: https://www.2degreesinstitute.org/ https://climate.nasa.gov/
- IPCC Reports, 1.5° special report; summary chapters: https://www.ipcc.ch/reports/
- find references yourselves . . .
- read fine-print: What do the data actually describe (in detail)?

Invoking Change

Science case settled:

- \sim 1960: first measurements
- \sim 1970: first computer models
- \sim 1980: solid predictions
- 1988: politics, IPCC;
- 1992: UNFCCC; 1997: Kyoto Protocol; 2015: Paris Agreement

Question: How to make life more sustainable?

- Rely on individuals changing?
- Rely on industry to become sustainable?
- Rely on politics to change rules, implement taxation, subsidies?

Questions to the Audience

Two questions to you:

- Suppose emissions remain level or continue at current rate: How do you think you will be affected by global heating here? What might be a significant event of progressing climate crisis?
- What do you plan to do during the next year to counteract? Name the action that you think will be most effective.

Emissions

Greenhouse Gas Types

What types of greenhouse gases are emitted?

- CO2 is dominant contributor to increase of greenhouse effect
- other gases converted to CO2 equivalent (100 year average); source of confusion: period of activity, only CO2/all gases, C/CO2

Greenhouse Gas Emissions

17

What causes greenhouse gas emissions into atmosphere?

Sizable differences for:

- industrialised / developing
- urban / rural
- particular countries (coal)

Fate of CO2:

- absorbed by ground, oceans
- \sim $^{1}\!/_{2}$ increases atm. concentration

Emissions by Country

Who causes greenhouse gas emissions?

Note: + high indirect emission by industrialised nations (consumption)

Climate Crisis

Implications

Effects to be expected at higher average surface temperatures:

IPCC reports, 1.5° special report (Oct 2018)

- heat waves, droughts
- greater weather variability, extremes, intense rainfall
- sea level rise (slow): ice melt, density of water
- uninhabitable regions (flooding, deserts)
- threshold effects: sudden, irreversible processes (permafrost CO2)
- biodiversity, species extinction, supply chain
- ..., see IPCC reports
- unforeseen effects

Geographical distribution of heating:

- map: compared to 0.88° average
- higher over land, cities (factor 1–3)
- oceans absorb heat (delays)

L-OTI(° C) Anomaly vs 1951-1980

Climate Break, HS19, Niklas Beisert

0.88

Prospects

Take for granted:

- emissions raise temperature; near future, years: linear dependency medium future, decade(s): non-linear effects (simulations, unforeseen effects)
- increased temperature reduces inhabitable area
- finiteness of fossil resources (will hardly enjoy full exploitation of coal)
- sustainable technology available (to some extent, not fully competitive)

Uncertain:

- tipping points (non-linear, unidirectional; e.g. permafrost melting)
- technological advances (CO2 capture, power to gas, fusion?)
- global society (acceptance, response, willingness to change)

Risk Assessment

No determinism – no certainty. **Risk analysis:**

- How likely?
- How intense?
- How severe?

Risks related to global heating severe.

Helps to think basic: Take for granted?

- food from (super)market
- potable water from tap
- electricity from outlet
- peace

Effects related to heating (will/did/do) become reality:

- We can tune intensity. We can tune course.
- Can we afford to delay action?

Reduction

Paris Agreement

Paris Agreement (December 2015):

- keep surface temperature increase significantly below 2° (global average temperature compared to pre-industrial levels),
- pursue efforts to limit increase to below 1.5°,
- facilitate lower greenhouse gas emissions and climate resilience,
- adjust finance flows towards climate neutrality.

International agreement, ratified by almost all UNFCCC nations.

Status and projections:

- currently: +1°,
- remaining: +0.5-1.0° (magnitude will affect intensity),
- present rate: +0.2° per decade (accelerating),
- estimates without policy adjustments: $+3-5^{\circ}$ by 2100.

Reduction Scenarios

Different scenarios analysed in IPCC SR1.5:

Climate Break, HS19, Niklas Beisert

Reduction Scenarios (cont.)

Towards Climate Neutrality

Reduction possibilities:

- nutrition (meat, dairy)
- traffic (individual, flights, commerce)
- buildings (concrete, heating/cooling)
- electric energy (coal)
- consumption (short-lived, unnecessary)
- CO2 capture (reforestation, solar to liquid, to be developed)
- for useful ideas, see e.g. "Project Drawdown"

Most importantly: all needed (AND not OR) / everywhere Furthermore:

- Transition (convince, legislate, enact) needs time; initiate now.
- Need margin to compensate for delays in individual sectors.
- Changes towards sustainable future are useful in their own right!

Can we afford to delay action?

Numbers

Relevant Numbers

Useful to know some estimate figures:

remaining CO2 budget: 300–1000 Gt (Paris Agreement goals) current rate of emissions: 40 Gt/yr global population: 7.5 G (unintuitively large)

per capita budget: $50-150\,\mathrm{t}$ (until CO2 capture available)

Estimates depend on precise definition and risk level!

No sharp cut-off; global average matters; excess affects intensity.

Society

Timeframe for Changes

- 2° goal:
 - reduction of GHG emissions to 50% by 2030-35
 - net-zero emissions by 2050-60

Reduction technologically feasible but ambitious (within timeframe):

- electricity: wind, water, ...
- buildings: heating, cooling, materials, ...
- food, land-use: towards vegetarian, vegan diet; preserve forests
- industry: packaging, methods, ...
- transport: alternative fuels, public transport, local products

Most importantly: 5 R's

Refuse, Reduce, Reuse (repair), Recycle, Rot

Changes are: • feasible, • often beneficial in other regards, • not happening, • not at necessary rate.

Society, Psychology

Climate action (dominantly?) slowed by society:

- loss of convenience (highly developed countries, 80/20 rule)
- afraid to move backward, fall behind (vs. supercharged)
- inertia, fabric of society (imitate surroundings)
- different risk behaviour for gain/loss situations (low/high)
- cognitive dissonance
- individual, short-term gains / socialised long-term losses
- capitalism, perpetual growth economy
- deception, campaigns (\sim tobacco industry)

Changes

Facts:

- perpetual growth clashes with sustainability on a finite planet;
- climate crisis will introduce changes to all aspects of life & society;
- effects will be fundamental in our lifetime.

Progress:

- avoid sudden, forced change; achieve change adiabatically, requires sufficient time;
- accept partial solutions (start somewhere);
- be open-minded about way of life, society.

Current Issues

Friday, 29 November

- 12:00: Klimastreik Bern
- 16:00: Klimastreik Zürich

ETH Zürich

ETH Zürich Process

ETH Zürich found following distribution of its CO2 emissions:

>50% business travel $=17\,{
m kT/yr}$

93% from flights (85% from inter/transcontinental)

School board asks departments to define reduction goals (2017). Discussion revealed some conflicts of interest, open questions:

- Evaluation criteria: conference talks & organisation, careers.
- Reduction compared to what?

Department/school decide soft measures (2018):

- Take trains where possible; use video-conferencing.
- Reduction of travel emissions: 11% by 2025 (per capita).
- School monitors business travel, will improve buildings, catering.
 2019 federal administration target: 50% reduction by 2030.
 How ambitious are goals (even if achieved) towards Paris agreement?
 Nonetheless: start process, awareness, declaration of goal important.

Current Activities

Some current news, activities, links:

- ETH Agenda 2030, ETH Zürich Air Travel Project
- ETH sustainability, eth-sustainability-student-mailing-list@sympa.ethz.ch
- "Forderungen der AG Studierende des Klimastreiks Zürich an die Hochschulen der Region"; "Antwort der ETH Zürich auf die Forderungen [...]"; Interview Prof. Reto Knutti: "Die ETH nimmt die Forderungen der Studierenden ernst"
- Petition: "Mehr pflanzliche Mahlzeiten in den Mensen der ETH Zürich" (peoplepower.ch, currently: $\sim 900/1000$ signatures)
- Talk by Prof. Renate Schubert on Flight Taxation Tue, 10 Dec: 18:00 HG D7.1
- Forum on the ETH Zurich Air Travel Project Mon, 20 Jan 2020, 16.30, HG (registration needed)

Deniers

Responses to Deniers

Web resources to address doubts, scepticism, denial, misinformation:

- skepticalscience.com
- Scientists for Future Infomaterial (in German)

Perhaps even more relevant:

- Large part of population not in denial, opposition but want to go along relatively unperturbed.
- There are many pressing global issues. Are there? Are they unrelated?
- Discuss, inform, show opportunities, express concerns, ...

Save the date:

Physics Colloquium, 11 March 2020

COP25

COP25 Chile, Madrid 2019

First World Climate Conference: February 1979, Geneva

- led to establishment of World Climate (Research) Programme;
- led to creation of Intergovernmental Panel on Climate Change;
- Tagesschau (in German)

United Nations Framework Convention on Climate Change 25th Conference of the Parties (UN Climate Change Conference)

Opening Remarks on Climate Emergency: 11 December 2019

- 09:43 16:22: Johan Rockström
 Director of the Postdam Institute of Climate Impact Research
- 24:05 29:39: Jennifer Morgan Executive Director of Greenpeace International
- 30:10 41:47: Greta Thunberg, herself
- ... sleepless nights, compromise declaration.

The End

The End

Where did we get?

- awareness
- learned/refreshed some basic facts, insights
- thoughts on mechanisms in society
- forum for discussions

The End? The Beginning? Up to you:

- live and promote sustainable way of life
- seek discussions in your communities; display support
- scientists: oppose misinformation, misrepresentation, ...; inform
- not (only) rely on summary information; read (some) original references!
- do not expect (swift) progress ...
- how can you be useful, effective? connect the dots . . .

Thanks for your attention!