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Scanning gate measurements on a quantum wire
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Abstract

We have performed measurements on a semiconductor quantum wire in which we induce a local potential perturbation
with the metallic tip of a scanning force microscope. Measurement of the sample resistance as a function of tip position
results in an electrical map of the wire in real space. We 0nd the 0ngerprint of potential 1uctuations in the wire which appear
as local resistance 1uctuations in the images. In a local transconductance measurement we observe small oscillations on the
scale of the Fermi-wavelength of electrons which may arise from interference of electron waves. ? 2002 Elsevier Science
B.V. All rights reserved.
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Electronic transport in mesoscopic semiconductor
structures at low temperatures is non-local and phase
coherent [1]. In a conventional transport experiment,
in which the resistance or conductance of a sample
is typically measured as a function of gate voltage or
magnetic 0eld, the measured conductance is given by
the transmission probabilities between the leads con-
necting the system to the measurement circuit [2]. In
general, it is not possible to reconstruct the scatter-
ing potential within the mesoscopic system from the
knowledge of the transmission matrix. However, ad-
ditional information about the quantum states within
the device can be obtained from measurements which
apply a local perturbation to the system [3–7]. While
in Ref. [3] the local potential perturbation was 0xed
and the two-dimensional electron gas in a parabolic
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quantum well could be displaced, in Refs. [4–7] the
local electrostatic potential induced by the tip of a
scanning force microscope was utilized. In this paper,
we adopt this approach for the investigation of the
transport properties of a quantum wire.
The sample is based on a GaAs=AlGaAs het-

erostructure in which the heterointerface is buried
34 nm below the surface. A Hall-bar geometry, a
part of which can be seen in Fig. 1, was patterned
using photolithography. At the temperature T =1:7 K
the bulk electron density measured in this system
is nS = 4:3 × 1011 cm−2, corresponding to a Fermi
wavelength of 38 nm. The mobility at T = 1:7 K
is � = 106 cm2=V s corresponding to a mean free
path of l2De = 10:8 �m and a di<usion constant of
D= 1:52 m2=s. The quantum wire has been patterned
by AFM-lithography [8] directly onto the Hall-bar
structure (see Fig. 1). The white lines on the Hall bar
are the AFM-written oxide lines which deplete the
2DEG below them and thereby form a long quantum
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Fig. 1. SFM-image of the Hall-bar with the oxide lines de0ning
the quantum wire.

wire 1anked by two separately contacted regions
of the 2DEG which we used as in-plane gates. The
wire length is L = 40 �m and its lithographic width
is W = 400 nm. The lateral depletion length is typi-
cally 15–20 nm such that the number of modes in the
channel can be estimated to be N = 20. This number
can be con0rmed by Shubnikov de Haas-measurements
which count the number of modes which become
successively depopulated as the magnetic 0eld is
increased.
The sample was mounted in the sample holder of

a low-temperature scanning force microscope (SFM)
[9]. This microscope utilizes piezoelectric quartz
tuning forks with a metallic tip attached to one prong
as the force sensor. Operation characteristics at low
temperatures and sensor calibration have been re-
ported in Refs. [10,11]. The microscope was cooled to
T =1:7 K in the He gas 1ow of a variable temperature
insert. The resistance of the wire was measured at an
AC current of 20 nA in a 4-probe con0guration. The
measurement frequency was 421 Hz and a lock-in
time constant of 10 ms was used in order to obtain
a reasonably large output bandwidth. The tungsten
tip of the SFM was kept grounded while it was os-
cillating with an amplitude of about 1 nm normal to
the surface at the tuning fork resonance frequency of
about 32 kHz. Resistance images of 256× 256 points
were taken at scan speeds of 500 nm=s.
Fig. 2 shows the resistance image of a 5 × 5 �m2

area obtained with a voltage of +200 mV on one of
the in-plane gates. The fact that the wire can be elec-

Fig. 2. Resistance image of the quantum wire measured at
T = 1:7 K.
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Fig. 3. Cross sections through the resistance image shown in
Fig. 2.

tronically imaged indicates that when the tip is above
the wire the resistance is enhanced. This resistance
contrast is due to the fact that tungsten and the het-
erostructure have a work function di<erence of the or-
der of 100 mV which causes the tip to induce a local
repulsive electrostatic potential in the 2DEG which is
scanned along when the tip moves. The stripe of en-
hanced resistance is not visible in the topmost quar-
ter of the image. From the simultaneously measured
topography we know that the wire ends there.
Cross-sections through this image as indicated by

three horizontal lines in Fig. 2 are shown in Fig. 3.
As the tip moves across the wire the resistance goes
from its base value of 3 kJ through a pronounced
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peak of 9:4 kJ. We estimate the number of modes
which become locally depleted, KN , with a simple
model which regards the repulsive tip potential as the
cause of an additional resistance KRwhich adds to the
background wire resistance R0. In the simplest case
KR can be modeled by a short piece of wire with
transmission T =1 which is not mode-matched to the
rest of the wire. In this case KR = h=(2e2)(1=(N0 −
KN )−1=N0) with N0=20 being the number of modes
in the wire in the absence of the tip. This gives a
substantial depletion of KN = 18 Modes if the tip is
centered above the wire.
From the width of the two lower peaks of about

400 nm which is close to the geometrical width of
the wire we estimate that the tip induced potential
perturbation cannot be much wider than that.
A very striking feature of the image in Fig. 2 is the

variation of the resistance along the wire direction. In
a perfect wire with no potential 1uctuations and per-
fectly smooth boundaries no such variation would be
expected irrespective of the exact geometrical shape
of the tip-induced potential. From a comparison of the
resistance variations with the surface topography we
0nd no correlation between the two that could explain
the former as the result of a varying tip-2DEG separa-
tion. We therefore conclude that the variations of the
resistance along the wire direction re1ect the rough-
ness of the potential landscape in the electron gas.
There are two distinct e<ects in mesoscopic systems

that could cause the observed resistance 1uctuations
as the perturbation is moved along the wire. The 0rst
is the ballistic chaotic motion of classical electrons in
a spatially varying potential landscape. In order to de-
velop a better understanding of how this mechanism
would appear in our measurements we have calculated
the classical transmission through wire structures with
a given potential landscape as a function of the po-
sition of an additional external perturbation. The re-
sults which will be discussed elsewhere show that the
complex electron dynamics does indeed lead to 1uc-
tuations in the resistance image.
The second e<ect which could produce resistance

1uctuations along the wire is the quantum interfer-
ence of phase coherent paths which leads to 1uctua-
tions in the transmission as a function of tip position.
Theories exist that predict conductance 1uctuations
in a disordered sample when the position of a single
impurity is moved [12]. Given our sample parame-

Fig. 4. Local transconductance image of the wire exhibiting
resistance 1uctuations on the scale of the Fermi wavelength.

ters and the measurement temperature the phase co-
herence length can be estimated to be ‘’ ≈ 8 �m but
the observability of phase coherence e<ects is limited
by energy averaging through the Fermi-distribution
function, i.e. the thermal length ‘T =

√
˜D=(kT ) ≈

2 �m. Fluctuations will have the order of magnitude
KR=R2KG ≈ R2e2=h(‘T=‘’)(‘’=L)3=2 ≈ 100 J. The
characteristic length scale for these 1uctuations is the
Fermi-wavelength of the electrons.
Fig. 4 shows an image of the wire measured in a dif-

ferent measurement con0guration, where a DC-current
was applied and the wire resistance was measured
at the resonance frequency of the oscillating tip
e<ectively resulting in a local transconductance mea-
surement. This image taken with increased spatial
resolution exhibits amazingly regular stripe-like pat-
terns on a length scale of less than 100 nm. Given the
above considerations about phase coherence the tenta-
tive explanation in terms of interference e<ects seems
reasonable. Clarifying experiments are in progress.
In conclusion, we have investigated the mesoscopic

transport through a quantum wire as a function of
a local SFM-tip-induced perturbation. The resistance
image shows 1uctuations along the wire which can
be due to the classical ballistic motion of electrons or
quantum interference e<ects.
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