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Transport measurements on an etched graphene nanoribbon are presented. It is shown that two distinct

voltage scales can be experimentally extracted that characterize the parameter region of suppressed

conductance at low charge density in the ribbon. One of them is related to the charging energy of localized

states, the other to the strength of the disorder potential. The lever arms of gates vary by up to 30% for

different localized states which must therefore be spread in position along the ribbon. A single-electron

transistor is used to prove the addition of individual electrons to the localized states. In our sample the

characteristic charging energy is of the order of 10 meV, the characteristic strength of the disorder

potential of the order of 100 meV.
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Graphene nanoribbons [1–8] display unique electronic
properties based on truly two-dimensional (2D) graphene
[9] with potential applications in nanoelectronics [10,11].
Quasi-1D graphene nanoribbons are of interest due to the
presence of an effective energy gap, overcoming the gap-
less band structure of graphene and leading to overall
semiconducting behavior, most promising for the fabrica-
tion of graphene transistors [5], tunnel barriers, and quan-
tum dots [6–8]. Zone-folding approximations [12],
�-orbital tight-binding models [13,14], and first principle
calculations [15,16] predict an energy gap Eg scaling as

Eg ¼ �=W with the nanoribbon width W, where � ranges

between 0:2–1:5 eV nm, depending on the model and the
crystallographic orientation [4]. These theoretical esti-
mates can neither explain the experimentally observed
energy gaps of etched nanoribbons of widths beyond
20 nm, which turn out to be larger than predicted, nor do
they explain the large number of resonances found inside
the gap [1,2,8]. This has led to the suggestion that localized
states due to edge roughness, bond contractions at the
edges [16] and disorder may dominate the transport gap.
Several mechanisms have been proposed to describe the
observed gap, including renormalized lateral confinement
[2], quasi-1DAnderson localization [17], percolation mod-
els [18] and many-body effects (including quantum dots)
[19], where substantial edge disorder is required. Moderate
amounts of edge roughness can substantially suppress the
linear conductance near the charge neutrality point [20],
giving rise to localized states relevant for both single
particle and many-body descriptions. Here we show ex-
perimental evidence that the transport gap in an etched
graphene nanoribbon [see schematic in Fig. 1(a)] is pri-
marily formed by local resonances and quantum dots along
the ribbon. We employ lateral graphene gates to show that
size and location of individual charged islands in the
ribbon vary as a function of the Fermi energy. In addition,
we use a graphene single-electron transistor (SET) to
detect individual charging events inside the ribbon.

We focus on an all-graphene setup, as shown in
Fig. 1(b), where a nanoribbon (highlighted by dashed lines)
withW � 45 nm is placed at a distance of�60 nm from a
graphene SET with an island diameter of �200 nm. The
back gate (BG) allows us to tune the overall Fermi level
and the lateral graphene gates [21], plunger gate (PG) and
side gates (SG1 and SG2) are used to locally tune the
potential of the ribbon and the SET. A detailed description
of the sample fabrication is found in Refs. [6,21–23]. The
same process has also been used to pattern graphene Hall
bars with mobilities on the order of 5000 cm2 V�1 s�1

[21]. The device is measured in two-terminal geometry

FIG. 1 (color online). (a) Schematic illustration of an etched
nanoribbon with width W, highlighting local charge islands
along the ribbon. (b) Scanning force microscope image of an
etched graphene nanoribbon (GNR) with a nearby single-
electron transistor (SET) and lateral gates (PG, SG1 and SG2).
(c) Low bias (Vb ¼ 300 �V) back-gate characteristics of the
GNR showing that the regimes of hole and electron transport are
separated by the transport gap, indicated by the vertical arrows.
(d) High resolution close-up inside the gap displaying a large
number of sharp resonances within the gap region. (e) Close-up
of a single resonance [see arrow in panel (d)].
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by low frequency lock-in techniques in a variable tempera-
ture insert cryostat at T ¼ 1:7 K.

Figure 1(c) shows the low bias (Vb ¼ 300 �V � 4kBT)
back-gate characteristic of the nanoribbon, where we tune
transport from the hole (left-hand side) to the electron
regime. The region 6 V< Vbg < 12 V of suppressed con-

ductance (indicated by two arrows) is the so-called trans-
port gap �Vbg in BG voltage (�Vbg � 6 V) [24]. In

contrast to an energy gap predicted for samples without
disorder, where transport is completely pinched-off, we
observe—in good agreement with other experimental
work [1,2,8]—a large number of reproducible conductance
resonances inside the gap. A high-resolution close-up of
Fig. 1(c) shown in Fig. 1(d) reveals a sequence of reso-
nances with a small linewidth indicating strong localiza-
tion. A particularly narrow resonance is shown in
Fig. 1(e) [see arrow in Fig. 1(d)]. The line shape can be
well fitted by G / cosh�2ðe�bg�Vbg=2:5kBTeÞ, where

�bg � 0:2 is the back-gate lever arm and �Vbg ¼ Vbg �
Vpeak
bg [26]. The estimated electron temperature, Te�2:1K,

is close to the base temperature, leading to the conclusion
that the peak broadening is mainly limited by temperature
rather than by the lifetime of the resonance. In Fig. 2(a) we
show current measurements on the nanoribbon as a func-
tion of bias and BG voltage (i.e., Fermi energy). We ob-
serve regions of suppressed current leading to an effective
energy gap in bias direction inside the transport gap in BG
voltage [shown in Fig. 1(c)]. Highly nonlinear I-V charac-
teristics [see, e.g., inset in Fig. 2(a)] are characteristic for
the energy gap in bias direction. This energy gap agrees
reasonably well with the observations in Refs. [2,19] of an
energy gap of Eg � 8 meV, for W ¼ 45 nm.

The transport gap in bias voltage corresponding to the
energy gap Eg, and the transport gap �Vbg in back-

gate voltage are two distinct voltage scales. The quan-
tity �Vbg is measured at constant (nearly zero) Vb

(transport window) but varying Fermi energy EF and is
related to a change in Fermi energy �EF in the sys-
tem. Varying the magnitude of the transport window Vb

at fixed Fermi energy gives rise to Eg. We estimate the

energy scale �EF corresponding to �Vbg from �EF �
@vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Cg�Vbg=jej

q
, where Cg is the back-gate capaci-

tance per area [27]. We find an energy gap �EF �
110–340 meV which is more than 1 order of magnitude
larger than Eg. We attribute this discrepancy to different

physical meanings of these two energy scales.
More insight into the two energy scales is gained by

focusing on a smaller BG voltage range as shown in
Figs. 2(b) and 2(c) which are two high resolution differen-
tial conductance dI=dVb close-ups of Fig. 2(a) (see labels
therein). At this scale, transport is dominated by well
distinguishable diamonds of suppressed conductance [see
bright areas and dashed lines in Figs. 2(b) and 2(c)] which
indicates that transport is blocked by localized electronic

states or quantum dots (see also Ref. [25]). The charging
energy Ec which itself is related to the quantum dot size,
depends on the Fermi energy on a small BG voltage scale
[see different diamond sizes in Figs. 2(b) and 2(c)], but also
on a large scale [see Fig. 2(a)]. In order to confirm this
statement the charging energies are plotted in Fig. 2(d) into
the top half of the measurements shown in Fig. 2(a).
Figures 3(a) and 3(b) show conductance and differential

conductance measurements at fixed BG as a function of the
lateral PG voltage [cf. Fig. 1(b)] which tunes the potential
on the nanoribbon locally. Similar to the BG dependent
measurements in Fig. 1(d) we observe in Fig. 3(a) a large
number of resonances inside the transport gap. In contrast
to back-gate sweeps we find certain PG regions with al-
most equally spaced conductance peaks [see, e.g., the
highlighted regime in Fig. 3(a) and the corresponding
diamonds in Fig. 3(b)], giving rise to the assumption that
here only a single charged island is tuned by the lateral

FIG. 2 (color online). (a) Current measurements as function of
bias and back-gate voltage (all other gates are grounded) on the
45 nm wide nanoribbon [Fig. 1(a)]. The white areas are regions
of strongly suppressed current forming the energy gap. The inset
shows a typical nonlinear I-V characteristic (Vbg ¼ 10:63 V, see

arrow). (b,c) Differential conductance (G) measurements as
close-ups of panel (a) at two different back-gate regimes [see
labels in (a)]. These measurements show diamonds with sup-
pressed conductance (highlighted by dashed lines) allowing to
extract the charging energy from individual diamonds.
(d) Charging energies as function of the back-gate voltage
over a wide range.
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gate. These diamond measurements are of comparable
quality as those presented in Refs. [6–8].

By following resonances at low bias (Vb ¼ 500 �V)
over a larger Vpg � Vbg range [see Fig. 3(c)] we observe

that individual resonances exhibit different relative lever
arms in the range of �pg;bg � 0:039–0:048 [slopes of dot-

ted and dashed lines in Fig. 3(c)]. These variations of up to
20% can be attributed to different capacitances between
the PG and individual electron puddles, which sensitively
includes their local position on the ribbon. By sweeping the
voltage on the more asymmetrically placed SG1 [see
Fig. 1(b)] rather than the PG this effect is even enhanced.

In Fig. 3(d) we show the corresponding measurements
(Vpg ¼ 0 V). Relative lever arms in the range of �sg1;bg �
0:054–0:077 with scattering of more than 30% can be
extracted. The stability of the sample allows to match
resonances seen in Figs. 3(c) and 3(d) so that they can be
followed in a 3D parameter space. These measurements
confirm local resonances being located along the ribbon,
with different lever arms to the local lateral gates.
We now make use of the SET device fabricated near the

ribbon to detect individual charging events inside localized
states of the nanoribbon. The SET which has been charac-
terized before [28], has a charging energy of Ec;SET �
4:5 meV and Coulomb blockade peak spacing fluctuations
below 15%. The Coulomb resonances in the conductance
of the SET, highlighted as dashed lines in Fig. 3(e), can
be used to detect charging of a local resonance [dotted line
in Fig. 3(e)] in the nanoribbon with individual electrons.
We show conductance measurements as function of PG
and BG voltage in order to identify resonances of the
SET and the nanoribbon via their different relative lever
arms [Figs. 3(e) and 3(f)]. Since the SET is much closer to
the PG than the nanoribbon, the relative lever arm
�pg;SET=�bg;SET � 0:18 seen as the slope of SET reso-

nances in Fig. 3(e) [dashed lines in Figs. 3(e) and 3(f)] is
significantly larger than the relative lever arm of a reso-
nance in the nanoribbon �pg;bg � 0:04 shown in Fig. 3(f)

[dotted lines in Figs. 3(e) and 3(f)]. The observation of a
jump [arrow in Fig. 3(e)] in the Coulomb resonances of the
SETwhen they cross the resonance in the ribbon is a clear
signature of charging the localized state in the nanoribbon,
which changes in a discontinuous way the potential on the
SET island by capacitive coupling. This shows that we
accumulate localized charges along the nanoribbon as
function of the BG voltage.
The experimental data shown above provide strong in-

dications that the two experimentally observed energy
scales Eg and �EF are related to charged islands or quan-

tum dots forming spontaneously along the nanoribbon.
This is supported by the observation (i) of Coulomb dia-
monds, which vary in size as function of EF, (ii) of a strong
variation of the lever arms of individual resonances, and
(iii) of local charging of islands inside the ribbon.
Quantum dots along the nanoribbon can arise in the

presence of a quantum confinement energy gap (�Econ)

FIG. 4 (color online). Illustration of the potential landscape
along the graphene nanoribbon allowing the formation of
charged islands and quantum dots. For more details see text.

FIG. 3 (color online). (a) Low bias (Vb ¼ 300 �V) conduc-
tance measurements as function of plunger gate voltage at fixed
back gate (Vbg ¼ 7 V), showing a large number of sharp reso-

nances within the gap region. (b) Corresponding diamonds [see
highlighted area in panel (a)] in differential conductance G
[same color scale as in Figs. 2(b) and 2(c)]. Here, a dc bias Vb

with a small ac modulation (50 �V) is applied symmetrically
across the ribbon. (c,d) Charge stability diagrams as function of
plunger gate and back-gate voltage (c) and side gate 1 and back-
gate voltage (d). These plots highlight that individual resonances
have individual lever arms (see dashed and dotted lines).
(e,f) Detection of individual charging events in the nanoribbon
by the nearby SET. (e) Coulomb blockade resonances on the
SET as function of Vpg and Vbg exhibit clear signatures of the

charging event in the nanoribbon expressed by crossing the local
resonance (f). Dotted and dashed lines show the different lever
arms.
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combined with a strong bulk and edge-induced disorder
potential �dis, as illustrated in Fig. 4. The confinement
energy can be estimated by �EconðWÞ � ��aC�C=W,
where � � 2:7 eV and aC�C ¼ 0:142 nm [12]. This leads
to �Econ ¼ 26 meV for W ¼ 45 nm, which by itself can
neither explain the observed energy scale �EF, nor the
formation of quantum dots in the nanoribbon. However, by
superimposing a disorder potential giving rise to electron-
hole puddles near the charge neutrality point [29], the
confinement gap ensures that Klein tunneling (from puddle
to puddle) gets substituted by real tunneling. Within this
model �EF depends on both the confinement energy gap
and the disorder potential. An upper bound for the magni-
tude of the disorder potential can be estimated from our
data to be given by �EF. Comparing to Ref. [29] where a
bulk carrier density fluctuation of the order of �n � �2�
1011 cm�2 was reported, we find reasonable agreement as

the corresponding variation of the local potential is�EF �
�Econ þ @vF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4��n

p � 126 meV.
We can estimate the fraction of overlapping diamonds

by summing over all charging energies Ec observed in
Fig. 2(d). This leads to

P
Ec � 630 meV. Comparison

with the experimental estimate �EF � 110–340 meV
(see above) gives 45%–82% overlapping diamonds,
strongly indicating statistical Coulomb blockade due to a
number of quantum dots contributing to transport. We
expect that the value of overlapping diamonds depends
strongly on the length and the width of the nanoribbon in
agreement with findings of Ref. [25].

The energy gap in bias direction Eg does not tell much

about the magnitude of the disorder potential, but it is
rather related to the sizes of the charged islands. In par-
ticular, the minimum island size is related to the maximum
charging energy Ec;max, which defines Eg. By using a disc

model we can estimate the effective charge island diameter
by d ¼ e2=ð4�0�EcÞ � 100 nm (where � ¼ ð1þ 4Þ=2),
which exceeds the ribbon width W. Thus, in ribbons of
different width the charging energy will scale with W
giving the experimentally observed 1=W dependence of
the energy gap in bias direction [2].

In conclusion, we have presented detailed transport
measurements on a graphene nanoribbon, focusing on the
origin of the transport gap. Experimentally we find two
distinct energy scales characterizing this gap. The first is
the charging energy of local resonances or quantum dots
forming along the ribbon. The second is probably domi-
nated by the strength of the disorder potential, but also
depends on the gap induced by confinement due to the
ribbon boundaries. These insights are important to under-
stand transport in graphene nanostructures and may help in
designing future graphene nanoelectronic devices.

During the preparation of this Letter we became aware
of work on graphene nanoconstrictions reaching similar
conclusions about the nature of the energy scales relevant
for transport [30,31].
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