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We present measurements of the fourth and fifth cumulants of the distribution of transmitted charge in a
tunable quantum dot. We investigate how the measured statistics is influenced by the finite bandwidth of the
detector and by the finite measurement time. By including the detector when modeling the system, we use the
theory of full counting statistics to calculate the noise levels for the combined system. The predictions of the
finite bandwidth model are in good agreement with measured data.
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Current fluctuations in mesoscopic systems have been ex-
tensively studied due to the extra information they give in
comparison to measurements of the mean current.1 The focus
has traditionally been on investigations of the shot noise,
which for classical systems arises due to the discreteness of
the electron charge. The theory of full counting statistics
�FCS� was introduced as a different way of examining cur-
rent fluctuations.2 With the FCS, fluctuations are studied by
counting the number of electrons that pass through a conduc-
tor within a fixed period of time. This gives direct access to
the probability distribution function pt0

�N�, which is the
probability that N electrons are transferred within a time in-
terval of length t0. From the distribution function, not only
the shot noise but also the correlations of higher order can be
calculated.

The third moment of a tunneling current has been shown
to be independent of the thermal noise,3,4 thus making it a
potential tool for investigating electron-electron interactions
even at elevated temperatures. Higher-order moments in
strongly interacting systems are predicted to depend heavily
on both the conductance5 and the internal level structure6 of
the system. Determining higher-order moments may there-
fore give a more complete characterization of the electron
transport process. This can be of importance in realizing
measurements of electron correlation and entanglement ef-
fects in quantum dots.7,8

Experimentally, the third moment of the current distribu-
tion function has been measured for a tunnel junction9 as
well as for a single quantum dot10,11 �QD� and a double QD.3

In quantum optics, higher-order moments are routinely mea-
sured in order to study entanglement and coherence effects
of the electromagnetic field.12 Here, we set out to measure
the fourth and fifth cumulants of the distribution function for
charge transport through a QD.

In general, experimental measurements of FCS for elec-
trons are difficult to achieve due to the need for a sensitive,
high bandwidth detector capable of resolving individual
electrons.13–15 However, a more fundamental complication
with the measurements is that most forms of the FCS theory
assume the existence of �1� a detector with infinite band-
width and �2� infinitely long data traces. Since no physical

detector can fulfill these requirements, every experimental
realization of the FCS will measure a distribution, which is
influenced by the properties of the detector. Here, we inves-
tigate how the violation of the two assumptions modifies the
measured statistics. By including the detector in the model,
the FCS for the combined QD-detector system can be calcu-
lated. This model can explain the results for higher-order
cumulants measured with a finite bandwidth detector.

The sample consists of a QD �dotted circle in the inset of
Fig. 1�b�� with a nearby quantum point contact �QPC� used
for reading out the charge state of the QD.16 The structure
was fabricated using scanning probe lithography17 on a
GaAs/Al0.3Ga0.7As heterostructure with a two-dimensional
electron gas 34 nm below the surface. The gates G1 and G2

FIG. 1. �Color online� �a�–�d� Normalized cumulants Cn /C1

versus dot asymmetry, a= ��in−�out� / ��in+�out�. The solid lines
are theoretical predictions assuming a perfect detector, C2 /C1

= �1+a2� /2, C3 /C1= �1+3a4� /4, C4 /C1= �1+a2−9a4+15a6� /8,
and C5 /C1= �1+30a4−120a6+105a8� /16. The dashed lines show
the cumulants calculated from the model defined by Eq. �1� in the
text. The inset in �b� shows the quantum dot with integrated charge
readout used in the experiment. The inset in �c� shows the variation
of the total tunneling rate �tot=�in+�out for the different measure-
ment points.
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are used to tune the height of the tunneling barriers connect-
ing the dot to source and drain leads, while the P gate is used
to keep the conductance through the QPC in a regime where
the sensitivity to changes in its electrostatic potential is
maximal. All measurements were performed in a dilution
refrigerator with a base temperature of 20 mK. The elec-
tronic temperature extracted from the width of Coulomb
blockade resonances measured in the low bias regime18 was
190 mK.

Due to the electrostatic coupling between the QD and the
QPC, the addition of an extra electron on the dot will cause
a change in the QPC conductance. By performing time-
resolved measurements of the current through the QPC, tun-
neling of single electrons can be detected in real time.14,19,20

In this experiment, the QPC was voltage biased with
VQPC=250 �V. The current signal was sampled at 100 kHz,
software filtered at 4 kHz using an eighth-order Butterworth
filter, and finally resampled at 20 kHz to keep the amount of
data manageable.

To measure the higher cumulants for the current through
the QD, one has to generate the experimental probability
density function pt0

�N�. This is done by splitting a time trace
of length T into m=T / t0 intervals and counting the number
of electrons entering the dot within each interval. The cumu-
lants are then calculated directly from the distribution func-
tion. In a previous experiment on a similar system, the sec-
ond and third cumulants were measured.10 To extend the
analysis to higher cumulants, it is necessary to increase the
length of the time traces in order to collect more statistics.
Here, we present cumulants extracted from time traces of
length T=10 min. The quality of the data allows us to mea-
sure up to the fifth cumulant, which is 2 orders higher than
reported in previous experiments.3,9,10 The results are shown
in Fig. 1, where we plot the normalized cumulants for
different values of the asymmetry of the tunneling rates,
a= ��in−�out� / ��in+�out�. Here, �in and �out are the rates for
tunneling into and out of the dot, respectively. The asymme-
try is tuned by shifting the voltage on gate G1 by an amount
�V and at the same time applying a compensating voltage
−�V on gate G2. With the two gates having a similar lever
arm on the dot, the electrochemical potential of the QD re-
mains at the same level, but the height of the tunneling bar-
riers between the dot and the source and drain leads will
change. Doing so, we could tune the asymmetry from
a=−0.94 to a= +0.25 while still keeping both tunneling rates
within the measurement bandwidth and avoiding charge re-
arrangements. To get data for the full range of asymmetry,
we did a second measurement at a different gate voltage
configuration. For the second set of data, the asymmetry was
tuned from a=0.07 to a=0.93. The stars and the circles in
Fig. 1 represent data from the two different sets of measure-
ments. The measurements were performed with a QD bias of
Vbias=2.5 mV, with the electrochemical potential of the dot
far away from the Fermi levels of the source and drain leads.
This is to ensure that tunneling due to thermal fluctuations is
sufficiently suppressed.10

The solid lines in Fig. 1 depict the theoretical predictions
calculated from a two-state model.21 The analytical expres-
sions are given in the figure caption. The higher cumulants
show a complex behavior as a function of the asymmetry,

with local minima at a= ±0.6 for C4 /C1 and at a= ±0.8 for
C5 /C1. The fifth cumulant even becomes negative for some
configurations. The experimental data qualitatively agree
with the theory, but for small values of the asymmetry there
are deviations from the expected behavior. The deviations
are stronger for the first set of data �stars�. Since the tunnel-
ing rates in the first measurement were about a factor of 3
higher than in the second measurement �see inset of Fig.
1�c��, we suspect the finite bandwidth of the detector to be a
possible reason for the discrepancies.

Recently, Naaman and Aumentado22 pointed out that mea-
surements of the transition rates of a Poisson two-state sys-
tem using a finite bandwidth detector always lead to an un-
derestimation of the rates. To determine the rates correctly,
the detection rate �det of the detector must be taken into
account. In the low-bias, weak-coupling Coulomb blockade
regime, the QD can be modeled as a Poisson two-state sys-
tem. The two states correspond to zero or one excess electron
on the dot, and the transitions between the two states occur
whenever an electron tunnels into or out of the dot. The
probability distribution for the times needed for an electron
to tunnel into or out of the QD follows the exponential
pin/out�t�=�in/out exp�−�in/outt�.19

An example of a probability distribution taken from mea-
sured data is shown in Fig. 2�a�. The long-time behavior is
exponential, but for times t�100 �s there is a sharp de-
crease in the number of counts registered by the detector.
From the figure, we can estimate �det, which is the average
time it takes for the detector to register an event. We find
�det=70 �s, giving a detection rate of �det=1/�det=14 kHz.

FIG. 2. �Color online� �a� Probability density of time needed for
an electron to tunnel into the dot. Note the sharp decrease in counts
for t�100 �s due to the finite bandwidth of the detector. The black
curve is a long-time exponential fit with �=1.39 kHz. �b� Model for
the dot-detector system. A state �n ,m� corresponds to n electrons on
the dot while the detector at the same time is measuring m elec-
trons. �c� Higher cumulants versus relative detection bandwidth
�det / ��in+�out�, calculated from the model in �b�. The cumulants
are normalized to the results from the infinite bandwidth case. The
influence of the finite bandwidth is maximal when the asymmetry
a= ��in−�out� / ��in+�out� is zero.
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Note that the detection rate �det depends not only on the
measurement bandwidth but also on the signal-to-noise ratio
of the detector signal as well as the redundancy needed to
minimize the risk of detecting false events.23 All tunneling
rates presented in the following have been extracted from
distributions such as the one shown in Fig. 2�a�, using the
methods described in Ref. 22 with �det=14 kHz.

The finite bandwidth will also influence the FCS mea-
sured by the detector. Following the ideas of Ref. 22, we
account for the finite bandwidth by including the states of the
detector in the model. Figure 2�b� shows the four possible
states of the combined dot-detector model. The state
�n+1,n� refers to a situation where there are n+1 electrons
on the dot, while the detector at the same time reads n elec-
trons. The transition from the state �n+1,n� to the state
�n+1,n+1� occurs when the detector registers the electron.
This process occurs with the rate of the detector, �det.

To calculate the FCS for the QD-detector system,

we write the master equation Ṗ=MP, with P
= ��n ,n� , �n+1,n� , �n ,n+1� , �n+1,n+1�� and

M� =�
− �in �out �det 0

�in − ��out + �det� 0 0

0 0 − ��in + �det� �out

0 �det � ei� �in − �out

� .

�1�

In the above matrix, we have included the counting factor ei�

at the element where the detector registers an electron tun-
neling into the dot �see dashed circle in Fig. 2�b��. The sta-
tistics obtained in this way relates directly to what is mea-
sured in the experiment. Using the methods of Ref. 21, we
calculate the first few cumulants for the above expression as
a function of the relative bandwidth k=�det / ��in+�out� and
asymmetry a= ��in−�out� / ��in+�out�. The normalized sec-
ond and third cumulants take the form

C2

C1
=

1 + a2

2
−

k�1 − a2�
2�1 + k�2 , �2�

C3

C1
=

1 + 3a4

4
−

3k�1 + k + k2�
4�1 + k�4 −

6a2k2

4�1 + k�4

+
3a4k�1 + 3k + k2�

4�1 + k�4 . �3�

In Fig. 2�c�, we plot the second and third cumulants from
Eqs. �2� and �3� for different values of asymmetry a and
relative bandwidth k. The cumulants have been normalized
to the values for the infinite bandwidth detector. With
�det��in+�out, the cumulants approach the infinite
bandwidth result, as expected. However, even with �det
=10��in+�out� and perfect symmetry �a=0�, the second
cumulant deviates by almost 10% and the third cumulant by
more than 20% from the perfect detector values. As the
bandwidth is further decreased, the deviations grow
stronger and reach a maximum as �det=�in+�out. With
�det	�in+�out, the cumulants once again approach the per-
fect detector values. When the detector is much slower than

the underlying tunneling process, it will only sample the av-
erage population of the two states. In this limit, the dynamics
of the system does not interfere with the dynamics of the
detector and we recover the correct relative noise levels. It
should be noted that this is true only for the noise relative to
the detected mean current. Since the detector will miss most
of the tunneling events, the absolute values of both the cur-
rent and the noise will be underestimated.

We have also performed the analysis for the fourth and
fifth cumulants. We do not show the analytical expressions
due to space limitations; however, the results corresponding
to the experimental configuration are represented by the
dashed lines in Fig. 1. Over the full range of bandwidth and
asymmetry, we find that the noise detected with the finite
bandwidth system is always lower than for the ideal detector
case. The reduction can be qualitatively understood by con-
sidering the probability distribution pt0

�N�. The finite band-
width makes it less probable to detect fast events, meaning
that the probability of detecting a large number of electrons
within the interval t0 will decrease more than the probability
of detecting few electrons. This will cut the high-count tail of
the distribution and thereby reduce its width �C2� and its
skewness �C3�. An interesting feature is that the cumulants
calculated for less symmetric configurations �a=0.9 in Fig.
2�c�� show less influence of the finite bandwidth.

A second limitation of a general FCS measurement is the
finite length of each time trace. In order to generate the ex-
perimental probability density function pt0

�N�, the total trace
of length T must be split into m=T / t0 intervals, each of
length t0. Most FCS theories only predict results for the case
t0�1/�, where � is a typical transition rate of the system. In
the experiment, it is favorable to make t0 as short as possible
in order to increase the number of samples m=T / t0. This will
improve the quality of the distribution and help to minimize
statistical errors.

The condition t0�� is imposed by the approximation that
the cumulant generating function �CGF� S��� for pt0

�N� only
depends on the lowest eigenvalue 
min of the master equa-
tion matrix M�, with S���=−t0
min. A FCS valid for finite t0

must include all eigenvalues and eigenvectors of M�.21 The
corresponding expression is

exp�S���� = �q0�p�n�	exp�− t0
n��q�n��p0	 , �4�

where �q�n�� and �p�n�	 are the left and right eigenvectors of
the matrix M�, 
n are the eigenvalues of M�, and �q0� and
�p0	 are the eigenvectors corresponding to the lowest eigen-
value 
min. The cumulants generated from the CGF in Eq.
�4� will, in general, be a function of t0.

To investigate how small t0 can be before systematic er-
rors become relevant, we calculate the cumulants from the
CGF of Eq. �4� with the master equation matrix M� of Eq.
�1�. The results are shown in Fig. 3, where we plot the nor-
malized cumulants as a function of the mean number of
counts per interval, �N	= t0 / �1/�in+1/�out�. The symbols
show cumulants extracted from measured data �T=10 min,
a=0.053, �in+�out=3062 Hz, and �det=14 kHz�, while the
solid lines are results from the CGF for the same set of
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parameters. The dashed lines are the asymptotes for the lim-
iting case t0→�.

In general, the data and the theory are in good agreement.
There are some deviations in the fourth and fifth cumulants
for large t0 ��N	�6 in Fig. 3�, but these are statistical errors
due to the shortness of the total time trace. For short t0, all
cumulants converge to Cn /C1→1. This is because as
�N		1, the probability distribution pt0

�N� will be nonzero
only for N=0 and N=1, with pt0

�0�=1−q, pt0
�1�=q, and

q= �N	. This is the definition of a Bernoulli distribution, for
which the normalized cumulants Cn /C1→1 as q→0.24

Focusing on the other regime, �N	�1, we see that cumu-
lants of different orders converge to their asymptotic limits
for different values of t0. The second cumulant needs a

longer interval t0 to reach a specified tolerance compared to
the higher cumulants. This is of interest for the experimental
determination of higher cumulants. By choosing a shorter
value of t0 when calculating higher cumulants, the amount of
samples m=T / t0 can be increased. For the data in Fig. 1, the
cumulants were calculated with intervals t0 giving �N	=15
for C2, �N	=6 for C3, �N	=3 for C4, and �N	=2 for C5. The
maximal deviations between the correct cumulants and the
ones determined with a finite length t0 can be estimated by
checking the convergence for all values of the asymmetry.
For the data shown in Fig. 1, we find �C2 /C1=0.007,
�C3 /C1=0.009, �C4 /C1=0.01, and �C5 /C1=0.03.

Coming back to the results of Fig. 1, we are now able
explain why the measured cumulants show lower values
compared to the perfect detector theory. The dashed lines in
Fig. 1 are the cumulants calculated from the combined QD-
detector model of Eq. �1�, with �det=14 kHz. The overall
agreement is good, especially since no fitting parameters are
involved. Higher cumulants end up to be slightly lower than
theory predicts. We speculate that the deviations could be
due to low-frequency fluctuations of the tunneling rates over
the time of measurement.

In conclusion, we have measured the first five cumulants
of the distribution of charge transmitted through a QD. The
ability to measure higher cumulants shows that we can de-
termine the distribution function very precisely. The high
accuracy of the technique makes it a promising tool for prob-
ing subtle effects in the transport statistics of more complex
QD systems. We have found that the measured statistics de-
pends strongly on the bandwidth of the charge detector. By
including the detector in the model, we show that the frame-
work of FCS can be used to predict noise levels for systems
with a finite bandwidth detector. The principle is general and
can be applied to any rate-equation model used for calculat-
ing the FCS.
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