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Wave physics of the graphene lattice emulated in a ripple tank

J. R€ossler, C. R€ossler, P. M€arki, K. Ensslin, and T. Ihn
Solid State Physics Laboratory, ETH Z€urich, 8093 Z€urich, Switzerland

(Received 19 March 2015; accepted 23 June 2015)

Using the example of graphene, we have extended the classic ripple tank experiment to illustrate

the behavior of waves in periodic lattices. A loudspeaker driving air through a periodically

perforated plate onto the tank’s water surface creates wave patterns that are in agreement with

numerical simulations and are explained in terms of solid state theory. From an educational point

of view, the experiment provides an illustrative example of the concepts of reciprocal space and

symmetry. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4923445]

I. INTRODUCTION

At public outreach events as well as in schools and under-
graduate lectures, the ripple tank is widely used to illustrate
wave phenomena.1,2 However, a standard ripple tank’s hard-
ware accessories cannot create patterns that illustrate the
behavior of waves in periodic lattices. This challenged us to
modify the setup in a way that provides multiple periodic
sources. Employing a loudspeaker and a PMMA plate with
hexagonally arranged holes, we were able to realize wave
patterns in the ripple tank that are reminiscent of the micro-
scopic images of artificial graphene.3 Two characteristic in-
terference patterns are depicted in Fig. 1. Readers familiar
with solid state physics will recognize the same symmetry as
graphene electronic wave functions in the center of the first
Brillouin zone. We find that the strongest interference pat-
terns are not obtained when the excitation wavelength is
equal to the nearest-neighbor separation a0. Instead, the sym-
metry of the lattice favors wavelengths that are 13.4%
shorter than a0. This discrepancy hints at the nontrivial sym-
metry properties of the honeycomb lattice and is explained
by means of solid state theory, testifying to the applicability
of our ripple tank for educational purposes.

The paper is organized as follows: Sec. II describes the
technical details of the setup; in Secs. III and IV we describe
single and double-hole experiments; and in Sec. V, the favor-
able excitation wavelengths are extracted from the discrete
Fourier transform of a finite honeycomb lattice. Section VI
targets the correspondence between water waves in the ripple
tank and electronic wave functions in graphene. We close
with a summary and outlook.

II. SETUP

Figure 2 shows the modified ripple tank setup. A loud-
speaker is used as a precise and inexpensive source of excita-
tion;4 it is mounted face-down inside a PMMA hood. An
aluminum rack holds both the hood and an interchangeable
source plate 295� 295� 4:2 mm3 in size. The source plate
shown in Fig. 2 is patterned with a honeycomb lattice of
holes. Directly underneath the source plate, we place a com-
mercially available ripple tank (Leybold, No. 401 501, with
see-through water trough, tilted mirror, and observation
screen). The distance between source plate and water surface
is only a few millimeters. A white LED mounted in front of
the center of the loudspeaker illuminates the ripple tank sur-
face and can be used as a stroboscope to observe the wave
pattern at fixed phase. To that end, the LED is typically

powered for 1% of each wave cycle, thus allowing the obser-
vation of the wave during a 4� phase interval.

The stroboscope’s and the loudspeaker’s frequencies, their
relative phase-shift, the wave form, and the amplitude are
controlled using a LabView program on a standard PC via a
USB Audio Adapter (LogiLink, UA0078). Between PC and
loudspeaker or stroboscope, amplifiers are used to scale the
signals appropriately. The loudspeaker requires between 0.3
V and 3 V ac input voltage, the LED 4 V dc. The loudspeaker
receives a sinusoidal input signal; the stroboscope’s wave-
form is set to rectangular.

In combination with the loudspeaker, the hole pattern of
the source plate thus creates a controlled spatial pattern of
point sources of sinusoidal-in-time air blasts directed

Fig. 1. (a) Photograph of the observation screen picturing the ripple tank’s

surface while driving air through a PMMA plate with 660 hexagonally

arranged holes; the next-neighbor distance is a0 ¼ 1 cm. The excitation fre-

quency that generates the sharpest patterns corresponds to a wavelength in

water of k ¼
ffiffiffi
3
p

=2 cm. (b) As in (a), but with an additional phase difference

of p between excitation and the stroboscope. The centers of the dark hexa-

gons correspond to the bright spots in (a). Over time, the wave oscillates

back and forth between these patterns. (c) and (d) show simulation results of

the 2D wave pattern obtained by solving the wave equation for 660 time-

harmonic sources in a water-like environment [see Eq. (2)]; parameters are

the same as in (a) and (b), respectively. The white lines in (c) indicate the

honeycomb pattern of the source plate.
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downward onto the surface of the water.5 Since ripple crests/
valleys act on the illuminating light as converging/diverging
lenses,6 the resulting wave pattern on the water surface
becomes visible as bright and dark areas projected onto the
observation screen.

III. SINGLE SOURCE

We performed a series of single-source experiments to
determine the dispersion relation of water waves in our
setup. The water height in the tank was kept constant at
h¼ 1.8 cm, and the wavelength was between 0.5 cm and
2.5 cm. Since wavelength and water height are of the same
order of magnitude, the dispersion relation for ripples is to a
good approximation7 given by

x2 ¼ gk þ Sk3

q
; (1)

where x is the angular frequency of the ripple, k ¼ 2p=k is
the wavevector, q is the density of the water (1 g=cm3), S is
the surface tension (73 g=s2), and g is the absolute value of
the gravitational field strength (981 cm=s2).

For single-source experiments, we fabricated a source
plate with a single hole 2 mm in diameter. The frequency
was swept from 5 to 40 Hz and the observation screen was
photographed using a digital camera; Fig. 3(a) shows an
example photo. The radial distance between two adjacent
bright circles in Fig. 3(a) is the wavelength. Figure 3(b)
shows our measured wavelengths in comparison to a plot of
Eq. (1). For frequencies above 10 Hz, we find a good agree-
ment; the deviation at low excitation frequencies could be
caused by operating the loudspeaker outside its specified
range, which might introduce nonlinearities in the excitation.
Fitting the data using least mean squares, we extract a mea-
surement uncertainty of r¼ 1 Hz for each data point,

assuming that all uncertainties are statistical in nature.
Measurement uncertainties comprise calibration errors of the
gauge scale on the observation screen, reading errors of the
wavelength, and calibration errors of the frequency genera-
tor. Thus, for example, at 30 Hz, the wavelength generated
by our setup is known with 0.02 cm precision.

IV. TWO SOURCES

Using a plate with two holes, we can emulate a double-slit
experiment. We choose this well-known geometry to com-
pare measurement with simulation as well as to study the
effect the nonzero hole diameter has on the pattern.

The angles of constructive and destructive interference8

can be read from Fig. 3(c). Starting with the solution to the
wave equation of a 2D time-harmonic source12 for a radially
propagating wave,

w r; k;x; tð Þ ¼ �i

2p
ffiffiffi
2
p H2

0 krð Þeixt þ H2
0 �krð Þe�ixt

� �
; (2)

with H2
0 the zero-order Hankel function of the second kind, k

the absolute value of the wave vector, r the radial distance
from the source, x the radial frequency, and t the time, we
performed a Mathematica-based simulation of the 2D wave
pattern. The result of these calculations is shown in Fig.
3(d).

To estimate the effect of the nonzero hole size, we com-
pare a simulated wave function w1ðx; yÞ with two point-like
sources to a wave function w2ðx; yÞ where each source is
replaced by five sources at the four endpoints and the center
of a crosshair whose diameter corresponds to the diameter of
the holes. As a figure of merit, we introduce the correlation
between w1ðx; yÞ and w2ðx; yÞ

Fig. 2. Setup of the ripple tank showing a 2D honeycomb wave pattern. Sound

waves travel from the loudspeaker (top) through the hexagonally patterned

source plate onto the ripple tank’s surface. The image is created by using a strob-

oscopic LED (top) that projects the wave pattern via the mirror onto the screen.

Fig. 3. (a) Photograph of the observation screen for a single-point-source

plate at k¼ 1 cm. (b) Measured (circles) and calculated [curve, from Eq. (1)]

dispersion relation in the ripple tank. (c) Photograph of the observation

screen for a double-point-source plate at k¼ 1 cm. (d) Simulation of the 2D

wave pattern created by two time-harmonic sources in a water-like

environment.
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f ¼
hw1 x; yð Þw2 x; yð Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjw1 x; yð Þj2ihjw2 x; yð Þj2i

q : (3)

Using a distance between the sources of a0 ¼ 1 cm and a
hole diameter of 2 mm, we find f to be 99.7%. Since these
parameters are also convenient to realize experimentally, we
use them with confidence in all subsequent source plates.

V. HONEYCOMB LATTICE

The symmetry properties of the honeycomb lattice can be
inferred by performing the Fourier transform of the wave
pattern. We use the fact that this transform can be expressed
as the product of the Fourier transform of a single time-
harmonic point source and that of the lattice. We perform a
discrete Fourier transform of a finite lattice and compare the
results to key parameters known from the Fourier transform
of an infinite lattice, which are deduced from the pseudopo-
tential method for a crystal with a two-atom basis.11

We created a 42-point lattice with a0 ¼ 1 cm for the dis-
crete transform; Fig. 4(a) shows this lattice in real space
while Fig. 4(b) shows the squared modulus of its discrete
Fourier transform. As expected from the pseudopotential
method we find a pattern with two classes of points with an
intensity ratio of 1 to 4. The short (purple) arrows indicate

the six shortest reciprocal lattice vectors ~b1; ~b2; ~�b1 ; ~�b2 ;
~b1 � ~b2, and ~�b1 þ ~b2 , with

~b1 ¼
2p

a0

ffiffiffi
3
p 1

1=
ffiffiffi
3
p

� �
; ~b2 ¼

2p

a0

ffiffiffi
3
p 0

2=
ffiffiffi
3
p

� �
; (4)

and correspond to the weak intensity points in the pattern.
The long (black) arrow indicates the next longer reciprocal

lattice vector ~b1 þ ~b2. The radii of the dashed circles in pink
and black correspond to the k-vector lengths favored by the
pattern, while all other lengths are suppressed. The finite lat-
tice size employed in the calculation manifests itself in the
width of the points.

The discrete 2D Fourier transform of a single time-
harmonic point source is shown in Fig. 4(c) for the specific
wavelength of

ffiffiffi
3
p

=2 cm. We see a circle of radius 4p=
ffiffiffi
3
p

cm�1. The final result, the 2D Fourier transform of the 42
time-harmonic point sources, is shown in Fig. 4(d), which
depicts the product of the Fourier transforms shown in Fig.
4(b) and Fig. 4(c). Consequently, the discrete 2D Fourier
transform of Fig. 1(a), which was taken at an excitation
wavelength of k ¼

ffiffiffi
3
p

=2 cm, yields six points on a circle in
k-space, analogous to Fig. 4(d).

This analysis illustrates that the resulting wave pattern in
real space is, at the given wavelength, essentially a superpo-
sition of six plane-wave states. In general, the excitation
wavelength, which determines the radius of the circle in
Fig. 4(c), therefore, serves as a tool to select the finite set of
plane-wave states that superimpose in real space. Most
importantly, it is not the correspondence between the
nearest-neighbor separation and the wavelength in real
space that gives rise to strong interference patterns, as one
could naively think. Instead, the wavelength of strongest in-

terference, k ¼ ð
ffiffiffi
3
p

=2Þ a0, corresponds to half the side
length of the rhombus drawn as a dashed line in Fig. 4(a).
Thus, the lattice ripple tank experiment leads to the conclu-
sion that the rhombus and not the honeycomb is the unit
cell of the graphene lattice.9 The rhombus is the smaller
and thus more fundamental unit from which any honey-
comb lattice can be constructed.

VI. CORRESPONDENCE TO GRAPHENE

In the present experimental setting, all sources are in
phase, since they are excited by a common air pulse. This
means that as far as the correspondence to graphene is con-
cerned, we are limited to mimicking wave functions consist-
ing of counterpropagating waves at the C-point.

The strongest resonance in the ripple tank is excited with
k¼ð

ffiffiffi
3
p

=2Þa0. As discussed in Sec. V, this corresponds to k-
vectors of length k ¼ 4p=ð

ffiffiffi
3
p

a0Þ. There is a superposition of
six basis vectors of the reciprocal lattice with this k-vector
length [see Fig. 4(b)]. Labeling them consecutively by ~K1

Fig. 4. (a) Honeycomb pattern with 42 holes; the nearest-neighbor distance

a0 is 1 cm; dashed black lines indicate the unit cell of the lattice. (b) 2D dis-

crete Fourier transform of the pattern depicted in (a); dark spots correspond

to high amplitude. The short arrows indicate the six lowest reciprocal lattice

vectors, while the long arrow indicates the next-highest reciprocal lattice

vector. (c) 2D discrete Fourier transform of a single time-harmonic source

with wavelength k ¼
ffiffiffi
3
p

=2 cm. (d) 2D discrete Fourier transform of 42

time-harmonic point sources with wavelengths k ¼
ffiffiffi
3
p

=2 cm.

Fig. 5. Cut through the 2D band structure of graphene along the kx-direction

(schematic drawing). On the horizontal axis, the symmetry points and the

first Brillouin zone are indicated. The dashed curves indicate the lifting of

the degeneracy due to the atomic potential.
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through ~K6 in the clockwise direction and solving the
Schr€odinger equation for graphene in the empty lattice approxi-
mation, we can draw the 2D band structure that consists of six
parabolic dispersion relations all crossing at the C-point.11

Figure 5 shows a cut along the ~K2–~K5 direction, which coin-
cides with the kx-direction. Beyond the empty lattice approxi-
mation, the six-fold degeneracy at the C-point is lifted by
taking the atomic potential into account. The lowest-lying
band, which is the symmetric combination of all six basis states
with wave-vectors K1 to K6, and therefore the only combina-
tion without phase differences between the waves, corresponds
to the symmetry of the water waves and will therefore exhibit
the same symmetry as the honeycomb pattern shown in Fig. 1.

VII. SUMMARY AND OUTLOOK

With a modification that provides periodic sources, we
have extended the classic ripple-tank experiment to illustrate
symmetry properties of the honeycomb lattice. The experi-
mentally observed patterns can be reproduced closely by nu-
merical simulations. A next step could be to introduce phase
shifts between the individual point sources. However, this
would require a completely new excitation technique. A
more promising application for the present technique is to
mimic electron waves in cavities.10 In this case, the appara-
tus could not only be used to make current science accessible
to students or the general public but might also prove to be a
useful modeling tool for microstructured geometries that are
costly and time-consuming to fabricate.
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