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Quantum mechanical experiments in ring geometries have long
fascinated physicists. Open rings connected to leads, for example,
allow the observation of the Aharonov±Bohm effect1, one of the
best examples of quantum mechanical phase coherence2,3. The
phase coherence of electrons travelling through a quantum dot
embedded in one arm of an open ring has also been
demonstrated4. The energy spectra of closed rings5 have only
recently been studied by optical spectroscopy6,7. The prediction
that they allow persistent current8 has been explored in various
experiments9±11. Here we report magnetotransport experiments
on closed rings in the Coulomb blockade regime12. Our experi-
ments show that a microscopic understanding of energy levels,
so far limited to few-electron quantum dots13, can be extended to
a many-electron system. A semiclassical interpretation of our
results indicates that electron motion in the rings is governed by
regular rather than chaotic motion, an unexplored regime in
many-electron quantum dots. This opens a way to experiments
where even more complex structures can be investigated at a
quantum mechanical level.

Quantum ring samples have been fabricated on AlGaAs±GaAs
heterostructures containing a two-dimensional electron gas
(2DEG) with density 5 3 1011 cm22 and mobility 900,000 cm2 V s-1

at T � 4:2 K only 34 nm below the sample surface. The surface of
the heterostructure has been locally oxidized by applying a voltage
between the conductive tip of an atomic force microscope (AFM)
and the 2DEG14. The electron gas is depleted below the oxidized
regions. This technique has been used in other studies to de®ne high
quality quantum dots15. The details of the fabrication process, which
is crucial for the high-electronic quality of the quantum ring, are
described in ref. 16. Figure 1a shows an AFM image (taken with an
unbiased tip directly after the oxidation process) of the oxide lines
de®ning the quantum ring. The width of the quantum point

contacts connecting the ring to the source (or drain) is controlled
by voltages applied to the lateral gate electrodes qpc1a and b (or to
qpc2a and b). The number of electrons in the ring can be tuned via
the lateral plunger gates pg1 and 2. Shape deformations due to
applied in-plane gate voltages are known to be relatively weak15,16.
The schematic in Fig. 1b shows the dimensions of the quantum ring.

After the oxidation step the sample has been covered with a
metallic top gate electrode. With the combination of in-plane and
top gate electrodes the quantum ring can be tuned into the
Coulomb blockade regime with the single-particle level spacing
being much larger than the thermal energy, kT.

Figure 2b presents a colour plot of the current through the
quantum ring as a function of plunger-gate voltage and magnetic
®eld B (applied normal to the 2DEG plane). This measurement
was performed at a source±drain voltage V sd � 20 mV and at a
temperature of 100 mK in a dilution refrigerator. In Fig. 2a the
Coulomb blockade oscillations have been extracted along the
horizontal dashed line in Fig. 2b, that is, at constant B � 92 mT.
From corresponding measurements of the Coulomb blockade
diamonds we determine a charging energy Ec � e2=CS < 190 meV,
where CS is the total capacitance of the ring, and e is the elementary
charge. The observed discrete level spacings after subtraction of Ec

within the constant interaction model12 can be as large as
¢ < 180 meV (see below). From a simple capacitance model and
the ring geometry we estimate that about 200 electrons are dis-
tributed on 2 to 3 radial subbands. In Fig. 2b the position as well as
the amplitude of the Coulomb blockade peaks oscillate as a function
of magnetic ®eld with a period of DB � 75 mT (horizontal white
lines) which is exactly the Aharonov±Bohm period for this ring. In
fact, by opening the point contacts (not shown) we ®nd the well
known Aharonov±Bohm oscillations in the conductance with the
same DB (refs 2, 3, 17 and 18). The oscillations are visualized along
a line of constant gate voltage in Fig. 2c (vertical dashed line in
Fig. 2b).
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Figure 1 Sample layout. a, Micrograph of the quantum ring taken with the unbiased AFM-

tip after writing the structure. The oxide lines (bright regions) deplete the 2DEG 34 nm

below the surface separating the sample into several conductive (dark) regions. The

current is passed from source to drain. The in-plane gates (qpc1a, qpc1b, qpc2a, qpc2b,

pg1 and pg2) are used to tune the point contacts and two arms of the ring. b, Schematic

sketch of the ring. The dark curves represent the oxide lines. From transmission

measurements of the point contacts at source and drain we estimate the depletion length

to be about 50 nm, which results in an estimated channel width of Dr < 65 nm. The

average radius of the ring is r 0 � 132 nm.
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Figure 2 The addition spectrum. a, Measurement of Coulomb blockade resonances at

®xed magnetic ®eld. The current is measured as a function of a voltage applied to both

plunger gates (pg1 and 2) simultaneously. b, The evolution of such sweeps with

magnetic ®eld results in the addition spectrum shown in colour. The regions of high

current (yellow/red) mark con®gurations in which a bound state in the ring aligns with

the Fermi level in source and drain. The Aharonov±Bohm period expected from the ring

geometry is indicated by the thin white horizontal lines. c, Magnetic ®eld sweep for

constant plunger gate voltage V pg � 218 mV (dashed line in the colour plot). This peak

shows a maximum in amplitude for B � 0, whereas other peaks (V pg � 270 mV)

display a minimum.
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What determines the magnetic ®eld dependence of positions and
amplitudes of the Coulomb blockade resonances? We start the
discussion from the energy spectrum of an in®nitely thin perfect
ring of radius r0 enclosing m ¯ux quanta8:

Em;l �
~2

2m*r2
0

�m � l�2

Here m* is the mass of the particle and l is the angular momentum
quantum number. For a given angular momentum state the energies
as a function of magnetic ®eld (or ¯ux m in units of the ¯ux
quantum h/e, where h is Planck's constant) lie on a parabola with
its apex at m � 2 l, as depicted in Fig. 3a. According to this
simple picture a single Coulomb blockade peak should oscillate as a
function of B along a zig-zag line (blue curve) with the Aharanov±
Bohm period DB. Comparison with the measurement in Fig. 2b
shows that some peaks indeed move along a zig-zag line, but others
show barely any B-dependence, a behaviour which we will discuss
later.

We ®rst take a closer look at the h/e-periodic modulation of the
Coulomb blockade peak amplitude. A peak follows a line of
constant electron number (blue line in Fig. 3a). The current is
successively carried by states �l�; � 2 l 2 1�; �l 2 1�; � 2 l 2 2�;
�l 2 2�¼ when B is increased from zero, that is, a change in state
occurs every half ¯ux quantum. The amplitude of Coulomb block-
ade peaks is determined by the wavefunction overlap between the
con®ned states in the ring and the extended states in source and
drain12. However, the wavefunctions in an in®nitely thin perfect ring
are independent of magnetic ®eld and given by

ªm;l�©� �
1������
2p

p eil©

where © is the azimuthal coordinate in the ring. The (lateral)
overlap (proportional to jªj2) with source and drain is the same
for all states. This model therefore does not predict the observed h/e-
periodic modulation of the peak amplitude.

A more realistic but still analytically soluble model takes the ®nite
extent of the wavefunctions in radial direction into account19, which
leads to several radial channels indexed by the quantum number n.
Using this model and analysing the Coulomb diamonds in detail, we
obtain agreement with the previous estimate of about 2±3 radial
modes and about 200 electrons in the ring. For small (large) n, the
occupied states at the Fermi level have a larger (or smaller) angular
momentum quantum number l at B � 0 and consequently display a
stronger (or weaker) magnetic ®eld dispersion. This model predicts
that the exponential decay of the wave functions in radial direction
depends on the value of l but is relatively insensitive to the value of
m (for small m). As all states move in zig-zag lines with an h/e
periodicity in magnetic ®eld, crossings of states with different
angular momenta l may lead to a different wave function overlap
and therefore to a modulation of the corresponding Coulomb peak
amplitude.

The angular uniformity of the probability density in a perfect ring
stems from the cylindrical symmetry which, for the real sample, will
be broken by the pure presence of source and drain, by dopants and
by the limits of the fabrication procedure. This leads to pinning of
the wavefunction and hence to a distinct amplitude of the prob-
ability density at source and drain. The perturbation will become
especially important at the degeneracy points of levels where it leads
to anti-crossing behaviour20. In the simplest case the probability
density changes from a uniform to a sinusoidal angle-dependence
at the degeneracy points. In this picture, the Aharonov±Bohm-
periodic oscillation of the amplitude along a single Coulomb peak
can be understood in terms of changing contributions of single
particle levels to the current-carrying state.

We now turn to the analysis of the experimental Coulomb
blockade peak positions. They are obtained from measurements
like the ones shown in Fig. 2b by converting the gate-voltage axis

into an energy scale using the appropriate lever arm as determined
from the analysis of the Coulomb blockade diamonds21. A constant
charging energy of 190 meV is subtracted from the position of a
Coulomb maximum12,15 and the resulting energies are plotted in
Fig. 3c as a function of magnetic ®eld. Clearly many of the peaks
move in pairs (see, for example, the black±purple, the blue±red and
the green±purple pairs), previously identi®ed as spin pairs15. The
exchange-related spin-splitting energy with a value of around
20 meV for these peaks is on average smaller than the discrete
energy level spacing ¢. Electrons therefore successively populate
these orbital states with spin-up and spin-down electrons. For other
peaks (green, yellow, red) spin pairing is not clearly observed. As
depicted in Fig. 3c the orbital states move up and down in the
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Figure 3 Reconstruction of the energy spectrum. a, Theoretical spectrum of a single

mode ring. The parabolas with constant l (bold red line corresponding to l � 0) have

a minimum at l � m. The blue zig-zag line corresponds to a Coulomb peak after the

charging energy has been subtracted in the constant interaction model. b, Calculated

spectrum with ring parameters typical for our dot. We assume a slightly asymmetric

potential shown in the inset, which mixes states of positive and negative angular

momenta. This leads in some cases to eigenenergies that barely depend on magnetic

®eld. c, Reconstruction of the energy spectrum of the ring from the data shown in Fig.

2. The plunger gate voltage was converted into dot energy Edot using measurements

of the Coulomb diamonds and a constant charging energy of 190 meV was

subtracted.
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magnetic ®eld with the Aharonov±Bohm period DB. In this respect
our experiments show the long-predicted energy spectrum char-
acteristic for quantum rings5.

Let us look at the states in Fig. 3c that have a very small magnetic
®eld dispersion. In the framework of the model of ref. 19 such `¯at'
states can occur at the onset of the occupation of the next highest
radial channel. However, in our experiment we observe such states
over wide ranges of gate voltages and a more re®ned model is
necessary. In Fig. 3b we show a calculation with ring parameters
typical for our dot. The spectrum is obtained from the diagonaliza-
tion of a truncated hamiltonian matrix expressed in the eigenstate
basis of ref. 19, but including diagonal and off-diagonal elements
given by a symmetry-breaking potential. The angle-independent
part q0 of ref. 19 is replaced by q0�1 � e cos�2f�� following the idea
of shape deformation in ref. 22. This breaks the symmetry, leading
to inter- as well as intra-subband coupling. The values used for the
calculation were ~q0 � 1:8 meV, r0 � 132 nm and e � 0:06. Two
radial modes are taken into account leading to two sets of parabolic
energy dispersions as a function of magnetic ®eld in the unper-
turbed system. The perturbation mixes states of positive and
negative angular momentaÐthis leads in some cases to eigenener-
gies that barely depend on magnetic ®eld. Such states can intersect
the diamonds formed by strongly oscillating levels in close resem-
blance to the experimental ®ndings. The model obviously can only
give the general tendency of the experimental spectra. Nevertheless,
the dominant deviations from the perfect ring spectrum can
be understood as the result of a symmetry-breaking potential
perturbation.

We estimate the contribution of a particular strongly oscillating
state to the persistent current8 from the experimental dispersion
(that is, black dots in Fig. 3c) and obtain a value of 5 nA. If we
assume that the currents of all the lower lying states approximately
add up to zero this current is also an estimate of the total persistent
current in the ring and the value is consistent with previous
magnetisation measurements9,10,11.

For quantum dots containing a small number of electrons, the

shell structure of the level occupancy can clearly be detected
because of the dominating cylindrical symmetry13. Quantum dots
containing many electrons are usually described in the context of
an underlying classically chaotic geometry, since small perturba-
tions of parameter space such as potential shape or magnetic ®eld
can induce parametric ¯uctuations in the energy levels and
consequently in the Coulomb peak positions. Several theoretical
and experimental works investigate whether the spectra of such
many-electron quantum dots can adequately be described by
random matrix theory23. Our quantum ring represents a many-
electron Coulomb blockaded system with regular geometry. This,
together with the small number of radial modes, is why we can
qualitatively understand the principal features of the observed
energy spectrum without the need of a statistical analysis. The
source of this observation lies in the circular geometry of our
ring.

To support this view we fabricated a square quantum dot with a
circular antidot in the centre. This system is considered a Sinai
billiard and is one of the theoretically best-studied examples of a
classically chaotic system. Figure 4 shows the evolution of the
conductance as a function of plunger gate and magnetic ®eld of
this system presented in a way comparable to Fig. 2b for the
quantum ring. Around B � 0 the Coulomb peak maxima ¯uctuate
irregularly as a function of magnetic ®eld with an average period
compatible with an Aharonov±Bohm-type argument. As the mag-
netic ®eld is increased to a value where the classical cyclotron
diameter matches the antidot's circumference, we observe pro-
nounced B-periodic behaviour of the Coulomb peak maxima in
amplitude and position. As in antidot lattices24, the magnetic ®eld is
expected to induce regular parts in the predominantly chaotic phase
space existing at B � 0.

The detailed analysis of quantum rings demonstrates that even in
many-electron Coulomb blockaded systems a detailed understand-
ing of the energy spectrum can be obtained. With advanced
fabrication techniques we will be able to understand more complex
and multiply connected structures on a quantum mechanical level.
Electron±electron interactions beyond the constant interaction
model are believed to play a minor role in our quantum ring.
One indication is the observation of spin pairs and relatively small
spin splitting. Once ring structures with only one radial mode
occupied are available, such quantum rings could be used to
investigate spin effects25 or even Luttinger liquid behaviour in a
circular one-dimensional system with periodic boundary condi-
tions. We could also search for persistent current effects in the
transport signatures of a quantum ring now that the energy
spectrum is experimentally accessible. M
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Synchrotrons produce continuous trains of closely spaced X-ray
pulses. Application of such sources to the study of atomic-scale
motion requires ef®cient modulation of these beams on time-
scales ranging from nanoseconds to femtoseconds. However,
ultrafast X-ray modulators are not generally available. Here we
report ef®cient subnanosecond coherent switching of synchro-
tron beams by using acoustic pulses in a crystal to modulate the
anomalous low-loss transmission of X-ray pulses. The acoustic
excitation transfers energy between two X-ray beams in a time
shorter than the synchrotron pulse width of about 100 ps. Giga-
hertz modulation of the diffracted X-rays is also observed. We
report different geometric arrangements, such as a switch based
on the collision of two counter-propagating acoustic pulses: this
doubles the X-ray modulation frequency, and also provides a
means of observing a localized transient strain inside an opaque
material. We expect that these techniques could be scaled to
produce subpicosecond pulses, through laser-generated coherent
optical phonon modulation of X-ray diffraction in crystals. Such
ultrafast capabilities have been demonstrated thus far only in
laser-generated X-ray sources, or through the use of X-ray streak
cameras1±6.

X-ray anomalous transmission (the Borrmann effect) is a classical
diffraction effect where X-rays propagate through a crystal with low

loss over many average attenuation lengths7±9. The X-ray ®eld found
by solving Maxwell's equations in a periodic medium has two
linearly independent eigensolutions (see Fig. 1). Solution a is the
anomalous transmission wave, where absorption is reduced because
the nodes of the X-ray ®eld lie near the atomic crystal planes, as in a
waveguide. Solution b has the antinodes of the ®eld near the lattice
planes, creating enhanced absorption. In crystals thicker than
several attenuation lengths, the b-solution is almost completely
absorbed, and the X-rays are nearly pure a-type. At the exit face of
the crystal, the a-wave redistributes into two freely propagating X-
ray beams with approximately equal intensities: the forward dif-
fracted beam, with a momentum parallel to the original incident
beam; and a de¯ected diffracted beam, which satis®es the Laue
condition for a particular set of crystal planes.

Anomalous transmission is sensitive to small lattice distortions.
Borrmann's own experiments demonstrated the sensitivity of
anomalous transmission to lattice strain due to a small thermal
gradient10. More recent work has shown that low-frequency acoustic
waves can spatially modify the anomalous transmission11 or even
destroy it12±14. In all of these experiments, the induced strain
weakens the anomalous transmission.

The forward and de¯ected beams are the eigenmodes outside the
crystal. At the exit face of the crystal, a and b redistribute into
orthogonal linear combinations of these two freely propagating
mutually coherent X-ray beams. The a- and b-solutions propagate
at different phase velocities, because they experience different
indices of refraction. This leads to the PendelloÈsung effectÐthat
is, the modulation of the intensity of the outgoing X-ray beams as a
function of the total accumulated phase difference between the two
interior solutionsÐprovided that the crystal is thin enough for the
b-solution not to be absorbed7±9. The key to coherent control of the
X-ray pulses is to create coherent combinations of a and b near the
exit face of the crystal, which will interfere to produce the desired
modulation in the free solutions outside the crystal. In particular, a
buried interface (such as a dislocation) repopulates the b-solution
even after it has decayed away in a thick crystal15.

In previous experiments on anomalous transmission11±14, the
perturbations encompassed the entire crystal bulk. In the present
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Figure 1 Geometry for X-ray diffraction from the asymmetric 202 crystal planes of

Ge[001]. Inside the crystal, the ®eld consists of two transverse standing waves: the

a-wave has its nodes on the atomic planes and thus experiences low absorption, while

the b-wave has its antinodes on the atomic planes and thus experiences enhanced

absorption. At the exit face of the crystal, a and b redistribute into orthogonal linear

combinations of two freely propagating X-ray beams: a forward-diffracted beam and a

de¯ected-diffracted beam.
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