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Abstract

The conductance matrix of a three-terminal quantum ring has been measured in the Coulomb blockade regime for strong coupling to
the leads. In contrast to multi-terminal quantum dots in the weak coupling regime, we find that the conductance matrix is asymmetric.
This is a direct evidence of the relevance of phase coherence in transport experiments through quantum dots strongly coupled to the

leads.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Open mesoscopic rings are widely used as interferom-
eters to study electronic phase coherence. In addition, a
multi-terminal set-up is sensitive to the phase of the
electrons travelling through the structure [1-4], which can
be probed by the asymmetry of the conductance matrix of
such a system at finite magnetic field. On the other hand,
for sufficiently small rings, Coulomb blockade has been
reported [5]. In the weak coupling regime, the incoherent
sequential tunneling model [6], widely used to interpret
Coulomb blockade experiments, assumes a 0-D state
coupled to leads through tunnel barriers, which leads to a
symmetric conductance matrix for a multi-terminal set-up.
Here we address the question of the cross-over from closed
to open quantum rings observed by the symmetries of the
conductance matrix.

In previous work on a quantum dot weakly coupled to
three leads we have shown that the conductance matrix is
symmetric at finite magnetic field, as expected in the
sequential tunneling model [7]. Interestingly, the validity of
this model even for coherent transport has been confirmed
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theoretically [8]. Here we present measurements of the
conductance matrix in a new geometry, a three-terminal
quantum ring. Compared to a many-electron quantum dot,
the ring shape allows a better control of the Aharonov—
Bohm flux through the shape of its wave function, and of
the electronic phase along the ring. In the strong coupling
regime, we show that the conductance matrix is asym-
metric, in contrast to weakly coupled quantum dots. This
signature of the phase coherence in the quantum ring
shows the importance of fully coherent models [8] for
describing the transport through quantum dots in the
strong coupling regime.

2. Sample and methods

The three-terminal ring shown in Fig. 1 has been
fabricated by using an atomic force microscope (AFM)
to oxidize locally the surface of a GaAs/AlGaAs hetero-
structure containing a two-dimensional electron gas
(2DEG) 34nm below the surface (electron density
4.5 x 10" /m?, mobility 25m?/Vs) [9,10]. The 2DEG is
depleted below the oxide lines, defining a ring structure
connected to three leads through quantum point contacts.
The coupling strengths from the ring to the leads is tuned
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Fig. 1. Sample and experimental set-up. The picture is a micrograph of
the oxide lines defining the three-terminal quantum ring, taken with an
AFM after the oxidation. The properties of the ring are tuned by applying
voltages on the gates LG1-LG3 and PG (see text). Bias voltages
Viiasi—Vbias3 are applied on the three leads, while the currents through
each lead I,—I5 are measured.

by applying a voltage on the gates LG1-LG3, while the
three plunger gates (PG) are used to tune the number of
electrons in the ring. Measurements of Coulomb diamonds
in the weak coupling regime reveal a charging energy Ec ~
1.2meV and an average single-particle level spacing
AE ~ 200 peV. In the open regime, the conductance shows
Aharonov—Bohm oscillations as a function of the magnetic
field, with a period of 75mT, corresponding to a diameter
of the ring of 270nm. The measurements have been
performed in a *He/*He dilution refrigerator with an
electron temperature less than 50 mK.

In order to measure the conductance matrix elements, a
bias voltage of 10 uV is applied on one lead, the two other
leads being grounded (see Fig. 1). The current measured
through the three leads, divided by the bias voltage, is then
a direct measurement of the three elements of the first
column of the conductance matrix. Applying the bias
successively to the two other leads gives the other elements
Gj; of the conductance matrix. For this experiment we have
checked that the contact resistances are negligible. More
details about the measurement method are given in Ref. [7].

3. Results

We have measured the conductance matrix of the
quantum ring in the Coulomb blockade regime, for which
kT <AE < Ec and the resistances of the tunnel barriers
are larger than /1/¢*. By tuning the gates LG1-LG3, we can
tune the coupling of the ring to the leads in order to be in
the strong coupling regime, for which the level broadening
I' is larger than the temperature, but still smaller than the
mean level spacing: kg T <hl' <AE. In this regime, Kondo
physics is expected and has been observed in this system
[11]. A trace of the conductance measured by applying a
bias to lead 3 and measuring the current through lead 3,
i.e., Gi3, as a function of the plunger gate voltage Vpg is
shown in Fig. 2. This trace shows broad conductance
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Fig. 2. Absolute value of the conductance matrix element Gj; as a
function of the plunger gate voltage V'pg. The two dashed lines enclose the
conductance peak considered in the following.
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Fig. 3. Position and amplitude of one Coulomb peak in the strong
coupling regime vs. magnetic field, obtained from a fit with a Lorentzian
shape [12]. (a) Mean of the peak position. The error bars represent the
standard deviation over the nine conductance matrix elements. (b)—(d)
Off-diagonal conductance matrix elements taken for the maximum of the
conductance peak. The elements are (b) G2 (solid line) and Gy, (dashed
line), (c) G; (solid line) and G3; (dashed line), (d) G3; (solid line) and G3
(dashed line).

resonances, characteristic of coupling-broadened peaks
[12].

The whole conductance matrix corresponding to the
plunger gate range shown in Fig. 2 has been measured as a
function of a magnetic field applied perpendicular to the
2DEG. The peaks have been fitted by a Lorentzian
function [12] in order to determine their positions in Vpg
and their magnitudes. In the following we focus on the
peak enclosed in Fig. 2 by the two dashed lines, for which
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the fit gives a level broadening AI' = 110 & 20 uV, but all
peaks measured in the same regime show similar width.
Fig. 3 shows the position and the magnitude of the peak
marked in Fig. 2 as a function of the magnetic field. The
off-diagonal conductance matrix elements are shown in
Figs. 3(b)~(d). It is clear from these plots that the
conductance matrix is not symmetric, i.e., G;(B)# Gji(B).
But the traces follow the Onsager relations
Gii(B) = Gji(—B), as already observed for open systems [2].

4. Discussion

The asymmetry of the conductance matrix observed in
our system in the strong coupling regime is clearly different
than the symmetry reported in multi-terminal quantum
dots in the weak coupling regime [7]. To the best of our
knowledge, it is the first time that such an asymmetry is
observed in a closed system, i.e., showing Coulomb
blockade. Such an asymmetry could be attributed to a
classical origin (Hall effect). But the fact that the
asymmetry is observed at very low magnetic field and has
the same period as the Aharonov—Bohm oscillations is a
strong indication that it comes from coherent transport
through the ring. In addition, we have checked that no
asymmetry is observed in this system for weak coupling.
We attribute it to the phase accumulated by electrons
travelling through the ring, as already observed in multi-
terminal open ring structures [1-4], but further experiments
are needed to confirm this point.

This asymmetry cannot be explained with a incoherent
sequential tunneling model [6], for which the conductance
through the ring would be only determined by the
tunneling rates from the ring to the leads. It is then a clear
evidence that the phase coherence in quantum dots is not
only relevant in phase measurements [13,3,4], but also
directly in transport experiments. It points out the
relevance of fully coherent models [8] for describing the
transport through strongly coupled quantum dots.

To check further the consistency of the measurement, we
have performed the following analysis. The conductance
matrix can be split into a symmetric and an anti-symmetric
part G = G* + G*. For a three-terminal set-up, the sum
rules impose that the symmetric part G® contains only three
free parameters, and the anti-symmetric part G* only one:
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Fig. 4. Splitting up of the conductance matrix for the amplitude of one
Coulomb peak in the strong coupling regime vs. magnetic field. (a)
Elements of the symmetric part, G}, (solid line), G5; (dashed line), G35,
(dash-dot line). (b) Elements of the anti-symmetric part, G, (solid line),
G%; (dashed line), G, (dash-dot line).

Splitting of the conductance matrix for the amplitude of
the peak marked in Fig. 2 is shown in Fig. 4. We note in
particular that the anti-symmetric elements G, =
(G2 — G21)/2, G% = (G —Gx)/2 and G5 = (G3 —
G13)/2 all merge into the same curve, as expected from
the sum rules.

In the weak coupling regime, the three independent
elements of the symmetric part G° were shown to be related
to the coupling strengths to the leads [7]. Whether this is still
true in the strong coupling regime has to be investigated.

5. Conclusion

We have studied the conductance matrix of a three-
terminal quantum ring in the Coulomb blockade regime
for strong coupling to the leads. We show a clear
asymmetry of the conductance matrix in this regime. This
direct evidence of coherent transport through the quantum
ring points out the relevance of fully coherent models to
describe transport experiments in quantum dots.
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