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Abstract. Magnetotransport measurements on a two-terminal semiconductor
quantum ring structure are reviewed. The structure has been fabricated by AFM-
lithography on a shallow Ga[Al]As heterostructure. In the open regime Aharonov-
Bohm oscillations are observed and the phase coherence length can be inferred
from their temperature dependence. The ring can also be tuned into the Coulomb
blockade regime. It is demonstrated that single-particle level spectra can be recon-
structed showing many characteristics of an ideal one-dimensional ring spectrum.
Further information about individual quantum states including their position and
degree of localisation, their angular momentum and their spin is extracted from
measurements in perpendicular and parallel magnetic field and from measurements
with asymmetrically applied plunger gate voltages. The ring is an example for a
Coulomb blockaded many-electron system in which many aspects of the energy
spectrum and the quantum states can be understood quantitatively.

1 Introduction

Within the last 100 years the implications of quantum theory have dominated
physics research. Richard Feynman states in his lectures on physics that quan-
tum interference ‘has in it the heart of quantum mechanics’ [1]. Within the
last fifteen years semiconductor nanostructures have proven to allow the real-
isation of nearly ideal quantum systems. Among them is the quantum point
contact showing the quantisation of conductance [2,3], quantum dots repre-
senting tunable artificial atoms [4,5] and quantum ring structures exhibiting
the Aharonov-Bohm (AB) effect [6,7,8,9]. Electron transport through these
structures at low temperatures is a key experimental technique which has
led to the discovery of a number of effects for which the phase coherence of
electrons is crucial.

In this review we concentrate on such experiments on a nano-scale quan-
tum ring structure which gives remarkable insight into and control over quan-
tum mechanical properties of electronic states [10,11]. The review is organised
as follows: after the introduction of the structure and its fabrication we dis-
cuss the AB effect in the open two-terminal ring. When the coupling of the
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ring to source and drain contacts is strongly reduced the ring can be driven
into the Coulomb-blockade regime where the ring’s energy spectrum and the
nature of its orbital states can be investigated. In the last section we discuss
how the spin states in the ring can be measured.

2 The Ring Structure and Its Fabrication

The quantum ring structure is fabricated on a Ga[Al]As heterostructure with
the heterointerface 34 nm below the sample surface. The density of the two-
dimensional electron gas (2DEG) forming near the interface at a temperature
of T = 4.2K is ns = 5 × 1015 m−2, its mobility is µ = 90m2/Vs.

The electron gas can be patterned into a nanostructure by local anodic
oxidation [12,13]. This technique allows the direct local oxidation of a GaAs
surface with the tip of a scanning force microscope under ambient conditions
by applying a voltage between the conductive tip and the buried electron
gas. At low temperatures the electron gas is depleted below the oxide lines.
Similar to the action of a local shallow etch on the 2DEG, self-aligned but
mutually insulated conducting regions are created (Fig. 1a).

Figure 1b is an image of the quantum ring structure taken after the oxida-
tion step with the scanning force microscope. The bright lines are the oxide
lines. The ring structure in the centre is connected to source and drain via
quantum point contacts. These can be tuned with the in-plane gates QPC1a
and b and QPC2a and b. Two additional plunger gates allow to tune the elec-
tronic structure of the ring. The average radius of the ring is r0 = 132nm,
its electronic width about ∆ r = 65nm. After the oxidation step the whole
structure has been covered with a metallic top gate electrode.

Comparing the Fermi wavelength in the unstructured electron gas λF =
35nm with the width of the ring ∆ r we estimate that 2–4 radial modes may
be occupied in the ring. The elastic mean free path of electrons in the 2DEG
is le = 8 µm, much larger than the size of the whole structure.

Fig. 1. (a) Schematic of the transfer of the oxide line pattern into the two-
dimensional electron gas. (b) Scanning force microscopy image of the ring structure
taken after writing the oxide lines but before depositing the top gate metallisation
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3 Aharonov-Bohm Effect

3.1 Overview

Figure 2 shows the magnetoresistance of the ring measured at a temperature
of 1.7K with an AC bias current of 1.4 nA at 31Hz. The top gate voltage
was Vtg = 300mV and all in-plane gate voltages were kept at 210mV. These
voltage settings make sure that the ring is strongly coupled to source and
drain. At magnetic fields B > 2 T we identify Shubnikov-de Haas minima
corresponding to an electron density of ns = 5.5× 1015 m−2, e.g. close to the
density in the pristine 2DEG. At low magnetic fields B < 0.9T (Aharonov-
Bohm regime) pronounced B-periodic AB oscillations are observed with a
period ∆B = 77mT corresponding to a circular area with radius 131nm in
excellent agreement with the geometric ring radius r0. The oscillations are
strongly reduced in amplitude above B = 0.9T where the classical cyclotron
radius Rc = h̄kF/eB becomes smaller than r0. At these fields the chirality
of the quantum states in a magnetic field starts to play a role. Shubnikov-de
Haas oscillations set in at about 2 T where Rc ≈ ∆ r. The inset shows that
AB oscillations with a slightly reduced period between 65 and 70mT persist
even in the regime where r0 < Rc < ∆ r, but they are hardly discernible at
higher fields. The reduced period reflects the increased area enclosed by the
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Fig. 2. Magnetoresistance of the ring measured at T = 1.7K. At low magnetic fields
(B < 0.9 T) h/e-periodic Aharonov-Bohm oscillations are visible with a period
∆ B = 77 mT. At large fields (B > 2T) the ring shows Shubnikov-de Haas minima
for even filling factors ν ≤ 10. The inset shows the magnetoresistance in this field
range with the smooth background subtracted. B-periodic oscillations with slightly
smaller period are observed
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states as they are pushed to the outer ring boundaries by the Lorentz force.
A reduction of the AB oscillation amplitude in high magnetic fields has also
been observed in earlier experiments on ring structures [9,14,15].

In the remainder of this review we concentrate on measurements in the
Aharonov-Bohm regime at B < 0.9T where the effects of the magnetic field
on the orbital wave functions play a minor role but B acts mainly on the
wave function phase. In a two-terminal measurement the observable phase of
the Aharonov-Bohm oscillations in the magnetoresistance is rigid due to the
generalised Onsager relations [16] taking on values of either 0 or π. The mag-
netoresistance in Fig. 2 is symmetric around zero magnetic field in agreement
with this prediction.

3.2 Phase Coherence Length from Temperature Dependence

Figure 3 shows the Aharonov-Bohm oscillations measured at three different
temperatures from T = 1.7K up to 15K. At the lowest temperature the
magnetoresistance shows a significant h/2e-periodic component. This period-
icity can either arise from the interference of time reversed paths (Altshuler-
Aronov-Spivak oscillations [17]) or from other paths with winding number
n = 2 around the ring. In general, h/ne-components of the oscillations can
be extracted from the measurement by Fourier analysis. The result for our
measurements is shown in Fig. 4. With increasing temperature the oscillations
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Fig. 3. Magnetoresistance of the ring measured at different temperatures. The AB
oscillations decay with increasing temperature
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in the magnetoresistance die out. The h/ne components disappear the faster
the larger the winding number n. At T = 15T weak h/e-periodic oscillations
remain.

Being an interference effect the AB oscillations require the phase coher-
ence of electron waves. The amplitude of the oscillations is affected by de-
phasing [18]. The temperature dependence of the h/ne oscillation amplitude
An(T ) has been suggested to follow the dependence [19]

An(T ) ∝ e−nL/lϕ(T ),

where lϕ(T ) is the temperature dependent phase coherence length and L is a
characteristic length scale of the ring for which we use half the circumference,
i.e. L = πr0. It has been argued that thermal energy averaging will give a
significant contribution to the temperature dependence of the h/ne-periodic
oscillations for odd n as soon as kT becomes larger than the Thouless energy
Ec which is in a strictly one-dimensional ring similar to the level spacing ∆
[18,19]. In contrast, oscillations with even n, in particular with n = 2, are
believed to be insensitive to thermal averaging due to the large contribution
of time reversed paths [19]. The temperature dependence of these oscillations
is therefore expected to be dominated by lϕ(T ). From these arguments a
temperature dependence lϕ(T ) ∝ T−1 was found in recent experiments in a
temperature range between 0.3 and 3.5K [19], similar to the behaviour in
small open dots [20].

In our experiment the temperature dependence of the h/2e-periodic oscil-
lations does not strictly follow the 1/T -dependence over the full temperature
range (Fig. 4). Other dephasing mechanisms in addition to electron-electron
scattering may lead to a stronger decay at higher temperatures. If we esti-
mate the phase coherence length from the data points below 6K assuming the
1/T -dependence to hold, we find lϕ(T ) = 7.5 µm/(T/K). In addition, we find
that the decay of h/ne-periodic oscillations is proportional to n for n ≤ 3,
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i.e. thermal energy averaging does not seem to dominate in our structure for
odd n. This result which is in contrast to previous experiments [19] may be
due the more than a factor of ten larger level spacing ∆ ∝ 1/r20 caused by
our small ring radius r0.

4 The Ring in the Coulomb-Blockade Regime

For the following experiments the ring was cooled down to 100mK in a di-
lution refrigerator. A DC bias voltage of Vbias = 20 µV was applied between
source and drain contacts and the DC current was measured with a noise
floor at about 200 fA.

The quantum ring structure can be tuned into the Coulomb blockade
regime [10,11] by lowering the top gate voltage to Vtg ≈ 210mV and setting
the voltages of the point contact gates VQPC1a = VQPC1b = 200mV and
VQPC2a = VQPC2b = 300mV. Plunger gate voltages were kept between 200
and 300mV.

4.1 Coulomb Blockade Diamonds

The differential conductance dI/dVbias is shown in Fig. 5 as a function of
Vbias and Vtg. Along the dashed line of zero bias conductance resonances
can be seen at discrete Vtg. The diamond shaped regions of small differential
conductance lining up along the same axis are Coulomb blockade diamonds
characteristic for regions of fixed electron number in the ring [21,22]. From one
diamond to the next the number of electrons increases by one with increasing
Vtg. Half the width of a certain diamond in Vbias-direction gives the energy
(divided by the electronic charge e) for adding the next electron to the dot.
In the constant interaction picture [23] it is given by the sum of the charging
energy contribution e2/CΣ and the single-particle level spacing ∆i. For the
diamond marked by white boundary lines in Fig. 5 this energy is 300µeV.
The separation of conductance peaks at zero bias is given by the same energy
allowing to determine the lever arm of the top gate to be αtg = 0.6. This
lever arm is constant over the whole voltage range shown in the figure. It
allows the conversion of Vtg into an energy scale which is important for a
quantitative spectroscopy of states in the ring.

4.2 Voltage Dependent Lever Arms

In contrast to αtg the lever arms of the in-plane plunger gates αpg are not
constant. This is shown in Fig. 6a where the DC conductance is plotted for
constant Vbias = 20 µV and variable top gate and plunger gate voltages (the
plunger gate voltage is applied to both plunger gates in Fig. 1b). The rea-
son for the voltage dependent αpg is the finite density of states in the two-
dimensional in-plane gates, which leads to substantial depletion of these gates
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Fig. 5. The differential conductance dI/dVbias as a function of top gate and bias
voltage shows Coulomb blockade diamonds. The plunger gate voltage was Vpg =
300 mV

near the ring at negative Vtg − Vpg. The dashed lines in the figure indicate
parametric charge rearrangements in the sample. Given that αtg is indepen-
dent of the gate voltages, the Vtg axis in Fig. 6a can be directly converted to
an energy scale. We further observe that on lines of constant Vtg −Vpg (these
lines are essentially parallel to the Vtg-axis, i.e. at constant Vpg) different
conductance peaks have with good accuracy the same slope dVtg/dVpg. We
determine the voltage dependent differential lever arm

αpg(Vpg) = αtg
d(eVtg)
dVpg

by averaging the slopes for different peaks at given Vpg. Integration of the
differential lever arm gives the desired energy calibration for the Vpg-axis.
Figure 6b shows the success of the procedure by plotting the peaks of Fig. 6a
with two renormalised energy axes. All peaks have a slope of −1 by con-
struction. The same calibration procedure can be performed for each plunger
gate individually. It turns out that the corresponding differential lever arms
αpgi(Vpgi) are identical for both plunger gates (i = 1, 2) demonstrating their
symmetric action on the states in the ring. Figs. 6c and d show the convincing
results.
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Fig. 6. (a) The conductance G as a function of top gate and plunger gate voltage
shows the voltage dependent lever arm of the plunger gate. (b) After converting
the Vpg and the Vtg-axis to an energy scale all conductance peaks move along lines
with slope of −1. (c) and (d) The same calibration works for the two individual
plunger gates

4.3 Energy Spectra as a Function of Magnetic Field

The electron in a one-dimensional ring pierced by a magnetic flux (Fig. 7a)
has become a popular analytically solvable model in quantum mechanics
courses. The Schrödinger equation can be written in the form [24][

1
2m�

(p̂+ h̄k)2 + V (x)
]
uk(x) = Ekuk(x), (1)

where k = Φ/(r0Φ0) = πr0eB/h is the renormalised magnetic field, the co-
ordinate x is measured along the ring circumference and p̂ = −ih̄∂/∂x is the
momentum operator. An arbitrary potential V (x) is allowed around the ring,
which has the property V (x+ 2πr0n) = V (x) for an arbitrary integer n. The
wave function uk(x) is also required to be periodic around the ring. Using
the Ansatz for a Bloch wave ψk(x) = uk(x) exp(ikx) one can show that the
ψk(x) obey the equation

[
p̂2

2m�
+ V (x)

]
ψk(x) = Ekψk(x),

which describes the problem of an electron in a one-dimensional periodic
potential V (x). The eigenvalue solutions of this problem are, of course, well
known (see e.g. [25,24]) and we show them schematically in Fig. 7b and c. If
the potential V (x) which breaks the rotational symmetry of the problem is
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Fig. 7. (a) Schematic of the one-dimensional ring problem. (b) Energy spectrum for
V (x) = 0. The flux piercing the ring is measured in dimensionless units m = Φ/Φ0,
where Φ0 = h/e is the flux quantum. Numbers along the zig-zag line are the angular
momenta of the corresponding states. (c) Energy spectrum for V (x) = 0 (dashed
parabolae) and V (x) �= 0 (solid lines) in the reduced zone scheme

zero, we have the free-electron case and the spectrum consists of parabolae
shifted with respect to each other by one flux quantum. Characteristic for
the resulting energy spectrum in Fig. 7b are the diamond shaped regions
enclosed by energy states. Alternatively the one-dimensional ring states can
be described in terms of the angular momentum quantum number � [10].
Each parabola in Fig. 7b corresponds to a certain angular momentum such
that � = m at the apex of the parabola, where m = Φ/Φ0 is the number of
flux quanta threading the ring, i.e.

E�(m) =
h̄2

2m�r20
(�−m)2. (2)

In case of non-zero V (x) (weak periodic potential) the dispersion splits at
degeneracy points and forms a ‘band structure’ (Fig. 7c). Filling such a ring
spectrum with a constant electron number, we observe that the topmost
state changes its energy in a zig-zag fashion as a function of magnetic flux
(Fig. 7b and c). Introducing interactions in the spirit of the constant inter-
action model, neighboring ‘bands’ in Fig. 7c will additionally split by the
charging energy e2/CΣ and each individual ‘band’ will split into a spin-pair
with the same spacing.

Figure 8a shows the measured conductance of the ring as a function of
plunger gate voltage and magnetic field taken at Vtg = 213mV, i.e. at a
different top gate voltage than the corresponding measurement in [10]. The
dispersions of the conductance peaks in a magnetic field show the Aharonov-
Bohm period of ∆B = 75mT in peak position as well as in amplitude, about
the same value found for the oscillating conductance in the open regime
(Fig. 2). Under the reasonable assumption of a magnetic field independent
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Fig. 8. (a) Measured conductance as a function of plunger gate voltage and mag-
netic field. (b) Reconstructed energy spectrum. A constant charging energy of
320 µV was subtracted between neighbouring conductance peaks

charging energy the motion of the peaks as a function of magnetic field does
directly reflect the dispersion of single-particle states. Pronounced zig-zag
behaviour as expected from the one-dimensional model is, for example, seen
for the peaks labeled 13 and 14. Obviously these two peaks are a spin-pair,
i.e. they belong to the same orbital level successively populated by spin-up
and down with increasing Vpg. No significant rounding of the cusps along
these lines is observed indicating that the symmetry breaking potential felt
by these states is small. Other conductance peaks do not show such a pro-
nounced zig-zag behaviour but have a weaker magnetic field dispersion. They
look rather like the lowest states in Fig. 7c which are strongly influenced by
the potential V (x). Considering that two or more radial subbands coexist in
the ring structure we have to expect the superposition of two or more ‘band
structures’ like the one in Fig. 7c offset by the subband splitting with respect
to each other. Such a scenario leads to many accidental level crossings re-
ducing the probability for the occurrence of strongly oscillating states. At
the same time this consideration explains the coexistence of flat as well as
strongly oscillating states which are close in energy.

It has been demonstrated in [10] that an experimental single-particle en-
ergy spectrum can be reconstructed from measurements like Fig. 8a if a con-
stant charging energy is subtracted between conductance peaks. The result
of this procedure is shown in Fig. 8b. Already in this figure, the presence of
diamonds characteristic for the ideal one-dimensional ring spectrum (Fig. 7b)
can be seen. In Fig. 9 measurements taken at three slightly different top gate
voltages have been combined in order to reconstruct a spectrum with as many
states as possible. In this spectrum, many diamonds like the shaded one are
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discernible reminding of the one-dimensional model. Even the parabolic dis-
persions of states with given angular momentum can be followed over a large
energy interval. The additional states with a weaker dispersion are due to
low lying states of another subband.

An upper limit for the electron number N in the ring can be estimated
from the product of the electron density ns in the 2DEG and the ring area
A = π(r0 + ∆ r/2)2 − π(r0 − ∆ r/2)2 giving N < 270. A lower limit for N
can be obtained as follows: from the slope of the strongly oscillating zig-zag
states such as 13 and 14 and using eq. (2) we can determine the associated
angular momentum � at B = 0 to be about 8. This implies that there are
17 spin degenerate angular momentum states occupied in this subband ac-
commodating 34 electrons. Additional electrons will fill states of at least one
additional subband. Just counting the corresponding conductance peaks at
B = 0 in Fig. 9 gives ten additional electrons. We are confident that the ac-
tual electron number is N > 50. From these estimates it becomes evident that
the ring is a many-electron quantum dot. In the literature, energy spectra of
few-electron quantum dots have been analysed in detail and shell-filling has
been found in so-called artificial atoms [4]. Energy spectra of many-electron
quantum dots have so far been analysed by statistical approaches such as
random matrix theory (see [26,27] for excellent reviews).

The quantum ring structure discussed here is an example for a many-
electron quantum dot in which many aspects of the energy spectrum and the
quantum states can be understood quantitatively and many others at least
qualitatively.
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We support this central statement by a few examples some of which have
been discussed in other publications [10,11]. As shown above, angular mo-
mentum quantum numbers can be determined from the slopes of the strongly
oscillating zig-zag states. This implies that the corresponding wave functions
are close to plane wave states extended around the ring. As discussed in [11]
the contribution of these states to the persistent currents in the ring is signif-
icant and can be quantitatively determined from the spectrum. On the other
hand, states with a weak magnetic field dispersion will tend to be localised by
some symmetry breaking potential V (x). The wave functions are, however, of
such a shape that the states still couple sufficiently to source and drain and a
conductance resonance is detected. Localisation of states may therefore most
likely occur in the vicinity of source and drain, or in one of the two arms
of the ring. We will come back to this issue further below. It has also been
shown [11] that interaction effects can be explained quantitatively based on
a Hartree-calculation. Screening of the interaction by the presence of the top
gate lowers the charging energy significantly. For the same reason the typi-
cal exchange energy is negligibly small. Under the assumption of negligible
fluctuations of the charging energy this explains why spin-pairs occur in this
sample with exceptionally high frequency.

4.4 Asymmetric Plunger Gate Voltages

The nature of states in the ring being either extended (strong dispersion in B,
well defined �) or localised (flat dispersion in B) can be further investigated
by the application of asymmetric plunger gate voltages. The basic idea is
that states localised in the arm near plunger gate 1 will strongly shift in
energy when this plunger gate is changed, but weakly shift if plunger gate 2
is changed due to the different lever arms of the two gates on such a state.
A state which is symmetric with respect to the axis connecting source and
drain is in first order not shifted at all when Vpg1 − Vpg2 is changed while
(Vpg1 + Vpg2)/2 is kept fixed.

Figure 10a shows the dispersion of three neighbouring states measured at
B = 2mT as a function of the asymmetry parameter α given by the differ-
ence Vpg1 −Vpg2 converted to energy using the voltage dependent lever arms
discussed before. The average voltage (Vpg1 + Vpg2)/2 converted to energy
serves as the energy parameter δ. A constant charging energy of 310µeV
has been subtracted from the separation of neighbouring peaks. Around zero
asymmetry, states 1 and 2 move strongly to higher energy with increasing α
while state 3 depends weakly on asymmetry. We conlude that states 1 and 2
are more localised close to plunger gate 2, but state 3 is extended around
the ring. Comparison with the magnetic field dispersion of these three states
shown in Fig. 10b strongly supports this conlusion. Around zero magnetic
field states 1 and 2 are constant in energy, i.e. localised, state 3 has a large
slope, i.e. it has a well defined angular momentum and extends evenly around
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the ring. This example shows how the combination of conductance measure-
ments at zero asymmetry but in a magnetic field and those at zero magnetic
field and finite asymmetry gives further insight in the nature of the observed
quantum states of the Coulomb-blockaded many-electron quantum ring sys-
tem. A careful analysis of a larger number of states confirms the interpretation
developed above.

4.5 Zeeman Splitting of Spin-Pairs in Parallel Magnetic Field

In the preceeding discussion of experimental spectra neighbouring zig-zag
states have been interpreted as spin-pairs. It is possible to access the spin
of the tunnelling electron directly by applying the magnetic field parallel to
the plane of the ring [28]. In Fig. 11a we show two conductance peaks cor-
responding to a spin-pair measured as a function of perpendicular magnetic
field. After this measurement the sample was rotated in situ into the parallel
magnetic field orientation (with very high accuracy) keeping the tempera-
ture below 600mK. After the rotation was finished the peak separation was
unchanged for all the measured conductance peaks (most of them are not
shown here). Figure 11b shows the peaks corresponding to the spin-pair as
a function of parallel magnetic field. The separation of the peaks increases
linearly with B‖ as expected for Zeeman splitting of spin-up and spin-down.
This proves directly that the interpretation of the two zig-zag states observed
in B⊥ as a spin-pair is correct.

The diamagnetic shift of levels in B‖ which plays an important role in
[28] is relatively weak in the quantum ring. It leads to a slight shift of both
peaks to higher energies as B‖ increases. This shift is the same for the two
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Fig. 11. (a) Conductance peaks of a spin-pair measured in perpendicular magnetic
field. (b) The same conductance peaks after in situ rotation of the ring into the
parallel magnetic field orientation measured as a function of parallel field. The
change in peak separation is the Zeeman splitting of spin-up and down electrons

peaks because the corresponding orbital wave functions of the two states are
identical.

5 Outlook

This review has tried to give an overview over recent magnetotransport ex-
periments on a quantum ring sample fabricated by AFM-lithography. Some
results like the Aharonov-Bohm oscillations and the dephasing in the open
ring, the measurements in the Coulomb blockade regime with asymmetric
plunger gate voltages and the Zeeman splitting have not been published be-
fore. Similar reconstructed energy spectra as a function of B⊥ and questions
related to the screened interactions and persistent currents have been dis-
cussed in [10,11]. All the interpretation of the spectra presented here used
the constant interaction picture.

However, a close inspection of the data reveals effects beyond this simple
model. Variations of the charging energy around an average value can be re-
lated to the extended or localised character of the states. Under very special
circumstances, even the exchange energy shows up and one can speculate
about the existence of voltage tunable singlet-triplet transitions. Such transi-
tions can also be observed at finite B‖. From the observation of Zeeman shifts
of a larger number of peaks one can try to infer information about the ground
state spin of the quantum ring similar to [28]. The Kondo-effect has been ob-
served in this ring when the coupling to source and drain was increased. Its
strength can be shown to vary with magnetic field in a h/e-periodic fashion.
All these results will be discussed in detail in future publications.
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Quantum rings are also interesting from different viewpoints. Being the
standard interferometers in mesoscopic semiconductor physics they have, for
example, been used for the measurement of the transmission phase through
a quantum dot embedded in one arm of a ring [29,30]. The detailed under-
standing of these experiments, in particular the observed phase lapse between
conductance peaks, is still controversial and further experiments are certainly
needed. Recent experiments on rings with a quantum dot embedded in both
arms showed signatures of the Fano effect [31]. In connection with experi-
ments aiming at controlled dephasing [32] high quality quantum rings that
can be coupled to other quantum devices are highly desirable. Given the
present interest in phase coherence, dephasing, entanglement and interac-
tions in view of quantum information processing, one can certainly state that
experiments with quantum rings promise still many exciting results in the
future.
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24. M. Büttiker, Y. Imry, and R. Landauer, Phys. Lett. 96A, 365 (1983). 146
25. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Pub-

lishing, 1976). 146
26. C. Beenakker, Rev. Mod. Phys. 69, 731 (1997). 149
27. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000). 149
28. S. Lindemann, T. Ihn, T. Heinzel, W. Zwerger, K. Ensslin, K. Maranowski, and

A. Gossard, Phys. Rev. B 66, 195314 (2002). 151, 152
29. A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74,

4047 (1995). 153
30. R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman,

Nature 385, 417 (1997). 153
31. K.Kobayashi, H.Aikawa, S.Katsumoto, and Y.Iye, Phys.Rev.Lett 88, 256806

(2002). 153
32. E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky, Nature 391,

871 (1998). 153


	Introduction
	The Ring Structure and Its Fabrication
	Aharonov-Bohm Effect
	Overview
	Phase Coherence Length from Temperature Dependence

	The Ring in the Coulomb-Blockade Regime
	Coulomb Blockade Diamonds
	Voltage Dependent Lever Arms
	Energy Spectra as a Function of Magnetic Field
	Asymmetric Plunger Gate Voltages
	Zeeman Splitting of Spin-Pairs in Parallel Magnetic Field

	Outlook
	References

