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Classical origin of conductance oscillations in an integrable cavity
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Scanning gate microscopy measurements in a circular ballistic cavity with a tip placed near its center yield
a nonmonotonic dependence of the conductance on the tip voltage. Detailed numerical quantum calculations
reproduce these conductance oscillations, and a classical scheme leads to its physical understanding. The large-
amplitude conductance oscillations are shown to be of classical origin, and they are well described by the effect
of a particular class of short trajectories.
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I. INTRODUCTION

The scanning gate microscopy (SGM) technique [1–8] has
been developed and applied to study two-dimensional electron
gases (2DEGs) surrounding a quantum point contact (QPC)
and other mesoscopic systems [7,9]. Initially, the goal was
to obtain information beyond that provided through standard
quantum transport experiments by measuring the effect of
a local potential on the sample conductance. However, the
interpretation of the SGM measurements remains challeng-
ing [7,8,10,11], in particular because most experiments operate
in a regime where the potential induced by the SGM tip
strongly perturbs the 2DEG. Performing SGM with tunable
geometries indicated that the presence of confinement has
to be taken into account in the interpretation of the data
[12,13].

A more recent purpose of SGM is the usage of the tip
to control and modify the potential landscape, and thus the
sample geometry, allowing systematic studies of the effect of
sample shape on coherent electron transport. For the example
of a circular cavity connected to leads by QPCs [14], the tip
has been used to control and study magnetoelectric subbands.
Another example along these lines is the electronic analog
of the Braess paradox [15,16], where the tip is used to cut
one out of several routes of electron transport through the
sample.

While the signatures of an underlying classically chaotic
electron dynamics have been clearly established [17], the
situation with integrable geometries is less conclusive due to
the lack of global stability of the dynamics and the unavoidable
effect of smooth disorder in the samples. In particular, the
conductance fluctuations and weak localization in circular
cavities have been studied experimentally and compared with
other geometries [18–22]. Intriguingly, the observed behavior
did not always correspond to what was expected for an
integrable geometry. Controlling the potential landscape of
a ballistic cavity with an SGM tip allows one to alter the
underlying classical dynamics within a given sample, and
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thus to compare different classical dynamics within the same
sample.

In this paper, we present SGM measurements on a circular
cavity exhibiting an unexpected nonmonotonic dependence
of the conductance through the cavity on the strength of
a tip placed over the center. Detailed numerical modeling
of the measured structure reproduced these large-amplitude
conductance oscillations with tip strength. To understand the
physical mechanism at the origin of the conductance oscilla-
tions with tip strength, we develop a semiclassical approach
that demonstrates the key role played by the modification
of classical trajectories induced by the tip potential. The
statistical analysis of the ensemble of classical trajectories
leads to a detailed understanding of the underlying mechanism
and the crucial role played by the smoothness of the tip
potential.

In Sec. II we present the SGM measurements on a circular
cavity, and in particular the nonmonotonic dependence of the
conductance on tip strength when the tip is placed near the
center. The numerical simulation of the conductance as a
function of the strength of a tip placed in the cavity center
is shown in Sec. III for a realistic model that succeeds
in providing a quantitative description of the measured
conductance. In Sec. IV we present a simplified model
possessing nevertheless the essential ingredients to yield the
conductance oscillations, in qualitative agreement with those
of the experiment. Section V discusses the evaluation of the
conductance based on classical trajectories. The statistical
analysis of the ensemble of trajectories in Sec. VI provides
a classical understanding of the conductance oscillations, and
a simplified treatment presented in Sec. VII highlights the
basic mechanism behind the effect. In Sec. VIII we compare
experimental results beyond the case of a centered tip with
the numerics and a classical estimate for the size of the
region where the conductance varies nonmonotonically with
tip strength.

II. EXPERIMENTAL OBSERVATION

The SGM response has been measured in a circular ballistic
cavity with a diameter of about 3 μm, electrostatically defined
in a GaAs-GaAlAs heterostructure. The chosen setup is such
that the cavity is connected to source and drain by wide
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FIG. 1. (a) AFM image of the cavity used in the experiment. The
black area corresponds to the surface of GaAs. Yellow contacts are
top gates. The tip-induced depleted region is indicated by the green
circle for Vtip ≈ −8 V. The current flows between source and drain
contacts. (b) and (c) Conductance G as a function of tip position
at a tip voltage of −3 and −6 V, respectively. Black lines outline
biased top gates (the grounded gates are not shown). (d) Tip voltage
dependence of the conductance when the tip is at the center of the
cavity [marked by an arrow in (b) and (c)].

openings having a width of about 1 μm. The 2DEG is
120 nm below the surface, with a transport mean free path
of 49 μm. The Fermi energy is EF = 4.3 meV and the Fermi
wavelength is about λF = 72 nm. The size of the structure,
being much smaller than the elastic mean free path, and the
low temperatures used in the experiment set the present study
in the coherent ballistic regime.

Figure 1(a) shows an atomic force microscopy (AFM)
image of the sample where top gates (yellow) are placed on
the surface of the structure. The effect of the SGM tip is
controlled by the tip voltage Vtip. For Vtip � −3.5 V, the tip
potential creates a depletion disk in the 2DEG whose size
increases with increasingly negative tip voltages. The green
circle indicates the approximate size of the depletion disk
at Vtip ≈ −8 V. Figures 1(b) and 1(c) show the conductance
through the cavity as a function of tip position for fixed values
of Vtip. The circular cavity is defined by sufficiently negative
voltages applied to the top gates indicated by the black lines.
The other gates visible in (a) are grounded, resulting in a very
open cavity. When the tip is placed close to the entrances of the
cavity, there is a suppression of the conductance that becomes
more pronounced for more negative tip voltages.

A special situation arises when the tip is close to the
center. For the less negative tip voltage (b), the conductance is
suppressed by the effect of the tip, while for the more negative
Vtip (c), we observe an enhancement of the conductance.
Figure 1(d) shows the conductance as a function of Vtip

with the position of the tip fixed at the center of the cavity.
The nonmonotonic dependence of the conductance on the tip
strength leads to a surprising observation: Going for a more
invasive configuration with larger depletion disks and further
blocking of the area for electron transport may result in an
enhancement of the conductance [23].

To achieve a theoretical understanding of the intriguing
behavior of the conductance observed in the experiment
(Fig. 1), we perform numerical simulations of models of
different complexity and develop a semiclassical approach,
focusing on the situation in which the tip is in the center of the
cavity.

III. NUMERICAL SIMULATION OF THE EXPERIMENT

Attempting a quantitative description of electronic transport
through a microstructure is a challenging task, due to the
unknown features of the self-consistent electronic potential
at the basis of one-particle modeling. We start by considering
a disorder-free circular cavity with a tip in its center, using
parameters and conditions that are as close as possible to those
of the real sample. The electrostatic confinement potential of
the cavity due to the charged top gates is calculated using
COMSOL with the exact geometry parameters of the sample
shown in Fig. 1. We take the standard approach [24] of
modeling the SGM tip by a Lorentzian potential,

US(�r) = utA

w2
t + [�r − �rT]2

. (1)

The constant A = EFR
2
0 is introduced in order to work with a

dimensionless tip-strength parameter ut. We choose EF as the
energy scale and the radius of the cavity R0 = 1500 nm as the
length scale [25]. The width wt = 200 nm leads to a realistic
tip size, of the order of the tip-2DEG distance. In most of our
analysis, the tip position �rT is fixed at the center of the cavity.

The coherent zero-temperature conductance was computed
with KWANT [26], a package that implements a recursive Green
function algorithm. A tight-binding square lattice is used with
a lattice parameter a = 5 nm, much smaller than λF. The
dimensionless conductance g = G/(2e2/h) is presented and
discussed henceforth. The corresponding numerical results are
shown in Fig. 2(a). Superposed to the small-scale ballistic con-
ductance fluctuations, one observes a large-scale oscillation of
the conductance with tip strengths for weak and moderately
strong tips. Such a behavior reproduces the experimentally
measured nonmonotonic SGM response.

To relate the tip strength parameter ut appearing in the
model potential (1) with the tip voltage Vtip used to control
the tip strength in the experiment, we follow the procedure
described in Ref. [27] to estimate the size of the depletion disk
from the SGM response when the tip is close to the cavity edges
or a QPC. Choosing the value of ut such that the depletion disk
of the Lorentzian potential (1) corresponds to the estimated
size, we find the approximately linear relation between the tip
strength ut and the voltage Vtip shown in the inset of Fig. 2(a).
We extrapolate the relation down to weak tip potentials where
no depletion occurs. Using such a rough estimate, we are
able to convert the experimental data of Fig. 1(d) in order
to present them in Fig. 2(a) as a function of tip strength ut,
together with the numerically obtained conductance. Besides
small deviations in tip strength that may be due to uncertainties
in the precise shape of the tip potential, the agreement is
good, confirming the quantitative validity of our model for
the description of the experimental setup.

It can be noticed that the second conductance maximum,
obtained in the simulations around ut = 0.27, is beyond the
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FIG. 2. Dimensionless conductance as a function of the tip
strength ut for (a) the realistic model described in Sec. III and (b)
the simplified model treated in Sec. IV. Gray solid lines are for the
coherent zero-temperature conductance. In (a), the dots correspond
to the experimental points of Fig. 1(d) using the linear identification
between Vtip and ut shown in the inset of (a) and discussed in the
text. In (b), the black line represents the quantum conductance at
T = 300 mK. The light blue and dark blue (dashed) lines are the
classical results at T = 0 and 300 mK, respectively. Inset: sketch of
the considered setup. A circular cavity with radius R0 is connected
to quasi-one-dimensional leads of width W , ϕ measures the angles
from the origin, and 2ϕop is the opening angle of the contacts seen
from the center of the cavity.

available experimental data. In the regime of very strong tip
potentials, the conductance exhibits plateaus at conductance
values that are multiples of 2 × (2e2/h), which decrease with
increasing tip strength. Such a behavior occurs in the regime
where the depletion disk generated by the tip becomes so large
that the device is reminiscent of two parallel quantum wires
having the same quantized conductance.

The current density is a local quantity of major interest in
SGM studies [3,11]. In the invasive regime of the experiments,
the current density in the cavity depends strongly on the
tip strength. In Fig. 3, the current density calculated from
scattering states at the Fermi energy that are impinging from
the left lead is shown as a function of the position within the
cavity, for a tip placed in the center with strength ut = 0.128
[close to the first maximum of the large-scale oscillations
seen in Fig. 2(a)]. The central (black) area of vanishing
current density reflects the tip-depleted area. The diamondlike
pattern observed in the current flow around the tip suggests
the signature of classical electron trajectories following these
lines.

The agreement obtained between the experimental mea-
surements and the numerical results in the realistic system
(together with the current density plots such as that of Fig. 3)
constitutes a detailed level of description of quantum transport,
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FIG. 3. Current density of scattering states impinging from the
left through the realistic cavity of Fig. 2(a), with a tip of strength
ut = 0.128 at the center. The color scale gives the absolute value of the
local current, and thin black arrows reflect the current direction. The
thick gray lines indicate the region where the confinement potential
depletes the 2DEG.

but it does not by itself enable us to reach an understanding
of the physical mechanism behind the observed conductance
oscillations. The next step toward such a goal, made in the
following section, consists in elaborating a simplified model
that exhibits conductance oscillations and, at the same time,
allows for the identification and analysis of the classical
trajectories.

IV. CONDUCTANCE OSCILLATION IN A SIMPLIFIED
MODEL SYSTEM

To understand the mechanisms underlying the nonmono-
tonic tip dependence of the conductance and to find the key
ingredients for the occurrence of the phenomenon, we should
attempt to reduce the complexity of the model. Though it is
tempting to assume hard-wall boundaries for the cavity and
for the tip potential, no significant large-scale conductance
oscillations occur within such a model. Our analysis in Sec. VII
provides an explanation for the failure of a fully hard-wall
model to yield conductance oscillations.

We found that a hard-wall cavity attached to semi-infinite
leads as sketched in the inset of Fig. 2(b), perturbed by a tip
potential of the form

UM(�r) = utA

(�r − �rT)2
, (2)

is a simplified, minimal model that reproduces all the features
observed in the realistic simulation [28]. An important advan-
tage of this model is that the classical trajectories can be found
analytically. The parameter A is defined after Eq. (1). In this
model, we took R0 = 1500 nm as the radius of the cavity and
W = 1000 nm for the width of the leads.

Figure 2(b) shows the conductance as a function of tip
strength ut for the simplified model. The gray solid line
shows the coherent quantum conductance at zero temperature.
The black line is the coherent conductance at T = 300 mK,
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obtained from a convolution of the energy-dependent zero-
temperature conductance with the derivative of the Fermi
distribution, while the light blue and dark blue (dashed) lines
represent the results obtained from our analysis based on
classical trajectories (see Sec. V for details). The main features
of the zero-temperature quantum conductance are the same in
the realistic simulation and in the simplified model.

For large tip strength, the conductance decreases in quan-
tized steps of height 2 × (2e2/h) as in the realistic model.
For weaker tip strength, large-scale oscillations with an
amplitude of about 6 × (2e2/h) dominate the tip dependence
of the conductance. Strikingly, and even though the tip
potential represents a repulsive obstacle for the electrons, at
some tip strengths the conductance even exceeds that of the
unperturbed cavity. Superposed with this secular behavior, the
zero-temperature conductance exhibits ballistic conductance
fluctuations with an amplitude of about 2 × (2e2/h). Those
conductance fluctuations are expected to decay with temper-
ature on a scale that corresponds to the correlation energy
of the fluctuations. In classically chaotic systems, the latter
can be estimated within a semiclassical approach [29,30] to
be of the order of �/τ = �vF/〈L〉, where τ is the average
time an electron spends in the cavity, 〈L〉 is the average
length of classical trajectories through the cavity, and vF is
the Fermi velocity. Assuming 〈L〉 ≈ W/πR0 and using the
chaotic prediction with the parameters of our system yields a
temperature scale of about 75 mK. Consistent with such an
estimate, we find numerically that the fluctuations are indeed
suppressed at the temperature of T = 300 mK that is used in
the experiment, thereby confirming their quantum origin. In
contrast, the larger-scale oscillations remain robust, pointing
to a different mechanism determining their occurrence. We
show in the following section that they are of classical origin.

V. ANALYSIS IN TERMS OF CLASSICAL TRAJECTORIES

In the ballistic regime, the conductance in the classical limit
of � → 0 (where quantum interference is suppressed) can be
expressed in terms of classical trajectories traveling between
the entrance and exit of the structure as [17,31]

gclass = mv0W

�π
T , (3)

up to a constant whose value is not accessible by the
semiclassical approach leading to Eq. (3) and which we will
ignore. The quantities m and v0 are, respectively, the mass
and initial velocity of the electrons at the Fermi energy. The
factor mv0W/(�π ) stands for the incoming electron flux, and
its integer part is the number of propagating channels in the
leads. For the case of GaAs, we use m = 0.067m0, with m0

the free-electron mass. The transmission probability is given
by

T = 1

2

∫ π/2

−π/2
dθ cos θ

∫ W/2

−W/2
dy f (y,θ ), (4)

where f (y,θ ) = 1 (0) for transmitted (reflected) trajectories
that enter the cavity at a cross section in the left contact at y

and with the momentum direction characterized by the angle θ

with respect to the x axis [32]. In quantum billiards, where the
electrostatic potential is either zero or infinity, the trajectories

depend on the geometry but not on the electron energy.
Therefore, T is independent of the energy and can be obtained
from the asymptotic values of the quantum conductance in the
limit of infinite energy. In the case under study, we do not
have a quantum billiard, due to the smooth character of the tip
potential, and therefore T is energy-dependent.

Equation (3) for a ballistic system is the equivalent of
the Drude conductance for the disordered case. In ballistic
structures, the smooth disorder only weakly affects trajectories
that are considerably shorter than the transport mean free path.
Therefore, if the properties under study are dominated by the
contribution of short trajectories, it is possible to ignore the
disorder altogether and to include only the trajectories of the
clean (disorder-free) geometry.

The function f (y,θ ) is generally difficult to determine,
and the integrals in Eq. (4) are typically calculated by
randomly sampling the initial conditions. However, the case
of a hard-wall circular cavity with a central tip represented
by the potential (2) is quite simple due to the conservation of
angular momentum within the cavity and the availability of an
analytical expression describing the trajectories.

A trajectory is determined by the initial conditions of a
particle in the left contact, described by its energy, position,
and momentum orientation. The analytical expression of
trajectories in the potential (2) and specular reflection laws
allow us to determine the subsequent points where the electron
hits the circle of radius R0 representing the cavity wall [see
the inset of Figs. 2(b) and Fig. 4]. As soon as such a point lies
in one of the contacts between the cavity and the leads (i.e.,
|y| < W/2), the trajectory is completed and contributes to the
transmission (reflection) probability if it reaches the right (left)
exit. Figure 4 shows a few examples of transmitted (blue solid)
and reflected (red dashed) trajectories at different tip strength,
which are discussed below.

The description of a trajectory can be reduced to an
equidistant series of position angles ϕn = ϕ0 ± n�ϕ where
the particle hits the cavity edge for trajectories turning
counterclockwise (clockwise) around the cavity center. We
denote by ϕ0 the initial angle with respect to the x axis
describing the starting point in the left contact [see Fig. 4(a)
for a sketch], which is taken on the dashed line at radius
r = R0 [33], and �ϕ is the (positive) rotation angle, which is
a characteristic parameter of the trajectory.

The classical results shown in Fig. 2(b) are based on the
application of Eq. (3) in the framework of the simplified
model. For each value of ut, we sampled a finite ensemble
of trajectories M corresponding to different initial conditions
(at fixed energy) in the left contact. The prescription [31] to
calculate the classical transmission using Eqs. (3) and (4) is
implemented adopting homogeneously distributed transverse
starting points and, since dθ cos θ = d(sin θ ), a sampling of
initial angles θ such that the values of sin θ are equally spaced.
Such a sampling yields the expression

gclass = mv0W

�π

#MT

#M (5)

for the classical conductance in terms of the cardinalities
(denoted by #) of the subset of transmitted trajectoriesMT and
that of the total set of sampled trajectories M = MT ∪ MR

(MR denotes the subset of reflected trajectories).
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FIG. 4. (a) Definition of the coordinate system and the angles used to characterize individual trajectories. ϕ0 is the angle of the initial
position with respect to the x axis, � denotes the angle between the initial momentum of the trajectory and the diameter of the circle, and �ϕ

is the angular distance between two subsequent collisions with the cavity wall. Two examples of transmitted (blue solid) and reflected (red
dashed) classical trajectories are shown in (b) for tip strength ut = 0.03 and in (c) for ut = 0.06; three trajectories are shown in (d) for a rather
strong tip characterized by ut = 0.43.

The classical conductance [light and dark blue dashed lines
in Fig. 2(b)] has only a very weak temperature dependence
(at least up to T = 300 mK). Its behavior is remarkably
close to the finite-temperature quantum conductance in the
regime of not too strong tip strength. The small offset of
our classical conductance with respect to the quantum can
be attributed to the ignored constant in Eq. (3). In particular,
the classical results clearly exhibit the tip-strength-dependent
oscillations. Their ability to describe the behavior of the
numerically calculated quantum conductance demonstrates
that the large-scale oscillations are of classical origin. In
contrast, the conductance fluctuations and the conductance
quantization for strong tip strength are quantum effects and
therefore not present in the classical results. We conclude that
the experimentally observed behavior at T = 300 mK is very
well described by the classical treatment of our simplified
model, except for the conductance quantization at large tip
strength.

In the sequel of the paper, we present a detailed analysis
in order to understand why the rich variety of classical
trajectories (some of them shown in Fig. 4) results in the
simple structure of gclass presented in Fig. 2. The properties
of the classical trajectories through the sample and their
dependence on tip strength will be analyzed in an effort to
understand the mechanism that leads to the large conductance
oscillations.

VI. MECHANISM LEADING TO CONDUCTANCE
OSCILLATIONS

To understand the origin of the large-scale conductance
oscillations at low tip strength, we investigate the dependence
of the contributing trajectories on the strength of the tip
potential. We characterize each trajectory s by two parameters:
the number of bounces at the cavity edge bs , and the number
of windings around the cavity center ws . We distinguish
transmitted (α = T) and reflected (α = R) trajectories.

The probability that a trajectory is transmitted or reflected
after b bounces with the cavity edge can be calculated as

P b
α (b) =

∑
s∈Mα

δb,bs

#M (6)

with α = T and R, respectively. The calculation of the
probabilities of having w windings P w

α (w) is analogous to
Eq. (6). We also introduce the probabilities P b(b) = ∑

α P b
α (b)

and P w(w) = ∑
α P w

α (w) of having a trajectory with b bounces
and w windings, respectively.

Due to the wide openings of the cavity, most of the features
of the problem at hand can be explained by only considering
relatively short trajectories having few bounces with the cavity
wall (bs � 8) and very few windings around the cavity center
(ws � 1). This assumption is confirmed by the comparison
shown in Fig. 5(a) between the full classical conductance
given by Eq. (5) (black solid line) and restricted sums over
trajectories with bounded numbers of bounces (dotted line) or
windings (dashed lines). In particular, restricting the reflected
trajectories leads to upper bounds of the conductance,

g
b,>
bmax

= mv0W

�π

(
1 −

bmax∑
b=0

P b
R(b)

)
, (7)

gw,>
wmax

= mv0W

�π

(
1 −

wmax∑
w=0

P w
R (w)

)
, (8)

while restricting the transmitted trajectories provides lower
bounds,

g
b,<
bmax

=
bmax∑
b=0

gb(b) and gw,<
wmax

=
wmax∑
w=0

gw(w), (9)

where

gb(b) = mv0W

�π
P b

T (b) and gw(w) = mv0W

�π
P w

T (w) (10)

are the conductance contributions of trajectories with b

bounces and w windings, respectively. The bounds g
b,>
8 , gw,>

1 ,
and g

w,<
1 already contain the most important features of the

conductance. They approach each other and the classical limit
with increasing tip strength, indicating that the effect of long
trajectories is suppressed by strong tips.

The probabilities for reflected trajectories P b
R with an

even number of bounces bs = {0,2,4,6,8} are presented in
Fig. 5(b) [34]. The case of b = 0 concerns the direct reflection
from the tip without touching the cavity edge, as, e.g., the
dashed red trajectory in Fig. 4(d). The weight of this class
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w,<
1 . (b)

Probabilities P b
R of an electron to be reflected after bs = {0,2,4,6,8}

bounces with the cavity wall. (c) Probabilities P w of trajectories
without (solid) and one winding (dashed) around the center of the
cavity (black) and its reflected P w

R (green, light) and transmitted
P w

T (red, medium) parts. The leftmost vertical line indicates the tip
strength above which transmitted trajectories without bounces are
impossible, and the following vertical lines indicate values above
which reflected trajectories with two, four, six, and eight bounces are
impossible.

of trajectories P b
R(0) grows with tip strength due to the

increasing bending of the trajectories. For the same reason,
the probability to be transmitted increases for trajectories
that enter the cavity, hence reflected trajectories with a finite
number of bounces are suppressed. The tip strengths where
reflected trajectories with bs = {2,4,6} disappear (vertical
lines in Fig. 5) are very close to the conductance maxima. We
conclude that the disappearance of such a category of reflected
trajectories is related to a maximum in the transmission. This
is an important element of the mechanism underlying the
observed large-scale conductance oscillations. Consistent with
our previous findings, trajectories with bs � 8 have little effect
on the behavior of the conductance.

To illustrate the special role of the tip in selecting certain
classes of transmitted or reflected trajectories, we discuss
the example of trajectories with bs = 2 [dashed red curve in
Fig. 4(b)]. For the reflected trajectories, �ϕ must satisfy 2π −
2ϕop < 3�ϕ < 2π + 2ϕop, where ϕop = arcsin(W/2R0) is the
opening angle of the contacts [see the inset of Fig. 2(b)].
With increasing tip strength, �ϕ decreases, and beyond a
certain value the reflected trajectories with bs = 2 no longer
exist. Concomitantly, the transmitted trajectories with bs = 1,
where π − 2ϕop < 2�ϕ < π + 2ϕop, gain importance. The

blue solid line in Fig. 4(c) is an example of such a trajectory
at ut = 0.06. The structure of the current density for this
regime of tip strength shown in Fig. 3 demonstrates that the
quantum current flow is closely related to the shape of those
transmitted trajectories. Reflection after a full winding is now
only possible for trajectories with at least four bounces with
the cavity wall [see the red dashed line in Fig. 4(c)]. This
scenario is confirmed by the probabilities for zero and one
windings P w(0) and P w(1) shown in Fig. 5(c). The number
of transmitted trajectories with no winding around the center
P w

T (0) is increasing, while the probability to find a reflected
trajectory with one winding P w

R (1) assumes minima close
to the vertical lines. Hence, the decrease of the weight of
longer trajectories [a very long one is shown by the blue solid
curve in Fig. 4(b)] with tip strength, and the alternation in the
suppression of reflected and transmitted families, explains the
oscillations of the conductance.

In general, the reduced �ϕ increases the probabilities
to be either reflected without collision or to be transmitted
after an increasing number of bounces but without a full
winding around the cavity center. This is illustrated in Fig. 4(d)
showing three trajectories at tip strength ut = 0.43, where
reflected trajectories with one winding and bs = 8 are still
possible (see the dotted red line). Once the tip strength
imposes �ϕ < 2ϕop, the bending of the trajectories becomes
so strong that all trajectories are either immediately reflected,
as shown by the dashed red curve in Fig. 4(d), or transmitted
after bs � 3 collisions, as shown by the blue solid curve
in Fig. 4(d). Trajectories with a nonzero winding number
become impossible, and P w(0) = 1, such that there is no
conductance maximum at the tip strength where reflection
after eight bounces becomes impossible.

With a further increase of tip strength, the increase of direct
reflection P w

R (0) continues, implying a decrease of the trans-
missions P w

T (0), and the conductance decreases monotonically
with tip strength, reaching zero when the tip-induced depletion
is so strong that electrons cannot enter the cavity anymore.
Beyond the behavior accessible by our classical analysis, the
quantum conductance in this regime exhibits quantized values
that are due to the two parallel quantum wires that are formed
between the cavity wall and the tip.

The initial decrease and the first minimum of the con-
ductance at ut ≈ 0.01 are due to the suppression of direct
transmission without ever touching the cavity edge. Above the
tip strength where direct trajectories cease to exist (leftmost
vertical line in Fig. 5), the tip is no longer perturbative in the
quantum-mechanical sense [35].

VII. SIMPLIFIED ANALYSIS OF THE CLASSICAL
TRAJECTORIES

The previous statistical analysis shows that a reduced
subensemble of classical trajectories suffices to explain the
dependence of the conductance on tip strength, and it points
to the crucial importance of the parameter �ϕ that charac-
terizes the angular distance between subsequent points where
the trajectory hits the cavity boundary. In this section, we
investigate the distribution of �ϕ at a given tip strength.
An analytically tractable analysis based on the dominating
trajectories provides the essence of the mechanism underlying
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FIG. 6. Density plot of the probability distribution P (�ϕ) as a
function of ut. Inset: dependence of �ϕ on the injection angle � for
different values of ut.

the classical conductance oscillations, as well as the recipe
to predict the main conductance maxima and minima. This
is particularly useful since each of the previously analyzed
subensembles of classical trajectories is actually infinite and
mixes very different behaviors.

Figure 6 shows a density plot of the probability distribution
of the rotation angle P (�ϕ) within our ensemble of trajectories
for values of ut between 0 and 1. For a given ut, the angle �ϕ

is solely a function of the angle � (due to symmetry, �ϕ does
not depend on ϕ0). The � dependence exhibits a maximum
value �ϕm (see Fig. 6, inset), which decreases with increasing
tip strength. Figure 6 shows that the probability density is
highly concentrated for values of �ϕ close to �ϕm, actually
diverging when the maximum value of �ϕm is approached
from below. This behavior is due to the long tails of the tip
potential (2) that lead to a smooth dependence of �ϕ on the
injection angle � defined with respect to the cavity diameter
[see Fig. 4(a)]. Trajectories injected with � = 0 are reflected
in a head-on collision with the tip and have �ϕ = 0. Then,
�ϕ reaches its maximum value �ϕm at an intermediate value
of �, and it decreases upon a further increase of � back to 0
when � = π/2. Examples of this behavior are shown in the
inset of Fig. 6. The flat maximum occurring in the dependence
of �ϕ on � leads to the divergence of P (�ϕ) at the maximum
value �ϕm.

The resulting dominance of trajectories with �ϕ close to
the maximum value �ϕm becomes more pronounced with
increasing values of ut (and decreasing �ϕm), and motivates
the characterization of the ensemble of classical trajectories at
a given tip strength by the dominant angular distance between
bounces �ϕm. We restrict the analysis in the sequel to only
those trajectories having �ϕ = �ϕm.

In the regime, where the tip is so strong that �ϕm < 2ϕop,
all trajectories are reflected immediately without ever hitting
the cavity wall, with the exception of those that start at a
position that is separated by less than �ϕm from the edge
of the opening ϕop. The latter trajectories are transmitted to
the other lead after a number of bounces, but without winding
around the center. Their proportion is given by �ϕm/2ϕop such
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FIG. 7. Conductance estimates (11) and (12) based on the shortest
trajectories with maximum �ϕ (blue solid line). The classical
conductance (black dashed line) is shown for comparison. Sketches
of the dominant classes of short transmitted and reflected trajectories
in the regions of conductance maxima and minima are shown above
and below the plot, respectively.

that the classical conductance is estimated as

gclass ≈ mv0W

�π

�ϕm

2ϕop
. (11)

The decrease with ut is a consequence of the increasing number
of directly reflected trajectories when �ϕm is suppressed by
an increasing tip strength.

For weaker tip strength, when �ϕm > 2ϕop, the distance
between bounces is larger than the openings of the cavity,
and a direct reflection is impossible. Due to the relatively
large openings of the cavity, longer trajectories are of minor
importance, especially for large ut. For simplicity, we neglect
them and concentrate on trajectories with no winding and
transmitted after b bounces. For such trajectories, the total rota-
tion angle (b + 1)�ϕ lies in the interval [π − 2ϕop,π + 2ϕop].
The evaluation of the share of initial positions in the left contact
that lead to such a trajectory yields the estimate

gb(b) ≈ mv0W

�π

(
1 − |π − (b + 1)�ϕm|

2ϕop

)
(12)

for their contribution to the conductance. Thus, maxima of
the total conductance, obtained by summing over b, can be
expected when �ϕm = π/(b + 1). They are of triangular shape
with a width 4ϕop/(b + 1).

For the simplified model with the tip potential (2), the above
criterion for transmission maxima translates into conductance
peaks at ut ≈ {0,0.111,0.278,0.403} (blue solid curve in
Fig. 7). Close to these values, maxima arise in the probability
of having a transmitted trajectory with zero winding [red
solid line in Fig. 5(c)]. The estimates of the conductance (11)
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and (12) that are based on the shortest transmitted trajectories
are represented by the blue solid line in Fig. 7 that can be
compared to the classical conductance (black dashed line).
The classes of short transmitted trajectories that dominate in
the vicinity of the conductance peaks are sketched above the
plot. The qualitative agreement of the peak structure confirms
the dominance of those short trajectories. However, at small tip
strength ut the quantitative comparison becomes rather poor,
pointing to the increased importance of longer trajectories and
a broader distribution of the values of �ϕ.

The geometric argument can be extended to longer tra-
jectories. The class of trajectories that are reflected after one
winding around the cavity lead to a minimum in conductance at
the values �ϕm = 2π/(b + 1) with the width 4ϕop/(b + 1) for
even b. The corresponding conductance minima are expected
at ut ≈ {0.031,0.199,0.345,0.425}. These values are close to
the minima in the classical conductance (Fig. 7), as well as to
the maxima in the probability of having reflected trajectories
with one winding [green dashed line in Fig. 5(c)]. Also,
the probabilities P b

R(b) of being reflected after b bounces in
Fig. 5(b) assume maxima close to the corresponding values of
ut. The dominant classes of short reflected trajectories close
to the conductance minima are sketched below the graph in
Fig. 7.

The long-range tip potential is a crucial ingredient for the
mechanism presented above since it leads to the dominance
of trajectories at �ϕm. In contrast, when the tip is modeled
by a hard wall disk, the dependence of �ϕ on the injection
angle has a cusp at the maximum. The resulting probability
density does not exhibit a significant preferential value, the
behavior of very different values of �ϕ is mixed, and the
conductance oscillations are smeared, consistent with our
numerical observations. The role of the steepness of the cavity
potential is very different as it does not affect significantly the
specular reflection at the cavity edges. Thus, assuming hard
wall boundaries for the cavity is a very good approximation,
at least within the present study.

VIII. OFF-CENTER TIP

The experimental SGM scans of Figs. 1(b) and 1(c)
show that the nonmonotonic behavior of the conductance
as a function of tip strength extends to a well-defined
region around the center of the cavity. It is important to
understand the robustness of this surprising effect, since
moving the tip off-center has the important consequence
of breaking the integrability of the underlying classical
dynamics.

In Fig. 8 we present cuts of the experimental data of Fig. 1(b)
corresponding to the tip voltage Vtip = −3 V for the two axis
directions x and y, together with the numerical simulation
within the realistic model. The agreement between the two
sets of data is quite good. The deviations obtained for tips
approaching the border of the cavity are probably due to
our approximation of superposing the tip-induced potential
and the confinement potential. The small-scale structure in
the numerical traces is less pronounced in the experiment,
where inelastic processes suppress the contribution of long
trajectories.

12
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FIG. 8. Conductance cuts as a function of tip position in x (red)
and y (blue) directions away from the cavity center. Solid and dashed
lines represent the realistic numerical simulation at ut = 0.0315
and T = 300 mK, while dash-dotted and dotted lines represent the
experimental conductance at Vtip = −3 V. The green vertical lines
represent the rough estimate y/R0 ≈ π/12 for the size of the central
spot in Fig. 1(b) (see the text).

It is important to remark that the numerical calculations
reproduce the width of the conductance dip observed in the
cavity center and even the asymmetry of the central spot in
Fig. 1(b), indicating a faster recovery of high conductance
values when moving away from the center in the y direction
as compared with the x direction. As in the previously studied
case of a centered tip, the physical understanding of the spatial
extension of the nonmonotonic dependence of conductance
on tip voltage requires the study of the simplified model and a
semiclassical analysis. The numerics in the simplified model
(not shown) is consistent with the experimental results and the
spatial anisotropy. Within the simplified analysis in terms of
classical trajectories, we can make a rough estimate of the size
of the central spot in Fig. 1(b).

The minimum conductance observed at Vtip = −3 V is due
to the dominance of reflected “triangular” trajectories with
b = 2 bounces and w = 1 winding (see Fig. 5) that are most
prominent when �ϕm ≈ 2π/3. The subsequent conductance
maximum corresponds to the dominance of trajectories with
b = 1 and w = 0. Those trajectories correspond to �ϕm ≈
π/2 that are transmitted after a single bounce at the cavity
edge, and that can pass above or below the tip. We assume that
those short trajectories, although deformed, still determine
the behavior when the tip is slightly off-centered. For a
displacement in the y direction, the angular distance of the
bounces seen from the tip position is modified to �ϕ ≈ π/2 ±
y/R0. Assuming that the conductance oscillations are washed
out when the resulting difference of 2y/R0 in �ϕ between
trajectories above and below the tip reaches the difference
2π/3 − π/2 corresponding to the conductance maximum and
minimum, we get the estimate y/R0 ≈ π/12 for the distance y

between the tip and the cavity center in the transverse direction
where the classical oscillations are expected to be smeared.
This universal value, independent of the size of the cavity
openings, is indicated by the green vertical lines in Fig. 8.
It is consistent with the experimental findings [the size of the
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central region of suppressed conductance in Fig. 1(b)] and also
with our numerical calculations.

IX. CONCLUSIONS

We presented SGM experiments on a circular cavity
in which an intriguing nonmonotonic dependence of the
conductance on the tip voltage is observed when the tip is
placed near the center of the cavity. Our theoretical analysis
explains the unexpected behavior and traces it back to classical
electron dynamics in the device.

The numerical simulation of quantum transport through the
experimental setup with a long-range tip potential in the center
at the temperature of the experiment yielded large conductance
oscillations as a function of tip strength that are in quantitative
agreement with the experimental findings [see Fig. 2(a)]. At
low temperature, additional ballistic conductance fluctuations
appear in the numerically calculated conductance.

The quest for a physical understanding of the surprising
nonmonotonic behavior found in the experiments and in
the realistic quantum simulations led us to proceed in three
steps. First, we simplified the model in order to have, at the
same time, the quantum simulations exhibiting the observed
behavior, and an analytically tractable classical dynamics.
Second, we performed a statistical analysis of short classical
trajectories that linked the conductance oscillation with the
switches between groups of dominant trajectories. Third, we
developed a simplified analysis that identified the specific
features of the trajectories that result in the experimentally
observed phenomenon.

While the quantum conductance fluctuations are suppressed
at the temperature of the experiment, the classical conductance
is not significantly affected by temperature. The large-scale
conductance oscillations obtained in the classical limit re-
produce the behavior of the quantum conductance at the
experimental temperature, except for conductance steps that
arise in the regime of very strong tips. We therefore conclude
that the oscillations of the conductance as a function of
tip strength and the resulting nonmonotonic behavior of the
conductance when the tip is in the center of the cavity are of
classical origin.

The statistical analysis of the ensemble of trajectories,
possible in the simplified model system, shows that relatively
short trajectories with few bounces with the cavity wall or
few windings around the cavity center allow us to understand
the conductance oscillations. The evolution of the contributing
trajectories with tip strength provides the mechanism for the
observed conductance oscillations.

Having observed that trajectories with a particular angular
distance between bounces at the cavity wall dominate in the
case of strong tip potentials, we showed that the restriction
to this class of dominating trajectories leads to a basic
understanding of the main conductance maxima. We found
that the long-range character of the tip potential is a crucial
ingredient for the classical mechanism. When the tip is
modeled as a hard disk of increasing size, the experimentally
observed nonmonotonic behavior of the conductance cannot
be reproduced.

The classical analysis presented in this work is able to
account for the conductance oscillations as a function of the

tip strength for the case of centered tips, but also for the
experimentally observed decay of these oscillations as the tip
moves away from the cavity center.

It is remarkable that a simple modeling based on relatively
short classical trajectories, completely ignoring disorder and
electron-electron interaction, was capable of rendering the
explanation of the measured conductance through a cavity
within an SGM setup. Even if the modeling of ballistic
transport is usually done for quantum billiards, the role of
the smoothness of the electrostatic confinement potential has
been discussed in the literature [36,37]. In our work, we
have shown that the electrostatic confinement defining the
structure seems to be sufficiently sharp so as not to give rise
to important departures from the hard-wall case. However, the
smooth character of the electrostatic potential created by the
tip imprints a crucial signature for the electric transport with
an SGM setup.

The role of short trajectories in ballistic transport has
been pointed out in the context of various experimental
setups [17]. In particular, it has been shown [38] that for
classically chaotic cavities, the deterministic sector of the
phase space corresponding to short trajectories may give rise
to conductance oscillations that are more pronounced than the
conductance fluctuations stemming from the stochastic sector.
The relative weight of the deterministic and stochastic sectors
of phase space can be changed by varying the openings of
the cavity, or, within a fixed geometry, by the application of
a magnetic field (as in experiments measuring shot noise in
chaotic cavities [39]).

While the signature of classical trajectories in transport
through circular billiards has been identified [17,19,40] by the
Fourier transform of the energy and magnetic-field-dependent
conductance, our experimental and theoretical results provide
direct evidence of the almost exclusive role of a small class
of trajectories. The correlation of magnetoresistance maxima
with specific electron trajectories has been observed in the
case of triangular [41] and circular [42] cavities under a per-
pendicular magnetic field. The commensurability conditions
between the cyclotron radius and the linear dimensions of
the cavities result in magnetoconductance oscillations similar
to the conductance oscillations that we study in this work.
Our case presents the particularity that the curvature of the
classical trajectories depends on the impinging angle, resulting
in the domination of a given rotation angle between successive
bounces with the walls of the cavity, leading to very large
conductance oscillations.

Experiments carried out in small cavities (diameter 1.0–
1.5 μm) do not show significant traces of the classical
oscillations as compared to those of the large cavity of Fig. 1.
The small cavities do not have perfect circular symmetry,
which might explain the different behavior. Moreover, nu-
merical simulations indicate a stronger difference between
the Lorentzian and the simplified tip potential for the case
of the smaller cavities, and they point to a modification of the
mechanisms in the case in which the width of the Lorentzian
tip potential is not much smaller than the cavity.

In the small cavities, it is possible to achieve the regime
in which the size of the tip-induced disk becomes comparable
with the size of the cavity [27,43]. SGM measurements in
this regime show fringes that extend to the center of the
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cavity and a conductance suppression with increasing negative
tip voltage exhibiting steps. Such behavior is consistent with
the conductance quantization at large tip strength that can be
observed in the result for the quantum conductance presented
in Fig. 2.
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