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Abstract

Aharonov—Bohm oscillations are studied in the magnetoconductance through two micron-sized quantum rings. The
structures are defined in a two-dimensional electron gas of a Ga[Al]As heterostructure by way of local oxidation with an
atomic force microscope. In the experiments, the rings are used as phase-coherent detectors of the charge state of
quantum dots coupled to the rings in two specific arrangements.

In the first case, two quantum dots are induced in each of the arms of an open four-terminal ring geometry. This
allows to measure the evolution of the relative transmission phase when the number of electrons in each of the dots is
tuned using appropriate gate voltages. The experimental findings are compared to expectations from single-particle

theory and deviations are discussed.

In the second case, a quantum dot is coupled capacitively to one arm of a ring. The amplitude of the Aharonov—
Bohm oscillations in the transconductance depends strongly on the charge state of the quantum dot. It is demonstrated
that the effect is due to a single-electron screening effect. This shows that Aharonov—Bohm oscillations in a quantum
ring can be used for the detection of single electronic charges.

© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Mesoscopic rings and ring-like geometries allow
the observation of the interference of partial waves
as a function of magnetic field, i.e., the Aharonov—
Bohm (AB) effect [1-4]. Such measurements yield
information about electron decoherence e.g. as a
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function of temperature [3,4]. Coupled mesoscopic
systems are of interest for experimentalists trying
to realize detectors of single charges, controlled
interference and entanglement in semiconductor
nanostructures. In the present paper, we review
two of our experiments that investigate the
coupling between quantum dots and mesoscopic
ring structures. In these experiments, the influence
of the charge state of the quantum dot on
the phase-coherence in the ring is detected by
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measuring AB-oscillations in the conductance
through the ring.

The experiments are representative for two
limiting cases of how coupling can be achieved.
In one case, two mesoscopic systems are coupled
simply by the electrostatic interaction between
them without the overlap of wavefunctions of
the systems to be coupled [5-9]. Such systems
have been realized in a number of experiments,
e.g. quantum point contacts have been employed
as non-invasive probes to detect the charge state of
single or double quantum dots and antidots by
way of electrostatic interaction between the two
systems [10-17]. Mesoscopic detectors such as
quantum point contacts situated close to another
quantum system are expected to lead to dephasing
[5,6]. In a ring this will reduce the amplitude of the
phase coherent AB oscillations. Such a ‘which
path’ experiment has been realized by Buks and
coworkers, who coupled a quantum dot embedded
in one arm of an AB interferometer electrostati-
cally to a quantum point contact [18]. Another
experiment investigated the coupling between edge
states in the quantum Hall regime and a double
quantum dot system [13].

In the other limiting case, the coupling is
realized by strong wavefunction overlap and the
electrostatic interaction between the systems plays
a minor role. Such systems have been studied,
e.g., in strongly coupled double dots [19-21] and
for quantum dots embedded in ring geometries
[11,18,20-25]. The electronic transmission phase in
particular was studied in a series of experiments
[11,22-25] where ring geometries have been
employed as interferometers, namely quantum
dots were inserted in one arm of the ring. From
measurements of the relative transmission phase
through a two-terminal ring with a single quantum
dot [22], it was concluded that electron transport
through a Coulomb-blockaded quantum dot is
at least partially phase coherent. However, such a
two-terminal measurement will not allow to
determine the evolution of the transmission
phase due to the generalized Onsager relations
[26] which state that the magnetoconductance in
such a device is an even function of magnetic field
restricting the phase to values of 0 or n. To
circumvent this problem multi-terminal rings

were investigated in subsequent experiments
[11,18,23,24]. It was found that the relative
transmission phase of such a ring changes by =
when the embedded quantum dot is tuned over a
Coulomb blockade resonance. Between reso-
nances, it is frequently observed that the so-called
phase lapses occur rather than the almost constant
phase expected in the simplest model. For a review
of the theoretical work on this subject see Ref. [27].

In our experiments, we study the coupling
between a ring and a dot in each of the two limits
discussed above. We start out by investigating the
phase evolution of a system of two quantum dots
with negligible electrostatic interaction between
them, embedded in two arms of a four-terminal
AB ring. Unlike previous experiments, we are able
to tune the number of electrons in each of the
dots individually while detecting changes in the
phase of the AB oscillations. The measurements
are performed in an intermediate coupling regime
where the amplitude of the AB oscillations is
large enough for our analysis. Furthermore, we
discuss a situation in the opposite limit of pure
electrostatic coupling where a dot is placed
adjacent to one of the rings arms. Although, from
the quantum measurement point of view, in such
an arrangement the quantum dot could be
regarded as a ‘which path detector’ for electrons
traversing the quantum ring, it is argued that the
observed reduction of the AB oscillation ampli-
tude in the transconductance is not due to
dephasing but rather a single electron screening
effect.

2. The ring samples

The coupled ring-dot structures were realized in
a Ga[Al]As heterostructure with a two-dimen-
sional electron gas, 37 nm below the surface. The
lateral patterns were fabricated with the biased tip
of an atomic force microscope which locally
oxidizes the GaAs surface. Details of this fabrica-
tion technique are described in Ref. [28]. Figs. 1(a)
and (b) show micrographs of the oxidized patterns.
Lateral gate electrodes marked pgl through pgd
are used to tune the conductance and electron
number of the quantum dots. All measurements
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Fig. 1. (a,b) AFM micrographs of the two ring structures. The oxide lines (bright lines) written by local oxidation with an AFM tip
lead to insulating barriers in the two-dimensional electron gas, 37 nm below the surface. The areas marked pgl-pg4 are used as lateral
gates to tune the conductance of the four arms of the ring and act as plunger gates for the dots. In two-terminal measurements, a fixed
current is passed from source to drain and the voltage drop across the ring is measured. In the four-terminal arrangement, a voltage
bias of Vpiss = 16 pV is applied on the left and the non-local voltage Vy is measured. Two additional leads (top and bottom)
are connected to ground and the currents /;, I, close to the corresponding dots are measured. (c,d) Coulomb blockade oscillations in
the quantum dots (dashed circles) as a function of a voltage applied to the gate. For ‘structure A’ a dot was induced in the segment
of the ring adjacent to plunger gate pgl by applying negative gate voltages. One of the other segments was pinched off during the
measurement in order to prevent current flow parallel to the dot. (e,f) Two-terminal measurements of the Aharonov—Bohm (AB) effect
in the the resistance and conductance of the rings, respectively. (g) AB-oscillations in the non-local voltage V. (h) AB-oscillations in
the transconductance of the ring.

were carried out in a dilution refrigerator with a
base temperature of 40 mK.

Figs. 1(c) and (d) show pronounced conduc-
tance oscillations in the quantum dots [dashed
circles in Figs. 1(a) and (b)] when measured
individually. While the tunnel barriers of the dot
in ‘structure B’ were explicitly defined by writing
two short oxide lines, the dots in ‘structure A’ were

induced through negative gate voltages applied to
the corresponding in-plane gate electrode [29].
The rings were characterized in two-terminal
measurements in the open regime and pronounced
AB oscillations are found [see Figs. 1(e) and (f)].
The period of the AB oscillation is AB = 4.8 and
8 mT for structure A and B, respectively, and
directly reflects the different size of the two rings.
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We find small deviations (<10% of the total
signal) from a perfect symmetry around zero
magnetic field (dashed line) as required by the
Onsager relations. From temperature-dependent
measurements of the AB effect on an even smaller
ring [4], we estimate that the phase-coherence
length in these samples at 7 = 100 mK is larger
than 10 um and therefore persists outside the ring
structure. This could explain the observed devia-
tions since the measurements outside the ring
structure itself were performed in a four terminal
configuration as indicated in the inset of Fig. 1(e).
The ring conductance in ‘structure B’ at small
magnetic field values shows oscillations with
multiples of the AB frequency, indicating that
paths which circle the ring at least once before
interfering are of importance in the smaller ring.
Generally, we can express the conductance of the
ring with area 4 in a magnetic field B as

d de d de
Gling (Vg B) = Go* (Vg
+ G( Vdc)cos <27r he >
.. (1)

where G{“(Vi) is the amplitude of the AB
oscillations.

A true four-terminal measurement of the AB-
effect is shown in Fig. 1(g) in the open regime of
the ring in ‘structure A’ where each quadrant
supports 2—4 lateral modes. In this configuration, a
bias voltage Vyi,s was applied to the ring while
upper and lower contacts were grounded using
current—voltage converters to measure the currents
I, and I, [see Fig. 1(a)]. The non-local voltage V'
was detected at the contact on the right. While the
period is the same as for the two-terminal
measurement there is clearly no symmetry around
zero magnetic field in this case. Also, this config-
uration allows for a much larger signal-to-noise
ratio than the corresponding local measurement.

3. Transmission phase

We proceed to discuss the influence of Coulomb
charging of the dots in ‘structure A’ on the phase
of the AB-oscillations detected in the non-local

voltage. The measurements are performed in the
configuration shown in Fig. 1(a) where two dots
are induced in segments 1 and 2 of the ring and
segments 3 and 4 are open. Fig. 2(a) shows a
grayscale image of the non-local voltage V7, as a
function of the voltages applied to each of the
two plunger gates pgl and pg2 of the quantum
dots. In the weak coupling regime for strongly
negative gate voltages we observe well defined
peaks with two characteristic slopes indicating
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Fig. 2. (a) Grayscale image of the non-local voltage ¥} as a
function of the voltage applied to each of the two plunger gates
pgl,pg2 of the quantum dots. The dashed lines indicate the
evolution of Coulomb resonances in each of the dots and
resonances in the ring area between the two dots. The
Aharonov-Bohm measurements were performed in the shaded
area where two conductance peaks of dotl cross a conductance
peak of dot2. The figures below show close-ups in this regime of
the three measured values, namely the currents (b) /; and (c) I
and the non-local voltage (d) V3. (e) Schematic drawing of the
peaks positions and the gate-sweeps discussed in the text.
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Coulomb-blockade oscillations in each of the two
dots (dashed lines). From measurements of Cou-
lomb-blockade diamonds in each dot we extract
the lever arms oG =~0.16 of the gate closest to the
corresponding dot [30] and find a typical charging
energy of 1 meV. The lever arm to the adjacent
gates can be extracted from the slope of the dashed
lines in Fig. 1(a) and is a factor of six smaller. For
the gate opposite the corresponding dot the lever
arm is 14 times smaller. The peaks in this weak
coupling regime are narrow and we conclude that
there is negligible electrostatic interaction between
the dots from the fact that the peaks cross each
other with no observable shifts or splitting as
expected e.g. for a double quantum dot with
electrostatic coupling [31]. However, in this regime
it was not possible to detect AB oscillations as a
function of magnetic field. Therefore, we per-
formed our measurements in an intermediate
coupling regime (see arrow in Fig. 2(a)) where
both the AB signal was strong enough and the
Coulomb resonances were still well defined. We
focus on a parameter range where two Coulomb
resonances in each of the dots cross each other.
This is shown in measurements of the two currents
I, and I, in Figs. 2(b) and (c), respectively, where
the resonance in the dot closer to the correspond-
ing current lead shows up much more strongly.
Fig. 2(d) shows a zoom of the non-local voltage,
which for the same parameter range, displays clear
signatures of conductance resonances of both
quantum dots. The Coulomb resonances are
indicated by the dashed lines and the schematic
drawing in Fig. 2(e) shows how the electron
configuration in the dots can be tuned along
selected gate voltage sweeps indicated by the black
arrows.

In order to study the phase evolution of the
transmission through the quantum dots, we now
proceed to measure Vy; as a function of magnetic
field and for gate voltages along the arrow ‘linear
2’ indicated in Fig. 2(¢), where we stay on a
conductance maximum of dot 1 while dot 2 is
tuned over a Coulomb resonance. Fig. 3(a) shows
a grayscale image of the AB oscillations in V7 as a
function of V. The AB oscillations are strongest
in the range of the conductance maximum
indicated by the dashed line. Fig. 3(b) shows
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Fig. 3. (a) Gray scale image of Aharonov—Bohm oscillations in
the non-local voltage as a function of the gate voltages tuned
along ‘linear2’ across a conductance resonance in dot 2 while
keeping dot 1 on a conductance maximum. (b) shows individual
traces in a selected magnetic field range (indicated by the white
dashed rectangle) and gate voltages close to the conductance
peak. The phase increases by about n. Curves have been offset
by 0.3 pV for clarity. (c) i1/e periodic contribution to the non-
local voltage extracted from the raw data by applying the filter
function to the Fourier transformed data as outlined in the text
(d) /1/2e periodic contribution extracted by a similar procedure.

individual magnetic field traces in a range where
dot 2 is tuned over the Coulomb resonance. A
phase shift of about n can be directly observed
compatible with expectation from straightforward
theory [27].

To analyze such phase shifts more quantita-
tively, the fast Fourier transform of each
magnetic field sweep was multiplied with the
filter function f(w) = (6w)*/2exp[l — (cw)*/2]
with ¢ = AB/+/2n in order to obtain the pure
h/e-periodic contribution. The inverse fast Fourier
transform of the filtered data gives the oscillatory
component of ¥y as a function of magnetic field
which is plotted in Fig. 3(c). The same procedure
was also done for the /1/2e periodic component of
Va as shown in Fig. 3(d). However, the //2e
oscillation amplitude in this ring was about a
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factor 30 smaller and the peak in the Fourier
spectrum was only just detectable. This indicates
that paths which go around the ring several times
are suppressed in the multi-terminal configuration
used in our setup as expected.

From Fig. 3(c) we find that while the qualitative
evolution of phase and amplitude of the AB
oscillations is as expected, there is also a B-
dependence, e.g. the amplitude on the peak
increases with magnetic field and there are phase
lapses in certain magnetic field regimes. Such a
phase lapse occurs for example at the tip of the
arrow in Fig. 3(c). This phase lapse lies in the flank
of the Coulomb resonance and occurs only over a
limited range of magnetic field. Beyond this field
range the phase lapse disappears in favor of a
continuous phase evolution of order m. A more
detailed description of this behavior will be
discussed elsewhere [32]. Here, we want to restrict
ourselves to a qualitative analysis in the regime
40 mT < B<70 mT, where the phase behavior is
fairly regular for all the gate sweeps along the
arrows shown in Fig. 2(e). For this purpose, we use
a Fourier analysis to extract both the magnetic
field averaged phase and amplitude as a function
of gate voltage for each of the gate sweeps.

Fig. 4(a) shows the result for the sweep
discussed above along trace ‘linear 2’ where an
electron is added to dot 2 and indeed we find a
phase change of about n as expected. However,
when we measure along trace ‘linearl’ (Fig. 4(b))
where electrons are added to dot 1 we pass two
resonances. The total phase shift is still about =
but the phase shifts by n/2 for each of the peaks.
Similar behavior has been observed for a dot in the
Kondo regime [24,25]. The overall trend of the
phase shift differs in sign from that along ‘linear 2’,
in agreement with the fact that we tune the dot in
the other interferometer arm. Along trace ‘diagl’
(Fig. 4(c)), an electron is added to both dots at the
same time. In this case, a very small phase shift is
found since the relative phase between the arms of
the ring does not change. Along trace ‘diag2’
(Fig. 4(d)) an electron is removed from dot 2 and
added to dot 1. As expected, AB oscillation
maxima shifts in the same direction as in ‘linearl’.
However, the total phase change is only slightly
more than 7 rather than the expected shift of 27.
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Fig. 4. Averaged phase and amplitude change of the AB-
oscillations along selected sections of the sweeps discussed in
the text close to the crossing of the Coulomb peaks in the Ve—
Vpe2 plane. The values shown were determined from Fourier
analysis of the magnetic field range from 40 to 70 mT.

Summarizing our results on the transmission
phase of two dots embedded in the arms of a ring
interferometer, we can state that we have suc-
ceeded in measuring the AB phase in the
intermediate coupling regime of the dots where
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the AB oscillations are well developed and suitable
for phase measurements. In the range between 40
and 70 mT the expected phase shifts across
Coulomb-blockade resonances are qualitatively
observed. However, we also find phase lapses that
occur in finite magnetic field ranges at specific gate
voltages which influence the quantitative measure-
ment of the phase. A conceivable origin of the
phase lapses is the finite width of the ring segments
accommodating several modes. Furthermore, as
the coupling increases with increasing Ve addi-
tional resonances appear with a diagonal behavior
[dashed line ‘lead states’ in Fig. 2(a)]. From the
relative slope to the two plunger gates, we find that
these resonances must originate either in addi-
tional states that form in the left lead of the ring
where the bias is applied or from the coherent
coupling of the two dots. This together with the
observed phase evolution in trace ‘linear 1’ may
indicate that coherent processes between the two
dots and the leads are of some importance. In such
a case, the question arises how the transmission
phases of individual resonances combine to the
observed phase shift.

4. Single electron detection

Let us now turn to the second ring-dot system in
‘structure B” where the coupling between the two is
purely electrostatic. For the experiment described
in the following, only one dot is important [dashed
circle in Fig. 1(b)] and also the point contacts next
to the quantum dots were not used. In this sample,
the whole structure was covered by a metallic top
gate giving additional tunability. The aim of the
experiment was to study the influence of the
charging of the quantum dot on the coherent part
of the current through the ring. Again, we
performed magnetoconductance measurements
on the ring while stepping the gate voltage Vg
on the dot. We determine the Fourier coefficients
of the conductance of which we plot the constant
part G& (see Eq. (1)) and the oscillatory part G
in Fig. 5(a) together with the conductance of the
dot measured separately. We find that both G
and the AB signal depend on the gate voltage
which modifies the symmetry of the ring [33].

However, to resolve features which are related to
the charging of the dot, the resolution in this
measurement is clearly not good enough. We
therefore also measured AB oscillations in the trans-
conductance  dGiing/dVpe =d(Liing/ Viias)/d Vr(;g‘c),
where Iy is the current through the ring. This
quantity is measured with lock-in techniques by
applying a DC bias voltage Viias between source
and drain and modulating the plunger gate with
V8O at a frequency of 89 Hz. The modulation of
the current through the ring is then detected at the
same frequency. Fig. 1(h) shows an example of the
resulting AB-oscillations in the transconductance.
Fig. 5(b) displays the resulting curves which are a
direct measurement of the derivative of the
corresponding quantities in Fig. 5(a). In these
measurements, dips can be detected that are
correlated with the occurrence of peaks in the
dot conductance (see dashed vertical lines). Note
that the current through the dot was plotted on a
logarithmic scale in Fig. 5(a).

To substantiate this, we show a more detailed
measurement of the dip and the corresponding
Coulomb peak in the inset in Fig. 6(a). The main
figure shows the evolution of the Coulomb peak
when the remote gate V), is tuned which can be
compared to the corresponding measurement of
G in Fig. 6(b) where the dip moves in exactly the
same way. Note that when the quantum dot is
conducting, the amplitude of the Aharonov—Bohm
oscillations in the transconductance is found to be
significantly suppressed by up to 40% as compared
to the situation where the dot is blockaded.

Our interpretation of the reduced AB-amplitude
involves screening of the modulated plunger gate
voltage felt in the ring by single-electron charging
in the dot on a conductance peak. The screening
effect can be readily understood in a capacitive
model (inset Fig. 6(b)). There is a direct capacitive
coupling C;, between plunger gate and ring arm.
In addition, the capacitances between gate and
dot, Cy4g and dot and ring, Cy, are connected in
series, parallel to Cy,. The induced charge on the
arm of the ring is given by

Cdr
Cuq

I A
Qring = <Cdr + Cdg) +Crg VI(Dlg)C) + Odot-
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Fig. 5. (a) Dot current and Fourier coefficients of the two-terminal conductance of the ring as a function of the gate voltage applied to
the dot. (b) Fourier coefficients of the transconductance through the ring when the gate voltage Vs is modulated. Each curve is a
measurement of the derivative of the corresponding curve in (a).

When the charge on the dot Qg, changes by —|e|
on a conductance peak, Qi changes in a small
step AQyine. When VPO is swept over a con-
ductance peak in the dot, the thermal smearing of
the peak will also smear the step in Qping. It is
reasonable to assume that the corresponding local
potential change in the ring is A Uying o€ AQring. This
step AUin, will lead to a step in all the
conductances G; as a function of Vlglgjc). Since
the transconductance measures the derivative of
the conductance, the step-like behavior in Gy and
G, appears as a dip at a value of Vp, where a
conductance peak occurs in the dot. A thorough
discussion of this single-electron screening effect
will be published elsewhere [34].

The strong suppression of the AB oscillation
amplitude on a conductance peak suggests the
straightforward interpretation of the effect as
being due to dephasing of partial waves in the
ring in the spirit of a ‘which-path’ experiment.
When the quantum dot is in the Coulomb
blockade, its electron number is fixed and no
information can be carried away about whether an
electron passed through the adjacent ring arm.
Viewed from the perspective of the electrons in the
quantum ring, there are no time-dependent fluc-
tuations of the potential in the ring near the dot,

since there are no charge fluctuations in the
blockade. On the other hand, if the dot becomes
conducting, its charge state does fluctuate in time
and the resulting fluctuations of the local potential
in the ring may dephase the electron partial waves.

However, we argue that such an interpretation,
though very appealing, does not explain the
magnitude of the observed AB-amplitude reduc-
tion. Since the dwell time of electrons in the
quantum dot is significantly larger than the time
an electron needs to traverse the ring arm from
source to drain, the ring’s electrons feel only a
slow, quasistatic potential variation which is very
inefficient in dephasing.

5. Summary

In conclusion, we have studied the coupling
between a ring and a dot in two coupling
configurations. We have demonstrated that the
phase coherent AB oscillations in a quantum ring
are sensitive to single electron charging of an
adjacent electrostatically coupled quantum dot
and the ring can be used as a detector of the dot’s
charge state. Furthermore, we measured the phase
evolution of a system of two quantum dots with
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Fig. 6. (a) Gray scale image of the Coulomb peak in the dot
current as a function of both plunger gate voltages. The inset
shows how the Coulomb peak is correlated in position with
the dip in transconductance. (b) Dip in the AB-signal of
the transconductance which follows exactly the position of the
Coulomb resonance shown in (a). The inset shows the
capacitive model.

negligible electrostatic interaction embedded in
two arms of a four-terminal AB ring. Here, we are
able to tune the number of electrons in each of the
dots individually while detecting changes in the
phase of the AB oscillations. While the observed
phase shifts, agree qualitatively with theoretical
expectations, the phase evolution is found to
depend also on the magnetic field and occasional
phase lapses occur in limited magnetic field ranges
that influence a quantitative analysis of the
transmission phase of the dots. These observations
highlight the need to consider non-local coherent
effects in the entire system.
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