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We measure the conductance of a quantum point contact while the biased tip of a scanning probe
microscope induces a depleted region in the electron gas underneath. At a finite magnetic field, we find
plateaus in the real-space maps of the conductance as a function of tip position at integer (ν ¼ 1, 2, 3, 4, 6, 8)
and fractional (ν ¼ 1=3, 2=3, 5=3, 4=5) values of transmission. They resemble theoretically predicted
compressible and incompressible stripes of quantum Hall edge states. The scanning tip allows us to shift the
constriction limiting the conductance in real space over distances of many microns. The resulting stripes of
integer and fractional filling factors are rugged on scales of a few hundred nanometers, i.e., on a scale much
smaller than the zero-field elastic mean free path of the electrons. Our experiments demonstrate that
microscopic inhomogeneities are relevant even in high-quality samples and lead to locally strongly
fluctuating widths of incompressible regions even down to their complete suppression for certain tip
positions. Themacroscopic quantization of theHall resistancemeasured experimentally in a nonlocal contact
configuration survives in the presence of these inhomogeneities, and the relevant local energy scale for the
ν ¼ 2 state turns out to be independent of tip position.
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I. INTRODUCTION

Two-dimensional electron gases at high magnetic
fields applied normal to the electron-gas plane exhibit
the quantum Hall effect. The integer [1] and fractional [2]
quantum Hall effects are two different macroscopic
quantum phenomena, which lead to surprisingly similar
observations in electron transport experiments. The similar
phenomenology of both effects is commonly believed to be
a result of one-dimensional channels at the sample edges,
which transmit electrical signals without losses between
contacts separated by macroscopic distances [3–5].
In the integer quantum Hall effect, each occupied bulk

Landau level gives rise to a pair of counterpropagating
channels at opposite sample edges [3,4]. Each counter-
propagating pair contributes one conductance quantum
e2=h to the total conductance of the quantum Hall fluid,
giving a total quantized conductance (Hall conductance) of
e2=h × ν, where the integer filling factor ν is the number of
spin-resolved Landau levels occupied in the bulk [4,6].
Spin degeneracy of edge channels can be lifted by Zeeman
splitting enhanced by exchange interaction effects leading
to a spatial substructure [7,8]. Edge channels in the frac-
tional quantum Hall effect have been theoretically proposed
[9–13]. Exchange and correlation effects can bring about a

spatial substructure beyond the spin splitting of Landau
levels, an effect called edge reconstruction [14–16].
Concerning transport, however, theory predicts the same
form of the quantized conductance as in the integer regime,
but with fractional values of ν, in agreement with the
experiment [2].
Early experiments showed spatially resolved edge-

channel transport with various techniques [17–19].
Alternative local investigations of the integer quantum
Hall effect employed scanning probe techniques, such as
scanned potential microscopy [20], the scanning single
electron transistor [21], or subsurface charge accumulation
imaging [22]. Local gate electrodes enable selective back-
scattering experiments of integer [23] or fractional [24,25]
quantum Hall edge channels. Similarly, narrow quantum
point contact (QPC) constrictions allow experimentalists to
control local scattering between counterpropagating integer
[26,27] or fractional edge channels [28–30]. Scanning gate
microscopy (SGM) experiments on quantum point contacts
in the integer quantum Hall regime have complemented the
conventional transport experiments by inducing a local
potential perturbation in the electron gas near the quantum
point contact with the scanning tip [31,32]. This arrange-
ment leads to tip-controlled spatially resolved selective
backscattering of integer edge channels. Most recently, an
experiment by Paradiso and co-workers [32] focused on
exploring the physics of fractional quantum Hall edge
states. The experiment found evidence for the transmission
and backscattering of fractional edge channels through a
constriction by a statistical analysis of scanning gate
images, taken at a temperature of 250 mK.
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In this paper, we report scanning gate experiments at
an electron temperature of 170 mK that explore the
formation of integer and fractional quantum Hall edge
channels in a constriction under the influence of a scanning
tip. Our measurements exhibit fractional transmission in
the raw data without a statistical analysis. We find an
unprecedented rich structure on the local scale, which we
interpret as an interplay between the interaction-driven
local formation of correlated states leading to edge
reconstruction and small residual potential variations
occurring in our high-mobility sample on typical length
scales of a few hundred nanometers, far below the zero-
field elastic mean free path of electrons.

II. OBSERVATION OF QUANTUM HALL STATES

Nanostructures are patterned on top of a high-mobility
GaAs-AlGaAs heterostructure wafer with a two-dimensional
electron gas (2DEG) forming 120 nm below the surface. The
2DEG has a density of 1.9 × 1011 cm−2 and a mobility of
3.5 × 106 cm2=Vs. The2DEG is etched in the shapeof aHall

bar, and Ohmic contacts are deposited. All quantities that are
schematically summarized in Fig. 1(a) are measured as a
function of tip position. The results are obtained with a QPC,
where the minimal distance between the two gates is 800 nm.
During the experiments, the QPCgates are biased at a voltage
of−0.5 V,which is enough to deplete theunderlyingelectron
gas and define a narrow channel [33]. An ac bias voltage of
VSD;ac ¼ 20 μV is applied, and the modulated source-drain
current ISD is measured simultaneously with standard lock-in
techniques [see Fig. 1(a)]. This bias voltage is chosen
experimentally such that features do not get broadened. By
simultaneously measuring the source-drain current ISD and
thediagonal voltageVD,wedetermineG ¼ ISD

VD
¼ e2

h νQPC and
therefore the number of transmittedQPCmodes νQPC [6]. The
measurements are carried out at an electron temperature of
170mK in a quantizingmagnetic fieldB perpendicular to the
2DEG plane.
In the SGM experiment, the voltage-biased tip of the

microscope is used to induce a local potential perturbation
in the 2DEG [34]. A constant voltage of V tip ¼ −4.5 V is
applied to the tip so that the electron gas underneath it gets
totally depleted, leading to a disk-shaped region of zero
electron density with a radius of about 1.2 μm. This value is
estimated from the diameter of the region of total depletion
in the typical lens-shaped feature that is observed for all
filling factors. The tip consists of a focused-ion-beam-
sharpened platinum-iridium wire (radius about 20 nm).
In Fig 1(b) we show a typical SGM picture, measured

at a bulk filling factor νbulk ¼ 8, corresponding to a
magnetic field B ¼ 1 T. The colors encode the values of
the derivative of the conductance with respect to the x
direction. The blue dashed lines show the outline of the
metallic gate fingers defining the QPC. The general shape
of the rich pattern is mainly caused by electrostatics. We
indicate a fingerprint of the shape of the depletion zones
along the gate edges, as shown by the gray shading. The
width between the central lens and the outer contour of
the bright region is roughly given by the width of the QPC.
The fine structure deserves a more-detailed discussion. As
illustrated in Fig. 1(c), applying a sufficiently negative
voltage to the tip leads to a disk-shaped region of total
depletion underneath it. When this tip-depleted region
comes close to the QPC gap, it consecutively reflects edge
channels [see Fig. 1(c)] until it leads to total depletion of the
electron gas in the narrow QPC channel [35]. With the
filling factor in the bulk being adjusted to 8, as is the case
for Fig. 1(b), not accounting for spin splitting, four spin-
degenerate even-integer edge channels are present. Once
the tip approaches the QPC, the two depletion regions of
the tip and the negatively biased gates are so close to each
other that the innermost edge channels are reflected and the
outer edge channels are still transmitted. Consequently, the
detected QPC conductance G ¼ e2

h νQPC is decreased in
steps. In the following, we drop the distinction between
νbulk and νQPC. We always address the local filling factor
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FIG. 1 (color online). (a) Schematics of the experimental setup.
All indicated parameters are recorded as a function of tip position.
The QPC top gates are highlighted in blue. The QPC forms at the
minimum separation of the two gates, which is 800 nm. (b) Typical
differential conductance map measured at a bulk filling factor of
νbulk ¼ 8, corresponding to an external magnetic field of 1 T. The
general shape of the observed feature can be understood as an
electrostatic fingerprint of the depletion zones of the gates, as
highlighted with the white shaded areas. (c) Blow-up of the region
around the QPC in (a). The tip is used to selectively backscatter
edge channels. In the sketch shown here, two spin-degenerate edge
channels are reflected and two are transmitted; thus, the registered
conductance will be 4e2=h. (d) Line cuts at the position of the
green line number 2 for filling factors νbulk ¼ 4 and 8 and their
numerical derivative with respect to tip position. The conductance
changes in steps of e2=h as a function of tip position, depending on
how many edge channels get transmitted or reflected. Even filling
factors appear as distinct plateaus, odd filling factors as shoulders.
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νQPC unless stated otherwise. Figure 1(d) shows line cuts at
the position of green line number 2 in Fig. 1(b) for filling
factors νbulk ¼ 4 and 8 and their numerical derivatives with
respect to tip position. If the tip is far away from the QPC
constriction, we measure the bulk filling factor. If it
approaches the QPC gap, edge channels are reflected
one after the other, leading to stepwise-reduced conduct-
ance values. The even filling factors are seen as very
pronounced plateaus, the odd filling factors are less clearly
seen. This is a manifestation of the relative magnitude of
the energy gaps dominating transport: Because the sepa-
ration of Landau levels ℏωc is by orders of magnitude
larger than the energy scale for spin splitting gμBB (Zeeman
gap) the respective plateaus are more or less pronounced,
respectively. Plateaus in the conductance as a function of
tip position correspond to the length scale where the system
can compensate for a change in the electrostatic potential
without changing the filling factor in the QPC. Thus, one
might assume that the width of the plateaus as measured
with SGM is related to the width of the incompressible
region in the center of the QPC [5,9,31,32,36,37]. Roughly
speaking, the first derivative of the measured source-drain
current with respect to the tip position corresponds to the
current density that flows in the respective edge channel
dI=dx ¼ jðxÞ [38]. The images show that the change of
current with position (current density tentatively defined
with the above-mentioned relation) is high in between the
plateaus and zero at the position of the plateaus. This
increase of dI=dx is due to the formation of an incom-
pressible stripe (in the spirit of Chklovskii et al. [5]) in the
center of the constriction that supports the additional
current [39,40]. At higher magnetic fields, significantly
more fine structure of compressible and incompressible
stripes can be resolved [Fig. 1(d)]. The current density is
especially high at the edge of the compressible stripe. The
complicated structure inside the compressible stripe at a
bulk filling factor of 4 might support the idea that the edge
channels are reconstructed to consist of a fine structure of
different integer and fractional contributions [40].
Figure 2 shows a series of images taken at magnetic-field

values of 2, 3.5, and 8 T, corresponding to bulk filling
factors of 4, 2, and 1. In all images, the plateaus corre-
sponding to even-integer filling factors show up as pro-
nounced dark rings. Odd-integer filling factors can be
observed as thinner rings, as the corresponding plateaus
are less pronounced. The maximum number of resolvable
integer plateaus corresponds to the filling factor that was
adjusted in the bulk. The higher the magnetic field, the
more fine structure can be resolved between integer filling
factors. At a bulk filling factor of 2, a pronounced ring with
the spin-polarized filling factor 1 can be measured. At a
magnetic field of 8 T, where the bulk filling factor is 1, the
fine structure is very rich. There are two plateaus of
constant fractional filling factor, ν ¼ 1=3 and 2=3, going
all around the lens.

In order to characterize the fine structure between
integer plateaus, Figs. 2(d)–2(f) show close-ups with
high spatial resolution at the position of the green frames
in Figs. 2(a)–2(c). With the help of the line cuts [Figs. 2(g)–
2(i)] at the positions of the blue lines, most of the fine
features can be assigned to quantum Hall plateaus. Others
might more likely be caused by disorder-induced antidot or
quantum-dot resonances [41–44]. They can be distin-
guished by comparing the stability and appearance in real
space of the two effects. Disorder-induced resonances show
up as ringlike features with spacing of the order of 10 nm. If
stripes of suppressed dG=dx can be seen that are stable on
length scales of 1 order of magnitude larger and that exhibit
the right value of the integer or fractional conductance, they
are assigned to be quantum Hall induced. At a bulk filling
factor of 4 [Figs. 2(d)–2(g)], even and odd filling factors
show up as clear plateaus. For a bulk filling factor of 2
[Figs. 2(e) and 2(h)], we see a clear stripe for the ν ¼ 1
plateau. Again, the structure is very rich. More features
show up at fractional values of e2=h, e.g., 1=3 and 5=3.
When the filling factor in the bulk is 1 [Figs. 2(f) and 2(i)],
we see very clear indications for fractional states. There are
some regions where the conductance displays a clear
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FIG. 2 (color online). (a)–(c) Conductance maps at bulk filling
factors 4, 2, and 1, corresponding to magnetic-field values of 2,
3.5, and 8 T. Even filling factors can be seen as very pronounced
rings of constant conductance. Odd filling factors show up as
shoulders. (d)–(f) High resolution zooms taken at the position of
the green frames in (a)–(c). (d) Bulk filling factor of 4. The ν ¼ 2
plateau is clearly resolved, ν ¼ 1 and ν ¼ 3 appear as shoulders.
(e) Bulk filling factor of 2. (f) Bulk filling factor of 1. Panels (g)–
(i) show line cuts at the positions of the blue lines. Even, odd, and
fractional filling factors can be resolved.
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plateau. This allows us to resolve the fractional states with
conductance 1=3, 2=3, and 4=5, which can also be observed
in conventional transport experiments [45]. These findings
show that, by placing the tip at different positions, the
potential landscape of the QPC can be modified in a way
that it is more favorable to transmit fractional edge
channels. If this is the case, plateaus with fractional filling
factors are resolved. From these images, we can draw
conclusions about the edge and its roughness. Along the
edge, the structure is irregular on a length scale of a few
hundred nanometers, indicating edge roughness on this
scale. The conductance maps also show a lot of fine
structure in between the plateaus. This is an indication
that conductance at the edge is provided by a fine fabric of
different conductance paths [40].

III. POSITION INDEPENDENCE OF THE ν ¼ 2
ENERGY GAP

SGMoffers the possibility to investigate the quantumHall
energy gaps with spatial resolution by applying a finite dc
source-drain bias voltage VSD;dc. For these measurements, a
small ac modulation of 50 μV is applied to the tip so that the
transconductance with respect to the tip can be measured.
Then, line number 1 in Fig 1(b) is repeatedly scanned, while
after each line,VSD;dc is changed. This kind of measurement
is performed for three different magnetic-field values,
corresponding to the bulk filling factors 8, 6, and 4. The
derivative with respect to the gate voltage [Fig. 3(b)] is
calculated numerically. The results are depicted in Fig. 3(a),
together with similar transconductance results obtained in
conventional transport experiments [Fig. 3(b)]. Different
magnetic-field values are applied in Figs. 3(a) and 3(b) to
compensate for a slightly changed electron density in two

different cooldown cycles. The very broad even-filling-
factor plateaus give rise to very clear diamonds, odd filling
factors are less pronounced, and fractional states cannot be
clearly resolved in these measurements [33].
In an elementary single-particle description [6,46],

the size of the energy gaps for the even-numbered filling
factors is read from the finite-bias diamonds [see Fig. 3(a),
dashed lines]. The extracted gaps correspond to the
expected values, which can be calculated according to
ΔE ¼ ℏωc. The finite-bias measurements in Figs. 3(a) and
3(b) are rather different in their details. The reason lies in
the fact that in Fig. 3(a), we look at a QPC that is formed
between the tip and the left gate, whereas in Fig. 3(b), we
measure the QPC formed between the two gates.
Furthermore, the two measurements were made in two
different cooldowns.
Spatial resolution is not a limit for resolving the energy

gaps for fractional and odd filling factors. The relevant
parameter in this case is temperature. This can be under-
stood nicely by comparing the conventional transport
experiments [Fig. 3(b)] and the data obtained with SGM
[Fig. 3(a)]. If spatial resolution is the limiting parameter,
the odd filling factors should be especially clearly resolv-
able in conventional transport.
The irregularity of the structures in Fig. 2 is attributed to

edge roughness, which is accompanied by a complicated
and irregular local electrostaic landscape. Yet one could
imagine that, because of different local properties of the
2DEG, the local energy gaps could also be different. To
check this, different lines across the ring-shaped feature are
examined [as shown in Fig. 4(a)], and the values obtained
for the energy gaps, as they can be read from Fig. 4(b) for
filling factor 2, are compared. The energy gaps are found to
be position independent and have the expected value of
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3.4� 0.05 meV at B ¼ 2 T, in agreement with the cyclo-
tron energy at this magnetic field.

IV. SIMULATIONS

Paradiso et al. measured the width of a conducting stripe
in scanning gate images and identified this with the
compressible edge-state region in the potential landscape
[32,35]. In order to obtain the width of compressible and
incompressible regions in real space, one needs to carefully
consider the gate as well as tip-induced potentials, which
are known only with limited accuracy. We start from a
simple model capturing the essentials of the involved
potentials and then calculate the regions of constant
conductance in scanning gate images.
We perform calculations using the saddle-point model in

a magnetic field by Fertig and Halperin [48,49] (FH
model), where electron-electron interactions are neglected.
We compare the results with the model by Chklovskii,
Matveev, and Shklovskii (CMS model), where electron-
electron interactions are taken into account [47]. For both
methods, the potential landscape of the QPC as influenced
by the scanned tip is approximated as a superposition of a
saddle-point potential (QPC) [49] and a Lorentzian poten-
tial (tip) [34]:

V tot ¼ − 1

2
m�ω2

xx2 þ
1

2
m�ω2

yy2

þ V0γ
2

γ2 þ ðx − x0Þ2 þ ðy − y0Þ2
; (1)

where ωx and ωy describe the curvature of the saddle-point
potential in the x and y directions as extracted from finite-
bias measurements at B ¼ 0 T [33], V0 describes the height
of the Lorentzian potential, which is proportional to the
voltage applied to the tip, and γ denotes the half width at
half maximum of the tip-induced potential. If the tip is
scanned across the saddle point, the coordinates x0 and y0
describe its position.
If the tip is moved close to the QPC, V tot describes a

potential landscape, where saddle points that form in
between the tip and the QPC walls dominate the current
flow. The positions (xS, yS) of extremal points of these
potentials can be found with the condition

∂V totðx; yÞ
∂x ¼ ∂V totðx; yÞ

∂y ¼ 0: (2)

Expanding the total potential in a power series around the
saddle point found in this way, one obtains

V tot ¼ V totðxS; ySÞ þ
1

2

∂2V tot

∂x2
�
�
�
�
ðxS;ySÞ

ðx − xsÞ2

þ 1

2

∂2V tot

∂y2
�
�
�
�
ðxS;ySÞ

ðy − ysÞ2; (3)

with the terms ∂2V tot∂x2 jðxS;ySÞ < 0 and ∂2V tot∂y2 jðxS;ySÞ > 0, which
can be identified as the shape parameters −m�ωxs and
m�ωys of the saddle point that is formed in between the tip
and the gates. According to Refs. [48,49], only these shape
parameters of the potential at the saddle point and the
relative position of the potential minimum towards the
Fermi energy are needed to calculate the transmission. It
has been calculated within the FH model for each position
of the tip on a line across the center of the QPC [green line
number 2 in Fig. 1(b)]. This model accounts for non-
interacting electrons in a potential landscape; however, the
included spin splitting uses a g factor that accounts for
many particle interactions, as can be estimated from finite-
bias measurements in a magnetic field [33].
Additionally, the calculations that follow the CMSmodel

use the electrostatic model developed above to calculate the
electrostatic width 2b of the channel at the Fermi energy
EF ¼ 6.7 meV as a function of tip position. This is the
width of the confining parabola in the x direction at EF.
From this width, the electron density in the center of the
channel can be estimated to be [47]

n ¼ n0
b
d
; (4)

where d is the lithographic width of the channel of 800 nm
and n0 ¼ 1.9 × 1011 cm−2 is taken to be the bulk density
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of the 2DEG as determined by quantum Hall effect
measurements. Using the channel width and the density
in the center of the channel, the transmission can be
calculated for each position of the tip across the center
of the QPC [green line number 2 in Fig. 1(b)] according to
Eqs. (48), (50), and (51) in Ref. [47]. If the tip is placed
close to the QPC gap, it is intuitively understandable that
the superposition of potentials leads to a modified trans-
mission of current, as the minimum of the confining
potential is raised relative to the Fermi energy and the
width of the channel is also changed.
In Fig. 5, the results of the FH and CMS models are

compared to experimental traces. In both calculations,
plateaus can be interpreted as the result of incompressible
stripes, while the regions of finite slope represent the
compressible stripes in the channel center. One can observe
the trend that the calculations that follow the FH model (red
curves in Fig. 5) overestimate the plateau width and
underestimate the width of the sloped regions, thus giving
an exaggerated impression of the incompressible stripe
width. On the other hand, the CMSmodel (orange curves in
Fig. 5) overestimates the width of the sloped regions and
greatly underestimates the plateau widths, leading to
compressible stripes that are broader than those observed
experimentally. Our calculations are performed at zero
temperature. Including the effect of finite temperature
would lead to a stronger smearing of the plateaus. The
experiment is found in between the extreme results of the
two models. This may not be very surprising. The FH
model is based on noninteracting electrons. Self-consistent
calculations [8] indicate that edge reconstruction due to
screening cannot be neglected in the case of smooth gate-
defined edges. However, the CMS model assumes perfect
metallic screening by compressible stripes, an assumption
that exaggerates the influence of interactions.

V. CONCLUSIONS

In our measurements, scanning gate microscopy has
proven to be a powerful tool to explore the integer and
fractional quantum Hall effects, adding to conventional
transport experiments the possibility to image in real space.
Stripes of constant conductance in the maps of conductance
as a function of tip position can be identified as the
incompressible regions, which form in the center of the
constriction in the quantum Hall regime. Their real space
and energy distribution can be studied in greater detail.
Taking the very local nature of the edge channels into
account, it seems surprising that finite-bias spectroscopy
measurements show unambiguously that the corresponding
energy gaps of incompressible regions of a particular
integer filling, here, filling factor 2, do not depend on
the position of the tip in the potential landscape. Putting our
results in a theoretical context, we can show that existing
analytical theories qualitatively reproduce the results but
have a tendency to overestimate or underestimate screening

effects. Methods such as SGM, which give direct insight
into the real-space behavior of electron transport, can
connect the theoretical understanding of edge channels
to the world of experiments.
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