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Cotunneling-Mediated Transport through Excited States in the Coulomb-Blockade Regime
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M. Tews and D. Pfannkuche
I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, D-20355 Hamburg, Germany

D. C. Driscoll and A. C. Gossard
Materials Department, University of California, Santa Barbara, California 93106, USA

(Received 1 December 2004; published 25 May 2005)
0031-9007=
We present finite-bias transport measurements on a few-electron quantum dot. In the Coulomb-
blockade regime, strong signatures of inelastic cotunneling occur which can directly be assigned to
excited states observed in the nonblockaded regime. In addition, we observe structures related to
sequential tunneling through the dot, occurring after it has been excited by an inelastic cotunneling
process. We explain our findings using transport calculations within the real-time Green’s function
approach, including diagrams up to fourth order in the tunneling matrix elements.
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In a quantum dot in the Coulomb-blockade regime, the
energy gap related to the charging energy becomes larger
than kBT and sequential tunneling transport involving only
dot ground states is exponentially suppressed (see, e.g.,
[1]). Transport is dominated by cotunneling [2]. Elastic
cotunneling, prevalent at low bias voltages, involves virtual
tunneling of one electron through the dot via a higher-
energy state and leaves the dot in the ground state. Inelastic
processes imply correlated tunneling of two electrons,
leaving the dot in an excited state with energy � above
the ground state. Inelastic cotunneling sets in once the bias
energy fulfills the condition eVbias � �. Recently,
Golovach and Loss have presented a theoretical analysis
of the interplay between cotunneling and sequential tun-
neling in a double dot system [3]. Experimental investiga-
tions involving cotunneling have been performed on
metallic [4–6] and semiconducting [7–9] systems contain-
ing a large number of electrons. Signatures of inelastic
cotunneling in a transport measurement have been ob-
served in investigations on small vertical semiconductor
quantum dots [10,11], and in single-walled [12] and multi-
walled [13] carbon nanotubes, all containing well sepa-
rated energy levels.

In the following, we first present finite-bias transport
measurements through a quantum dot, showing structure
outside as well as within the Coulomb-blockade regime. In
the second part, we present a theoretical analysis of our
results based on transport calculations using the real-time
Green’s function approach.

The sample [see Fig. 1(a)] was fabricated by surface
probe lithography [14,15] on a GaAs=Al0:3Ga0:7As hetero-
structure, containing a two-dimensional electron gas
(2DEG) 34 nm below the surface as well as a back gate
(BG) 1400 nm below the 2DEG. The unstructured 2DEG
had a mobility of �3:5 � 0:5� � 105 cm2=Vs and a density
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of �4:6 � 0:5� � 1011 cm�2 at a temperature T � 4:2 K
and a BG voltage VBG � �0:5 V.

All measurements were performed in a dilution refrig-
erator with a base temperature of 80 mK. Negative voltages
were applied to the surrounding gates [see Fig. 1(a)] and to
the back gate, to tune the charge on the dot and the trans-
parency of its tunnel barriers. The bias voltage Vbias was
applied symmetrically (with respect to ground) across the
dot between source (S) and drain (D). The dc transport
current was measured and numerically differentiated. An
estimated charging energy Ec � 1:6 meV and a single
level spacing � � 0:3 meV were extracted.

Figure 1 shows measurements of finite-bias differential
conductance dI=dV on a strongly nonlinear scale.
Figures. 1(b)–1(e) contain measurements of differential
conductance vs both gate voltage and bias voltage.
Measurements were performed at different magnetic fields
in order to vary the wave functions inside the quantum dot
and their coupling to the reservoirs. Inside the diamond-
shaped regions, i.e., in the Coulomb-blockaded regime, we
observe horizontal (constant bias) structures. At the dia-
mond boundary, the horizontal lines seamlessly join some
of the most prominent diagonal lines in the nonblockaded
region. In Fig. 1(f), an averaged trace of the current vs bias
voltage is presented, showing the position of these kinks
more precisely.

For positive bias, e.g., in Fig. 1(b), additional structure
inside the diamond is observed: for bias voltages above the
well-resolved horizontal threshold line, diagonal lines par-
allel to the diamond edges appear. In our measurements,
this feature remains visible at all magnetic fields measured
(from B � 0:1 T to B � 0:5 T in steps of 0.1 T, see
Figs. 1(c)–1(e) for more examples). The vertical distance
between the diagonal lines and the diamond edge is iden-
tical for positively (left of diamond) and negatively sloped
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lines. When extended towards higher or towards negative
voltages, most of the diagonal lines apparently join promi-
nent lines in the nonblockaded regime.

A closer examination of the structures reveals a connec-
tion between two energy scales visible inside the block-
aded region [see Fig. 2(a) for an illustration]: an extension
of each diagonal line intersects the zero-bias line at a
certain point [point A in Fig. 2(a)]. Connecting this point
to the diamond edge at its intersection with the closest
horizontal line [point B in Fig. 2(a)] yields an extension of
a diagonal line (of opposite slope) in the nonblockaded
regime. This remains valid at different magnetic fields,
where the vertical distance between the diagonal line and
the diamond edge varies by a factor of about 2.
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FIG. 1 (color online). (a) Atomic force microscope micro-
graph of structure with designations of gates: source (S) and
drain (D) of the quantum dot, lateral gates G1 and G2 to control
the coupling of the dots to the reservoirs, and plunger gates P1
and P2 to tune the number of electrons on the dot. (b) Finite-bias
measurement of the dot’s differential conductance dI=dV at B �
0:1 T. (c)-(e) Finite-bias transport measurement at B � 0:2 T,
B � 0:3 T, and B � 0:5 T, respectively. Note the different ver-
tical distances between the diamond edge and the diagonal
structures inside the Coulomb-blockaded region. (f) Single trace
of the bias dependence of the current in the blockaded regime,
obtained by averaging over the gate voltage range marked in (f)
by two vertical dashed lines. (g) Color scale used in (b)-(e): To
show all features inside and outside the Coulomb-blockaded
region, our data are presented in a highly nonlinear color scale.
The plotted quantity is calculated as

������
jxj10

p
sgn�x� with x=1� �

�dI=dV�.
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While we observe the horizontal structures for at least
twelve consecutive Coulomb-blockaded diamonds, the di-
agonal features are only seen for a maximum of two
neighboring diamonds up to now. On reducing the trans-
parencies of the dot’s tunnel barriers, the amplitude of the
cotunneling currents become comparable to the minimum
current resolution, and the structures inside the Coulomb
diamonds gradually disappear.

We interpret our findings as follows: the horizontal lines
in the blockaded regime mark the onset of inelastic cotun-
neling connected to specific excited states. The distance
from the zero-bias line corresponds to the single-particle
level spacing of these states with respect to the ground
state. At the intersection points at the border of the
Coulomb diamonds, a direct mapping can be made of the
excited states that contribute measurably to inelastic co-
tunneling and those that open additional transport channels
in the nonblockaded, finite-bias regime. The horizontal line
close to zero bias in Fig. 1(e) suggests the presence of a
state with low excitation energy contributing to inelastic
cotunneling.

The most unconventional features observed are the diag-
onal lines inside the Coulomb-blockaded regions. The fact
that they have the same slope as the diamond edges sug-
gests that they are connected to the alignment of an energy
level with source (negative slope) or drain (positive slope).

To verify this hypothesis, we have performed transport
calculations within the real-time Green’s function ap-
proach [16] including all cotunneling diagrams, i.e., all
diagrams to fourth order in the tunneling matrix elements
[17]. In the following, the results for a quantum dot with a
simple level structure are discussed.

The simplest quantum dot which shows signatures of its
excitation spectrum in the Coulomb-blockade regime is
described by an Anderson Hamiltonian ĤD having two
nondegenerate single-particle levels E1 and E2 and the
excitation energy � � E2 � E1:

Ĥ � ĤD 	 ĤR 	 ĤT; (1)
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FIG. 2 (color online). (a) Schematic picture of the various
tunneling regimes within the Coulomb blockade. A and B label
the marked intersection points. Labels (b) and (c) mark the gate
voltage values of the corresponding diagrams. E is for elastic and
I for inelastic cotunneling, S for sequential tunneling. (b),
(c) Relative position of transport channels and contact electro-
chemical potentials for different bias voltages.
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FIG. 3 (color online). (a) Calculated charging diagram within
the Coulomb-blockade regime including the cotunneling contri-
bution. The peak conductances due to resonant sequential tun-
neling [also responsible for the increasing background in (b)]
have been ‘‘cut’’ from the color scale (outer white regions).
Solid, dotted, and dashed lines correspond to traces in (b).
(b) Cotunneling signatures within the Coulomb-blockade re-
gime. Shown is the differential conductance versus the applied
transport voltage for three different gate voltages. The arrow
marks the onset of inelastic cotunneling for the dashed trace. The
parameters used for this calculation are: $ � 0:1kBT, � �
14:67kBT, and U � 52kBT. Bottom: color scale for (a).
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2 c2 	 e�GVGN̂D: (2)

The annihilation (creation) operator c�	�
l annihilates (cre-

ates) an electron of state l in the quantum dot. Coulomb
interaction is described by the second term of (2) leading to
an additional interaction energy U whenever the dot is
occupied by two electrons. The four possible states of the
isolated quantum dot are labeled as follows: j0; 0i denotes
the empty dot, j1; 0i the single-particle ground state, j1; 1i
the excited single-particle state, and j2; 0i the two-particle
state. Here we assume that the applied gate voltage VG

leads to a constant electrostatic potential described by the
third term of the quantum dot Hamiltonian. In this term,
N̂D �

P
lc

	
l cl is the number operator for the dot electrons

and �G the electrostatic lever arm of the gate electrode.
The coupling of the quantum dot to two reservoirs is
described by the reservoir (ĤR) and the tunneling
Hamiltonian (ĤT). They are of the conventional form
(see, e.g., [17,18]) with the reservoir electrons being
treated as noninteracting except for an overall self-
consistent potential [19], owing to the high density of states
in source and drain contacts. For simplicity, we assume for
the following the absolute value of the complex tunneling
matrix elements to be independent of all quantum numbers
with a complex phase which is random with respect to the
direction of the reservoir electrons wave vector.

In order to calculate the nonequilibrium transport prop-
erties for finite transport voltages VSD, we use the real-time
transport theory developed by Schoeller et al. [16].
Following the steps of this theory one can trace out the
reservoir degrees of freedom and derive a formally correct
equation of motion for the reduced density matrix of the
quantum dot system which under steady state conditions
transform into

i
�h
�Es � E0

s�Pst
ss0 �

X
s1s01

Pst
s1s01

Z 0

�1
dt0!ss0s1s01

�0; t0�: (3)

Here Pss0 denotes a matrix element of the reduced dot
density matrix with the (few)-particle states jsi and js0i
of the isolated quantum dot. The kernel !ss0s1s01

represents a
generalized transition rate involving the relevant tunneling
processes. Within the same formalism one can also calcu-
late the tunneling current expectation value for the steady
state

hIst
r i � �e

X
ss1s01

Pst
s1s01

Z 0

�1
dt0!r

sss1s01
�0; t0�: (4)

In the sequential tunneling approximation, a ‘‘tunneling
in’’ process is only possible if a reservoir electron matches
the energy required to charge the quantum dot by a further
electron. Generally, this energy is given by Es � Es0 for a
transition between the state jsi (where jsi � jN; ji is the
jth N-particle state) and the �N 	 1�-particle state js0i and
is in the following called transport channel and denoted by
��s; s0�. For the quantum dot described by (2), four trans-
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port channels exist. In the Coulomb-blockade regime,
where transport in lowest order is exponentially sup-
pressed, the electrochemical potentials of both reservoirs
are in between the two transport channels associated with
two ground states: ��2; 0; 1; 0� � �r � ��1; 0; 0; 0�.
Going one step further and calculating the kernel of (3)
in fourth order, already 64 qualitatively different terms
occur, describing so-called cotunneling processes in which
two electrons participate coherently in a tunneling process.
In the following, we study the resulting differential con-
ductance including consistently all cotunneling contribu-
tions [20].

In Fig. 3(b) the differential conductance as a function of
the applied source-drain voltage VSD is shown within the
Coulomb-blockade regime, i.e., the electrochemical poten-
tials for VSD � 0 are energetically in between the two
ground state channels ��2; 0; 1; 0� and ��1; 0; 0; 0�.

For small voltages, all three traces start with the same
value and at least the traces for e�GVG=kBT � 29:3 and
e�GVG=kBT � 33:3 stay constant for small transport volt-
ages. This constant and finite differential conductance can
be attributed to elastic cotunneling by virtual tunneling
through either the vacuum or the two-particle state.
Additionally, for all three traces a peak is found which
shifts linearly to higher source-drain voltages with increas-
ing gate voltage. In contrast to the traces at lower gate
voltages, the differential conductance of the highest gate
voltage (e�GVG=kBT � 33:3) shows an additional step
[see arrow in Fig. 3(b)] emerging at the source-drain
voltage eVSD=kBT � 15, which corresponds to the excita-
tion energy �. This step is strongly smeared due to tem-
perature and especially due to the overlap with the peak
occurring at higher voltages (also responsible for the strong
increase towards higher bias voltages).
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In Fig. 2(b), the relative position of the transport chan-
nels with respect to the electrochemical potentials in the
reservoirs is shown at the parameters where the step occurs
(eVSD �� and e�GVG=kBT � 33:3). In this situation, in-
elastic cotunneling becomes possible in which the quantum
dot becomes excited during the tunneling process. This
additional (to the elastic process) cotunneling process leads
to a step in the differential conductance [21] which corre-
sponds to the experimentally observed steps showing as
horizontal lines in Fig. 1. Eventually, by further increasing
the source-drain voltage eVSD>�, the electrochemical
potential of the drain reservoir becomes resonant with the
transport channel ��1; 1; 0; 0� [sketched in Fig. 2(c)].
Other than in the sequential tunneling approximation,
where the j1; 1i state cannot be occupied due to the
Coulomb-blockade effect, inelastic cotunneling allows
this excited state to be occupied and the resonant channel
leads to a peak in the differential conductance. Because of
the smaller cotunneling rate, the peak is lower as compared
to the corresponding peak beyond the Coulomb-blockade
regime.

For lower gate voltages, the peak moves to lower source-
drain voltages and eventually merges with the step at
eVSD � �. For even lower gate voltages, the channel
��1; 1; 0; 0� is already within the transport window at the
source-drain voltage eVSD � � needed to allow for the
inelastic cotunneling process.

Combining all these processes, various tunneling re-
gimes within the Coulomb-blockade can be identified as
sketched in Fig. 2(a). For eVSD < �, transport is dominated
by elastic cotunneling, leading to a constant offset of the
differential conductance. For gate voltages in the vicinity
of the Coulomb-blockade center and eVSD > �, a regime
where elastic and inelastic cotunneling occur is found. In
the remaining outer regime, sequential tunneling through
the excited single-particle state is also possible. At the
border of this regime, a peak occurs in the differential
conductance. All described features are also found in the
calculated charging diagram including cotunneling [shown
in Fig. 3(a)].

While it is not entirely clear to us why the induced
sequential tunneling contributions have not been observed
before, we can identify a few requirements: First of all, the
charging energy has to be large enough, Ec > 2�. This can
be directly seen from Fig. 2(a), and it explains why the
effect has not been observed, e.g., in [10]. In addition, a
sufficient level spacing � � kBT is required so that the
effect is not smeared out by temperature. We speculate that
the strongly asymmetric tunnel barrier configuration used
in the present experiment may also enhance the visibility of
these features.

Elastic cotunneling has earlier been identified as a pos-
sible source of uncertainty in the operation of single-
electron devices (see, e.g., [2]). Our results show that the
inelastic contributions can become more prominent, espe-
cially if the induced sequential tunneling is taken into
account. It follows that in an application relying on
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Coulomb-blockade in quantum dots, e.g., in quantum in-
formation processing, the bias must be kept small in com-
parison to the lowest excitation energy.
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[14] R. Held, S. Lüscher, T. Heinzel, K. Ensslin, and W.
Wegscheider, Appl. Phys. Lett. 75, 1134 (1999).
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