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ABSTRACT: We report on the observation of magnetoresistance
oscillations in graphene p−n junctions. The oscillations have been
observed for six samples, consisting of single-layer and bilayer
graphene, and persist up to temperatures of 30 K, where standard
Shubnikov−de Haas oscillations are no longer discernible. The
oscillatory magnetoresistance can be reproduced by tight-binding
simulations. We attribute this phenomenon to the modulated densities
of states in the n- and p-regions.
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A p−n junction is one of the basic building blocks of any
electronic circuit. The ambipolar nature of graphene

provides a flexible way to induce p−n junctions by electrostatic
gating. This offers an opportunity to tune the charge carrier
densities in the n- and p-doped regions independently. The
potential gradient across a p−n interface depends on the
thickness of the involved insulators and can also be modified by
appropriate gate voltages. Due to the high electronic quality of
present day graphene devices, a number of transport
phenomena in pnp or npn junctions have been reported,
such as ballistic Fabry-Peŕot oscillations1−3 and so-called snake
states,4,5 both of which depend on characteristic length scales of
the sample.
Here we report the discovery of yet another kind of

oscillation, which does not depend on any such length scale.
The oscillations occur in the bipolar regime, in the magnetic
field range where Shubnikov−de Haas oscillations are observed
in the unipolar regime. These novel oscillations in the bipolar
regime are governed by the unique condition that the distance
between two resistance minima (or maxima) in gate voltage
space is given by a constant filling factor difference of Δν = 8.
The features are remarkably robust: they occur in samples with
one and two p−n interfaces; in single and bilayer graphene; up
to temperatures of 30 K (where Shubnikov−de Haas
oscillations have long disappeared); over a large density
range; for interface lengths ranging from 1 to 3 μm, and in
both pnp and npn regimes. The oscillations have been observed

in a magnetic field range of B = 0.4 T up to B = 1.4 T. Their
periodicity does not match the periodicity of the aforemen-
tioned snake states. In this paper we address this phenomenon
and suggest a model which can qualitatively explain the
oscillations.
Measurements were performed on six samples in total, which

all consist of a graphene flake encapsulated between two
hexagonal boron nitride (h-BN) flakes on a Si/SiO2 substrate.
They all show similar behavior. This paper focuses on
measurements performed on one sample (sample A), with
the device geometry sketched in Figure 1a. Specifications of the
other five samples are summarized in Table 1. The bilayer
graphene (BLG) flake was encapsulated with the dry transfer
technique described in ref 6. A top gate was evaporated on the
middle part of the sample, which divides the device into two
outer regions, only gated by the back gate (single-gated
regions), and the dual-gated middle region. The other five
samples were made with the more recent van der Waals pick-up
technique.7 Unless stated otherwise, the measurements were
performed at 1.7 K. An AC voltage bias of 50 μV was applied
symmetrically between the Ohmic contacts (“source” and
“drain” in Figure 1a, inner contacts in Figure 1b) and the
current between the same contacts was measured. The
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transconductance dG/dVTG was measured by applying an AC
modulation voltage of 20 mV to the top gate.
Figure 1c shows the conductance as a function of top gate

voltage VTG and back gate voltage VBG. Charge neutrality of the
single-gated regions shows up as a horizontal line of low
conductance and is marked by a white line. The diagonal line of
low conductance corresponds to charge neutrality of the dual-
gated region. The slope of this line is given by the capacitance
ratio of the top and back gate. Together these lines divide the
map into four regions with different combinations of carrier
types: two with the same polarities in the single- and dual-gated
regions (pp’p and nn’n) and two with different polarities (npn
and pnp). The conductance in the latter regions shows a
modulation which is more clearly visible in the trans-
conductance (see Figure 2a). The oscillatory conductance is

caused by Fabry-Peŕot interference of charge carriers traveling
back and forth in the region of the sample underneath the top
gate. Their periodicity yields a cavity length LTG = 1.1 μm,
which is in agreement with the lithographic length of the top
gate. The Fabry−Peŕot oscillations were studied in more detail
in ref 3, which revealed the ballistic nature of transport in the
dual-gated region.
The Fabry−Peŕot oscillations disappear in a magnetic field of

B ≳ 100 mT (see Figure 2b−d). Yet at magnetic fields of B =
0.4 T, a new oscillatory pattern appears in the npn and pnp
regime. This can be seen in the conductance and trans-
conductance maps recorded at B = 0.5 T, shown in Figure
3a,b,d,e. The oscillations follow neither the horizontal slope of
features taking place in the single-gated region nor the diagonal
slope of the dual-gated region. They are therefore expected to
occur at the interface between the p- and n-doped regions. This
was confirmed by measurements on sample D, which had two
contacts in the single-gated region and two contacts in the dual-
gated region. For this sample, only the conductance along paths
involving the interface shows oscillations (see Supporting
Information).
On top of this novel oscillatory pattern the transconductance

of sample A in Figure 3b(e) shows faint diagonal lines in the
nn’n(pp’p) regime, which are Shubnikov−de Haas oscillations
in the dual-gated region. The occurrence of Shubnikov−de
Haas oscillations shows that in this moderate magnetic field
regime the Landau levels are broadened by disorder on the
scale of their spacing, resulting in a modulation of the density of
states.
Using a plate capacitor model described in the Supporting

Information of ref 3, the gate voltage axes can be converted into
density and filling factor axes, νX with X = SG, DG for the
single- and dual-gated regions, respectively. The result of this

Figure 1. Characterization of the device. (a) Schematic of the device: a
bilayer graphene flake is encapsulated between h-BN layers. It is
contacted by Au contacts, and a Au top gate is patterned on top, which
defines the dual-gated region. (b) Optical microscope image of the
sample. The four contacts, of which only the inner ones were used,
appear orange. The top gate is outlined by a red curve. (c)
Conductance of the sample at B = 0 T, T = 1.7 K. Four regions of
different polarities are indicated. A zoom of the transconductance in
the boxed region with a solid line is shown in Figure 2. The dashed
(dotted) box indicates the gate voltage range in which Figure 3a,b
(d,e) were measured.

Table 1. Characteristics of Samples A−F

sample name A B C D E F

sample width W (μm) 1.3 1.4 1.1 0.9 3 1.2
sample length L (μm) 3.0 1.4 1.0 2.3 3 2.8
top gate length LTG (μm) 1.1 0.7 0.55 1.2 1.0 1.0
distance to top gate (nm) 23 44 28 57 35 25
number of graphene layers 2 1 2 2 2 2
junction type npn pn npn pn npn npn

Figure 2. Disappearance of Fabry−Peŕot oscillations with increasing
magnetic field. The measurement was taken in the boxed region with
solid lines in Figure 1c. At B = 0 T (a) the transconductance shows
clear Fabry−Peŕot oscillations. They disappear in a magnetic field of B
≳0.1 T (b−d).
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transformation is shown in Figure 3c. The oscillatory pattern
has a slope of 1; i.e., it follows lines of constant filling factor
difference Δν = νSG − νDG. It appears that the oscillations can
be described by

π ν= ⟨ ⟩ + Δ⎜ ⎟⎛
⎝

⎞
⎠G G A cos 2

8 (1)

where A is the amplitude of the oscillations, which is on the
order of 4% of the background conductance ⟨G⟩ at T = 1.7 K.
The distance between one conductance maximum and the next
can therefore be bridged by either changing the filling factor in
one region by 8, or by changing the filling factor in both regions
oppositely by 4. It should be noted that eq 1 can be used to
describe the oscillations in all six samples, regardless of the
number of graphene layers and the sample width (see Table 1
and the Supporting Information).
The oscillations persist in magnetic fields up to B = 1 T for

sample A and the periodicity scales with Δν for the entire
magnetic field range. In higher magnetic fields the conductance
is dominated by quantum Hall edge channels and takes on
values below e2/h in the npn and pnp regimes, in agreement
with observations by Amet et al.8 Other works report on the
(partial) equilibration of edge channels8−13 and shot noise14,15

in p−n junctions in the quantum Hall regime.
The oscillatory conductance is quite robust against temper-

ature changes. Figure 4a,b shows the decay of the amplitude as
a function of temperature T. The oscillatory conductances in
the pnp and npn regime disappear at a temperature around T =
30 K. As can be seen in Figure 4c, at T = 10 K the oscillations
are still clearly present, while the Shubnikov−de Haas
oscillations in the pp’p regime have already faded out. The

Figure 3. Magnetotransport at B = 0.5 T. (a) Conductance of the
sample at 0.5 T, showing an oscillatory pattern in the npn regime. The
measurement was taken in the dashed boxed region of Figure 1c. (b)
The oscillatory pattern in the npn regime is more clearly visible in the
transconductance. Green dashed lines indicate the pattern expected for
snake states. In the nn’n regime some faint lines can be distinguished,
following the slope of the charge neutrality line of the dual gated
region. These are Shubnikov−de Haas oscillations. (c) Trans-
conductance at B = 0.5 T in the pnp regime as a function of charge
carrier density (and filling factor) in the single- and dual-gated region.
The oscillatory pattern follows the indicated line of slope one and can
therefore be described by lines of constant filling factor difference Δν
= νDG − νSG. (d, e) Same as a, b, but with opposite charge carrier
polarities. The oscillations are essentially particle−hole symmetric.

Figure 4. Temperature dependence. (a) Oscillatory part of the
conductance as a function of top gate voltage and temperature
measured along the line cut indicated by the black line in panel c. (b)
Amplitude A of the oscillatory conductance as a function of
temperature. The oscillations disappear around T = 30 K. (c)
Transconductance at T = 10 K, B = 0.5 T in the pnp regime. Whereas
Shubnikov−de Haas oscillations in the pp’p regime have faded out, the
oscillatory pattern in the pnp regime persists.
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persistence up to T = 30 K indicates that the studied
phenomenon does not require phase coherence on the scale
of the device size. The phase coherence length at T = 1.7 K is
estimated to be on the order of the device size, but it falls off
with 1/T.16

The above-discussed oscillations can be reproduced by
transport calculations for an ideal SLG p−n junction at an
intermediate magnetic field B, based on the scalable tight-
binding model.17 The ideal junction is modeled by connecting
two semi-infinite graphene ribbons (oriented along armchair)
with their carrier densities given by nL in the far left and nR in
the far right. A simple hyperbolic tangent function with
smoothness 50 nm bridging nL and nR is considered; see the
inset of Figure 5a for an example. To cover the density range up
to ±3 × 1012 cm−2 corresponding to a maximal Fermi energy of
Emax ≈ 0.2 eV, the scaling factor sf = 10 is chosen because it
fulfills the scaling criterion17 sf ≪ 3 t0 π/Emax ≈ 141 very well;
here t0 ≈ 3 eV is the hopping energy of the unscaled graphene
lattice. Note that the following simulations consider W = 1 μm
for the width of the graphene ribbon, but simulations based on
a different width show an identical oscillation behavior (see
Supporting Information for details), confirming its width-
independent nature as already concluded from our measure-
ments.
The transmission function T(nR, nL) across the ideal p−n

junction at B = 0.5 T is shown in Figure 5a, where fine
oscillations along symmetric bipolar axis (marked by the blue
arrows) from np to pn through the global charge neutrality
point can be seen. Two regions marked by the white dashed
boxes in Figure 5a are zoomed-in and shown in Figure 5b and d
for a closer look and comparison with the measurements of
sample B and E (Figure 5c and e, respectively). Despite certain
phase shifts (observed in Figure 5b, d, and e) that are beyond
the scope of the present study, good agreement between our
transport simulation and experiment showing the oscillation
period well fulfilling eq 1 can be seen.
Other works4,5 report on the formation of so-called snake

states along p−n interfaces in graphene. Snake states result in a
minimum in the conductance whenever the sample width W
and the cyclotron radius Rc satisfy W/Rc = 4m − 1 with m a
positive integer. In the density range of Figure 3b,e this would
lead to two resonances at most (indicated by green dashed lines

in Figure 3b,e), which is far less than the observed number of
resonances. On top of that, snake states are inconsistent with
the observed absence of a dependence on sample width.
Furthermore, the tight-binding simulation also confirms that
the observed effect is independent of the sample width and
cannot be suppressed by introducing strong lattice defects in
the vicinity of the p−n junction (see Supporting Information).
We therefore rule out snaking trajectories as a possible cause of
the observed oscillations.
Another process which could give rise to oscillations in a

graphene p−n junction in a magnetic field is the interference of
charge carriers which are partly reflected and partly transmitted
at the interface. When the charge carrier densities are equal on
both sides of the interface, electrons and holes will have equal
cyclotron radii, and therefore the paths of transmitted and
reflected charge carriers will form closed loops. For the case of
equal density, this model predicts the right periodicity of the
oscillations.18 Experimentally, however, the measured oscil-
lations are still visible when the densities on both sides of the
p−n interface are quite different: at the point (VBG,VTG) =
(12,−6) V for example (see Figure 3b), the cyclotron radii on
the p and n side are respectively 0.36 and 0.16 μm. The path
lengths hence differ by 2ΔRc = 0.40 μm, which is more than
seven times the Fermi wavelength (0.02 and 0.05 μm). It seems
unlikely that interference between charge carriers on skipping
orbits can still occur in this density regime. On top of that, the
tight-binding simulations show that the oscillatory pattern is
still present when introducing large-area lattice defects in the
vicinity of the p−n junction, which destroy the skipping
trajectories (see Supporting Information). The observed
robustness against temperature changes is in contradiction
with this model as well. Thus, the observed oscillations cannot
be ascribed to the interference of charge carriers on cyclotron
orbits at the p−n interface.
Since the oscillations occur in both single-layer and bilayer

graphene, we exclude an explanation that relies on specific
details of the dispersion relation. In the magnetic field range
where the oscillations are observed, the sample width is
comparable to the classical cyclotron diameter. This excludes
explanations based on classical electron flow following skipping
orbit-like motion along edges.

Figure 5. (a) Transmission T as a function of the carrier densities on the left, nL, and right, nR, for an ideal SLG p−n junction at a perpendicular
magnetic field B = 0.5 T based on a tight-binding transport calculation (color range restricted for clarity). Oscillations occur in the vicinity of the
symmetric bipolar axis marked by blue arrows. Inset: an example of the considered carrier density profile corresponding to the white cross. White
dashed boxes correspond to the density regions shown in panels b and d, where the carrier density values are transformed in filling factors. (c/e)
Transconductance G′ measured for sample B/E shown with the same filling factor range as panels b/d.
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A mechanism which may cause the oscillations involves the
alignment of the density of states (DOS) around the Fermi
energy. Diagrams of the DOS in the single- and dual-gated
regions are sketched in Figure 6a−c. Figure 6d shows a zoom in

the map of the oscillatory transconductance of Figure 3c. At
point a in this zoom the filling factor in the dual-gated regime is
νDG = 180 and νSG = −92 in the single-gated region. Because of
the 4-fold degeneracy of the Landau levels, Landau level
numbers are N = 45 and N = −23, respectively, as shown in the
DOS diagram of Figure 6a. When following the oscillatory
pattern from point a to point b, the two combs of DOS remain
aligned with one another, and only the Fermi level changes.
This in contrast to what happens when moving from point a to
point c: the DOSs shift with respect to one another, and the
transconductance oscillates. It could therefore be the case that
the alignment of the DOS affects the conductance of the p−n
interface in a way similar to the magneto-intersubband
oscillations (MISO) of a two-dimensional electron gas
(2DEG):19,20 the occupation of two of the energy subbands
of a 2DEG can lead to enhanced scattering between the
subbands when the DOSs of the subbands are aligned.
Although the p- and n-regions are spatially separated in the
case of graphene p−n junctions, a similar enhancement of the
coupling at the interface may be observed. In the pp’p and nn’n
regime the interfaces are much more transparent (see
conductance in Figure 4a,d and ref 21); therefore, the interface
plays a negligible role in the total conductance. This explains

why the oscillations are only visible in the presence of a p−n
interface. As the two outer regions of the sample have the same
density up to an insignificant difference in residual doping, the
two interfaces contribute in a similar way. The number of
interfaces can at most influence the visibility of the oscillations.
In practice we find that the visibility is however mostly
influenced by sample quality. Just as for the oscillations we
report on, MISO persist up to relatively high temperatures. The
spacing predicted by this model lacks a factor of 2 compared to
the experiment, however: it would predict the argument of the
cosine of eq 1 to be 2πΔν/4. Further investigations are needed
to explain this discrepancy between the MISO model on the
one hand and the experimental data and the tight-binding
simulations on the other hand.
In conclusion, we have observed oscillations in the

conductance of six graphene p−n junctions in the magnetic
field range of B = 0.4−1.5 T. The oscillations are independent
of sample width and can be described by the filling factor
difference between the single- and the dual-gated regions. The
oscillations are quite robust against temperature changes: they
fade out only in the range of T = 20−40 K, whereas
Shubnikov−de Haas oscillations decay below T = 10 K. The
oscillations can be well-reproduced by tight-binding transport
calculations considering an ideal p−n junction at a constant
magnetic field. Up to a factor of 2, the oscillatory pattern can be
explained by considering the density of states alignment of the
single- and dual-gated regions.
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