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We utilize electron counting techniques to distinguish a spin-conserving fast tunneling process and a
slower process involving spin flips in AlGaAs=GaAs-based double quantum dots. By studying the
dependence of the rates on the interdot tunnel coupling of the two dots, we find that as many as 4% of the
tunneling events occur with a spin flip related to spin-orbit coupling in GaAs. Our measurement has a
fidelity of 99% in terms of resolving whether a tunneling event occurred with a spin flip or not.
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Spin-orbit coupling is an intrinsic property of any atom.
In solids spin-orbit interaction may couple distant bands. It
is of fundamental importance for the operation and per-
formance of spin qubits [1–7] and for realizing Majorana
fermions [8–10]. For instance, Stepanenko and co-workers
proposed to use spin-orbit interaction for performing a
CNOT operation of two spin qubits [11]. In the experiments
reported here we determine the strength of spin-orbit
interaction in GaAs by measuring the spin dependent
transfer of individual electrons between two tunnel coupled
quantum dots, which are possible building blocks of qubits.
We study electron tunneling between the dots in a regime
where they are isolated from the electronic reservoirs. We
measure the charge state of both dots simultaneously by
employing real-time charge-sensing techniques [12–14].
This allows us to distinguish spin flips taking place inside a
quantum dot and spin flips arising during tunneling
processes between the two quantum dots. Our technique
thus offers an efficient way of studying spin flipping in
quantum dots. We find that as many as 4% of the tunneling
events involve a spin flip mediated by spin-orbit inter-
action. This value, measured without driving the system
externally, is an order of magnitude higher than that
obtained previously for photon assisted processes [15].
The double quantum dot (DQD) device is shown in

Fig. 1(a). Metallic top gates (gray in the micrograph) are
used for confining electrons into the two dots in a two
dimensional electron gas lying 90 nm below the surface
at a GaAs=AlGaAs interface. We tune both dots to the last
electron [16,17]. Gate voltages VLP and VRP control the
electron numbers in the left and right dot respectively. The
other four gates surrounding the dots tune the tunneling rates
between the two dots and between one of the dots and the
source or drain reservoir. The couplings to the reservoirs are
set such that the rates are below 100 Hz. The additional gate
on the left side of the DQD forms a quantum point contact
(QPC). The dc current IQPC transmitted through the QPC
detects the charge state of each dot in real time. Measuring it
allows us to determine the number of electrons in each dot
and the tunneling rates separately for all processes [12–14].

Our study focuses on the region shown in Fig. 1(b),
which presents the rate of tunneling as a function of VRP
and VLP. We apply no bias voltage Vb. We observe four
regions with stable electron numbers (NL, NR) in the left
and right dots (Ref. [18]). At the boundaries of these
regions (red lines), electron tunneling takes place. The
bright red kinked lines near the top right and bottom left
corners are caused by processes in which the total electron
number in the double dot changes by tunneling to or from
the reservoirs. Connecting the kinks of these two lines, we
have a fainter straight line defining the boundary between
the (2,0) and (1,1) states (charge degeneracy line). By
restricting our measurements to the dashed black line
cutting the charge degeneracy line, the tunneling processes
involving the reservoirs are energetically forbidden due to
the large Coulomb energy of the order of 1 meV. Therefore
the double dot is an isolated system restricted to the two
occupation number combinations (2,0) and (1,1). In a
similar way we measure the DQD at the transition
ð1; 0Þ ↔ ð0; 1Þ.

FIG. 1. (a) Scanning electron micrograph of the DQD. The light
gray gates deplete the underlying 2DEG and form two quantum
dots holding two electrons shown as blue arrows. Letters S andD
denote the source and drain reservoirs. Tunnel current I flows
through the device when a bias voltage Vb is applied. The
electrons may tunnel between the dots indicated by the red arrow.
The tunneling events are detected via a nearby QPC by measuring
the current IQPC through it. (b) The rate of electron tunneling
events around the ð2; 0Þ ↔ ð1; 1Þ transition.
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We first consider the transition ð1; 0Þ ↔ ð0; 1Þ.
Figure 2(a) shows the tunneling rates in the two directions
measured along a line cutting the charge degeneracy line
similar to the dashed line in Fig. 1(b). The tunneling rates
are determined from time traces by counting the number
of tunneling events and dividing it by the total time spent
in the corresponding initial state. We observe that the rates
in the two directions are equal and that they form a
resonance peak when VRP is varied. Since the interdot
tunnel coupling is very small, of the order of 1 neV, the
line shape is defined by inelastic processes involving
lattice vibrations and spurious electromagnetic fields. We
find a Gaussian to fit the data well. Next we determine the
waiting times of the (1,0) and (0,1) states again from
the time traces. The waiting time statistics, measured at
the position of the peak in Fig. 2(a) are seen in Fig. 2(b) to
be distributed exponentially. The results are independent
of the applied magnetic field.
We perform the same analysis as before to the time traces

measured at the transition ð2; 0Þ ↔ ð1; 1Þ. Figures 2(c)
and 2(d) present data for applied magnetic fields of B ¼
30 mT (filled symbols) and B ¼ 0 mT (open symbols).
The tunneling rates are determined in the same way as
for the first electron. In contrast to the last electron, the
tunneling rates in the two directions are now not equal
but differ by a factor of 4. This factor arises from the
degeneracies of the states. The (2,0) ground state is a spin
singlet. The (2,0) spin-triplet states are at energies much
more than kT above the singlet, because the single-particle
excitation energy exceeds by far the exchange interaction.
Thus, when both electrons reside in the same QD, they only
occupy the spin singlet state ð2; 0ÞS. On the other hand, for
the (1,1) charge state, there are four spin states, which are
degenerate because of the weak coupling of the QDs
and the weak Overhauser field compared to temperature.
At equilibrium, detailed balance leads to equipartitioning
which makes sure that all four states have the same
occupation probability irrespective of their tunneling cou-
pling [Fig. 2(g)]. Therefore, the fourfold degeneracy of the
(1,1) charge state compared to the nondegenerate ð2; 0ÞS
state explains the factor of 4 found between the tunneling
rates in the two directions. A finite applied magnetic field
of 30 mT leads to a 0.75 μeV Zeeman splitting of the states,
which is still small compared to temperature (5 μeV) [19].
Therefore, the ratio of 4 in the tunneling rates persists.
We now inspect the waiting time distributions of the

transition ð1; 1Þ → ð2; 0Þ presented in Fig. 2(d). We observe
that the simple exponential distribution seen at B ¼ 0 mT
(open squares) evolves into a distribution with two time
scales at B ¼ 30 mT (filled squares). At zero applied
magnetic field, the Overhauser field provides the quantiza-
tion axis for the spins. Because of its random fluctuations,
the relative orientation of the two spins is random. A single
exponential decay is obtained at zero magnetic field because
the approximately 1-hour-long measurement averages over

FIG. 2. (a) Tunneling rates as a function of the energy
detuning of the levels, changed with the plunger gate voltage
VRP, for the transition ð1; 0Þ → ð0; 1Þ (red circles) and ð0; 1Þ →
ð1; 0Þ (blue squares) with B ¼ 30 mT. Solid lines show
Gaussian fits with tunneling rates of 56� 2 Hz and 53�
2 Hz at the peak. (b) Waiting time distributions for the
transitions of panel (a) with zero detuning. Solid lines
are fits with average waiting times of 17.4� 0.1 ms and
17.8� 0.1 ms. (c) Tunneling rates for transition ð2; 0Þ ↔
ð1; 1Þ similarly as in panel (a). Solid symbols are with B ¼
30 mT and open ones with B ¼ 0 mT. Tunneling rates at the
peak are 256� 4 Hz and 63� 2 Hz, and 203� 4 Hz and
48� 2 Hz, respectively. (d) Waiting time distributions of
the transitions of panel (c) with zero detuning. The average
waiting times obtained from the fits are 4.04� 0.02 ms,
7.89�0.04ms, 216�3ms, 5.40�0.04ms, and 21.2�0.1ms,
respectively. (e) The five energetically allowed states around
transition ð2; 0Þ ↔ ð1; 1Þ. The electrons move between the dots
with a spin-conserving process with a rate ΓC or a process
involving a spin flip with a rate ΓSO. The spins flip within the
dots with a rate ΓSI. (f) A time trace of the detector signal IQPC
showing bunching of the tunneling events. (g) Histogram of
the time trace.
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random orientations of the Overhauser fields giving the same
tunneling rate between the ð2; 0ÞS and all (1,1) states. With
the 30 mT applied magnetic field, the external field domi-
nates the Overhauser field and provides a common quan-
tization axis for the spins in the two dots [20]. The two time
scales with the applied field arise from the fact that tunneling
between the (1,1) states and the ð2; 0ÞS state sometimes
requires a spin flip. The time scale for the spin-flipping
process is typically much longer than the spin-conserving
tunneling time, resulting in the so-called spin blockade
[1–6,20]. The two time scales are apparent in the typical
time trace of the charge detector shown in Fig. 2(f) in which
the spin-conserving tunneling events are bunched into clear,
distinct groups with long waiting times in between such as
from time t ¼ 2.7 s to t ¼ 3.9 s.
Let us now assume that the fast tunneling rate is

determined by transitions between states ð2; 0ÞS and
ð1; 1ÞS. In this case the tunneling rates are the same in
forward and reverse direction, because both states are
singly degenerate. The presence of three triplet states
would not change the symmetry between forward and
reverse processes significantly, because the spin-flip tun-
neling rate is very slow compared to the spin-conserving
tunneling rate. Surprisingly, we observe the fast rate from
(1,1) to (2,0) at 30 mT to be only half of the rate in the
opposite direction [cf. the blue and red filled symbols in
Fig. 2(d) and the corresponding fits], which refutes our
assumption. We thus infer that the (1,1) singlet and one of
the (1,1) triplet states mix fast on the time scale of spin-
conserving tunneling. A convenient choice of the four (1,1)
states is the j↑↑i (Tþ), j↑↓i, j↓↑i, j↓↓i (T−) basis. The
j↑↓i and j↓↑i states both tunnel couple to the ð2; 0ÞS via a
spin-conserving process, which explains the ratio of two.
This is in agreement with pioneering experiments of Petta
and co-workers who found a characteristic spin mixing
time scale of about 10 ns for ð1; 1ÞS and ð1; 1ÞT0 states,
much smaller than the typical tunneling time in our
experiment [3]. The spin blockade with the long waiting
time occurs only when the system is in either the j↑↑i or
the j↓↓i state, which are subject to Zeeman splitting and
thus can be effectively decoupled from the surrounding
nuclear spins by suppressing the hyperfine interaction
[5,21,22].
Figure 2(e) depicts the five quantum states that we have

just introduced together with the spin-conserving tunneling
rate ΓC and the spin-flip tunneling rate ΓSO. In addition we
consider spin flips to take place not while tunneling but
within a dot with a rate ΓSI. This diagram was derived step
by step from experimental results and seamlessly explains all
integer ratios of tunneling rates at zero and finite magnetic
field. In the zero field case the orientation of the spins
follows the random Overhauser field of the two dots and is
not strictly parallel or antiparallel for the (1,1) states.
Therefore ΓSO and ΓC will average to the same number.

In Fig. 3(a) we present a measurement in which the
tunnel coupling between the dots is changed with the
barrier gate located between the two plunger gates. We
measure the waiting times in the ð2; 0Þ ↔ ð1; 1Þ transition
in resonance and extract the fast spin-conserving tunneling
rate ΓC and slow spin-flip rate from the two time scales of
the waiting time distributions [cf. Fig. 2(e)].
The longer time scale found in the experiment may

originate from either the internal spin-flip rate within a dot
(ΓSI) or the spin-flip tunneling rate (ΓSO). In the case that
the long time scale is determined by ΓSI, we need to subtract
the finite tunneling time (1=ΓC) needed for detection of a
spin flip within a dot. The subtraction is not required if it is
determined by ΓSO. However, the subtraction introduces
only a small error since ΓSO ≪ ΓC. The modified spin-flip
rate is called ΓS and may describe either process. We
observe that ΓS is directly proportional to ΓC over almost 2
orders of magnitude at the highest field value. This
dependence implies that the spin-flip process involves
electron tunneling and thus we have ΓS ¼ ΓSO [red tri-
angles in Fig. 3(a)]. When considering the theoretical
prediction for a tunneling process invoking spin-orbit
interaction with tunneling, the spin-flip rate is expected
to be ΓSO ¼ ðd=lsoÞ2ΓC=2, where d is the distance between
the dots and lso the spin-orbit length [23–25]. Since in our
case we have ΓSO=ΓC ¼ 0.04, and the distance between the
dots is approximately l ∼ 300 nm, we estimate the spin-
orbit length lso ¼ 1 μm, which is consistent with expect-
ations [25]. We rule out the hyperfine interaction to be
dominant for spin-flip tunneling because it requires strong
hybridization of the electronic levels of the two dots [24],
which is absent in our weakly coupled system as the tunnel
coupling, t ∼ 1 neV, is orders of magnitude smaller than
the other relevant energy scales in our system such as
the thermal energy kT ¼ 5 μeV, and Zeeman splitting of

FIG. 3. (a) Spin-flip rate ΓS as a function of the spin-conserving
tunneling rate ΓC at various applied fields B. The red straight line
presents the linear dependence ΓS ¼ 0.04 × ΓC and the other
lines are ΓS ¼ 0.04 × ΓC þ 2ΓSI with ΓSI indicated in the figure.
(b) Spin-flip rate ΓS for transition ð1; 1Þ → ð2; 0Þ as a function
of B (filled red symbols) for two different tunnel couplings.
The tunnel coupling is deduced from the tunneling rate ΓC of
the ð2; 0Þ → ð1; 1Þ transition as presented with the open blue
symbols. The solid red lines are guides for the eye with
ΓS ¼ 15 kHz · e−B=3 mT þ 0.15ΓC · e−B=30 mT.
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0.8 μeV. Thus we demonstrate here the detection of the
spin-orbit coupling at a level of single electrons. With the
low magnetic fields of Fig. 3(a) (green circles), we observe
that the spin-flip rate is not dependent on the tunnel coupling
and saturates to ΓS ¼ 2ΓSI because of two possibilities of a
spin-flip process within a dot; see Fig. 2(e). Our method
allows for distinguishing between the spin flipping occurring
predominantly during a tunneling event or by relaxation
within a quantum dot. In Fig. 3(b) we present the magnetic
field dependence of ΓS for two different tunnel couplings ΓC.
We observe a crossover from hyperfine interaction with no
dependence on tunnel coupling but exponential dependence
of B at low fields to spin-orbit mediated spin flipping with
linear dependence on tunnel coupling but only a weak
dependence on the applied field. The spin-flip rates reported
in Ref. [6] are consistent with our findings and the spin flips
take place with a tunneling process.
Let us now consider the fidelity of our spin-flip detec-

tion. We define a threshold time τ. If the waiting time of the
(1,1) state [see Fig. 2(d)] is longer than τ, we deduce that a
spin flip occurred. For shorter waiting times, we infer that a
spin-conserving tunneling event occurred. The cumulative
distribution function of the exponential distribution yields
the error probability of interpreting a spin-flip process as a
spin-conserving one as 1 − e−ΓSτ, which is the fraction of
spin-flip events with waiting time smaller than τ. Similarly
the error of interpreting a spin-conserving process as a
spin-flip one is e−ΓCτ. Thus we obtain the fraction of events
which is misinterpreted as ð1 − pÞe−ΓCτ þ pð1 − e−ΓSτÞ,
where p ¼ ΓS=ðΓC þ ΓSÞ is the probability for a spin-flip
process. For ΓS ≪ ΓC, the error is minimized by τ ¼
−Γ−1

C lnðp2Þ. For our experiment with p ¼ 0.04, we thus
detect 99% of the tunneling events correctly by simply
considering whether the waiting time was longer or shorter
than the threshold τ.
Finally, we compare our experiments to the early trans-

port measurements [1,2,4]. We apply a constant bias
voltage Vb and measure the current through the DQD
around the resonance condition of the two dots. Figure 4
presents the results for forward and reverse Vb. We use
B ¼ 30 mT so that spin-orbit interaction is the dominant
spin-flip mechanism. We have tuned ΓC ≪ Γsource ∼
Γdrain ∼ 60 Hz, so that the interdot transition rate deter-
mines the current. Here Γsource and Γdrain are the tunneling
rates to the source and drain. The current through the DQD
in the two bias directions can be described using a standard
rate equation with the states and rates as indicated in
Fig. 2(e) together with the (2,1) state and Γsource and Γdrain.
With the assumptions ΓSO ≪ ΓC ≪ Γsource;Γdrain, we
obtain the forward current Ifwd ¼ eΓC and the reverse
current in the spin blocked direction of Irev ¼ 4eΓSO=3.
The current in the spin blocked reverse direction is
suppressed more than the factor of 4 in Fig. 2 (c) as the
exchange of electrons with the reservoirs causes fast
relaxation of the nonblocked spin configuration. Thus from

the ratio of the currents we obtain directly the ratio
ΓSO=ΓC ¼ 3Irev=4Ifwd. Averaging at the peak of Fig. 4(c)
yields Ifwd=e ¼ 4.8� 0.1 Hz and Irev=e ¼ 0.24�
0.01 Hz. Thus we obtain ΓSO=ΓC ¼ 0.038� 0.002, which
is consistent with our findings for the isolated case and
proves that the spin-orbit coupling is probed in the transport
measurements provided that the dots are in the right regime
of tunnel coupling.
In conclusion we have studied spin-orbit interaction at

the level of a single electron. We detected the spin-orbit
interaction mediated tunneling with 99% fidelity. The
tunneling rates in the isolated double dot are insensitive
to spin flipping and the nontrivial statistics of tunneling
times needs to be analyzed. For a transport measurement
we demonstrated that the spin-orbit coupling is probed
from the tunneling currents. Our technique is a new tool to
concisely study spin-flip processes in quantum dots with
the capability to distinguish spin-flip tunneling processes
and the spin flips within a quantum dot.
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