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ABSTRACT: We demonstrate a scanning gate grid measure-
ment technique consisting in measuring the conductance of a
quantum point contact (QPC) as a function of gate voltage at
each tip position. Unlike conventional scanning gate experi-
ments, it allows investigating QPC conductance plateaus
affected by the tip at these positions. We compensate the
capacitive coupling of the tip to the QPC and discover that
interference fringes coexist with distorted QPC plateaus. We
spatially resolve the mode structure for each plateau.
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■ INTRODUCTION

Scanning gate microscopy1−3 (SGM) is used to investigate the
conductance of a nanostructure by modifying its electrostatic
potential4−13 (gating effect) or by locally changing the electron
density of a two-dimensional system14−19 resulting in back-
scattering in case of a strong tip potential. Both effects usually
coexist (see, e.g., refs 20 and 21 for detailed discussions) and
appear due to a Lorentzian potential22−25 induced by the
electrically biased tip of the scanning force microscope. In top
gate defined quantum point contacts (QPCs)26,27 such
backscattering experiments allow studying quantum effects,
e.g. the interference of backscattered electrons16,17,20,21,28−31

seen as small variations of the conductance in the form of
interference fringes decorating branches. The gating effect
(modification of the QPC potential via capacitive coupling of
the tip to the QPC) significantly decreases the conductance
when scanning the tip close to the QPC. Since gating is the
stronger effect, quantum interference effects can be masked by
gating.21 It is therefore important to compensate the gating
effect of the QPC to obtain more precise information about the
quantum effects.
One way to compensate the gating effect is to scan the

surface twice20,21 (the two-pass technique used in previous
experiments): (i) at a large tip−surface separation, when the tip
does not deplete the 2DEG, and (ii) at a small separation when
it does. In both passes the capacitive coupling of the tip to the
QPC (gating) is approximately the same, but backscattering is
present only in pass ii. Therefore, by recording the gate voltage
necessary to keep the conductance constant in pass (i) and
using this know-how in pass ii by simultaneously measuring the
conductance allows compensating the gating effect. However,
this technique may not be reliable, because often gating is
slightly different for the two tip−surface separations (the
difference becomes larger as the tip moves closer to the QPC),
which can lead to undercompensation. It depends on the
parameters of the gate voltage feedback that keeps the
conductance constant in pass i, which limits the scanning
speed especially very close to the QPC where the tip potential

is steep at the position of the constriction and therefore the
conductance changes rapidly. Scanning the surface twice and
measuring only at a single value of the conductance set in pass i
significantly increases the time for the detailed investigation of
physical phenomena compared to the time needed for single-
pass scans.
In this work, we present a scanning gate grid technique and

demonstrate its advantages for the example of a scanning gate
measurement close to a QPC fabricated in a high-mobility
GaAs/AlGaAs heterostructure. The method consists in
measuring the conductance of a QPC as a function of top
gate voltage at each tip position. This kind of technique is well-
known in scanning probe microscopy. For example, in scanning
tunnelling microscopy it is well-established to measure the
differential conductance at each tip position (see, e.g., refs 32
and 33). In previous SGM experiments, conductance−tip
voltage traces were recorded at several tip positions to study the
quantized conductance in a quantum wire,34 defects in carbon
nanotubes,35 the conductance in the quantum Hall regime in a
QPC.36 We exploit the grid technique using a large density of
points in a three-dimensional parameter space.
Scanning gate grid measurements allow fully compensating

the gating effect at any tip-QPC distances. The only limitation
to scan close to the QPC is the size of the tip-depleted region.21

A single grid measurement contains scanning gate data for
many QPC transmissions. The manipulation of data, e.g.,
subtracting the conductance at different gate voltages, is more
reliable compared to that in standard SGM measurements. It is
carried out at each tip position. Since it takes much less time to
record values of the conductance at different gate voltages at a
specific tip position using the grid than the standard technique,
sample drifts will affect the results much less. In addition,
measuring the gate voltage dependent conductance at each tip
position gives information about the effect of the tip on these
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traces, which is inaccessible in the standard measurements.
Scanning as close to the QPC as possible we resolve its mode
structure seen as a widening lobe pattern with the number of
lobes equal to the number of QPC modes and maxima of |Ψ|2
inside the point contact up to five modes. We observe distorted
conductance plateaus caused by the tip and discuss their origin.
We study the fringe spacing for the QPC modes and distorted
plateaus. Results of the SGM grid measurements are compared
to previous scanning gate experiments. Grid measurements are
thus a powerful tool which can give more information about the
studied system compared to that in standard scanning gate
experiments.

■ RESULTS AND DISCUSSION

A two-dimensional electron gas 120 nm deep below the surface
is defined in a high-quality GaAs/AlGaAs heterostructure. At a
density of n = 1.4 × 1011 cm−2 electrons have a mobility of 9.6
× 106 cm2/(V s) measured at 300 mK. Their elastic mean free

path and the Fermi wavelength are lp = 60 μm and λF = 66 nm,
respectively.
The sample consists of a QPC with a lithographic width of

300 nm and a pair of parallel “channel” top gates separated by
100 nm from the QPC gates, that are 15 μm long, 150 nm wide
and separated by 1 μm (Figure 1a). These “channel” top gates
are not used in this work, but to compensate strain-related
electric fields present below them at zero voltage, we apply a
voltage of +200 mV to them. The top gates are Ti/Au
electrodes, which are 30 nm high.
Scanning gate measurements are carried out in a He-3 system

using a home-built scanning force microscope37 at 300 mK by
applying an ac source-drain voltage of Vsd = 100 μV at a
frequency of 977 Hz. A metallic tip biased at Vtip = −6 V scans
at a constant height of 60 nm above the surface inducing a tip-
depleted region about 1 μm in diameter.25 The two-terminal
current flowing through the sample is converted into voltage
using a current−voltage converter with a feedback resistor of 1
MΩ and a bandwidth of 30 kHz. The conductance G is

Figure 1. (a) Schematics of the setup. A voltage Vsd is applied between source (S) and drain (D). (b) Conductance G as a function of gate voltage Vg
with and without the tip. The green curve is obtained when the tip is above a branch. (c) G(x, y) as a function of tip position (x, y). (d) Values of the
gate voltage corresponding to the second plateau as a function of tip position. (e) Change of the conductance ΔG(x, y) in part c due to electron
backscattering when the gating effect is compensated.

Figure 2. Backscattering effect of the tip (a) only on the first plateau leading to ΔG1, (b) only on the second plateau leading to ΔG2 and (c) on both
plateaus without a gating effect. (d) Regions in space (color code) where only the first plateau is affected by tip (green), only the second (yellow)
and both simultaneously (brown).
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determined from the current and the applied ac source-drain
bias voltage.
We carry out two types of measurements. In the first,

standard, type, commonly reported in the scanning gate
literature, the QPC gate voltage Vg is kept fixed throughout a
scan. The resulting conductance maps G(x, y) are plotted as a
function of tip position (x, y). The second type, the
investigation and application of which is the focus of this
paper, consists in measuring G(Vg) as a function of QPC gate
voltage at each tip position resulting in G(x, y, Vg). At each tip
position a G(Vg) curve takes 0.5−1 s depending on the gate
voltage range. The pixel separation is 20 nm in Figures 1 and 2,
and 8 nm in Figure 3. The lock-in time constant is 3 ms and the
filter slope is 12 dB/oct.
Figure 1b compares typical dependences of the conductance

through the QPC as a function of top gate voltage with the tip
placed about a micron away from the constriction and with the
tip withdrawn from the sample surface. Due to electron
backscattering off the tip-depleted region the conductance at
the plateaus is lowered16,21 (green curve) below the quantized
value (black curve). In 2D conductance maps this deviation
from the quantized conductance gives a spatial pattern in which
branches and interference fringes can be seen.16,17,21,31 In
addition, the gating effect caused by the long-range “tails” of the
tip-induced potential capacitively coupled to the QPC shifts
G(Vg) curves to more positive voltages.21 The strength of these
two effects varies with tip position.
Figure 1c shows the conductanceas a function of tip position

using the standard measurement (first type described above).
The QPC is tuned to the second plateau in the absence of the
tip and the value of the corresponding gate voltage remains the
same throughout the entire scan. Both gating and back-
scattering effects are clearly seen in this 2D conductance map:
branches mark regions of strong backscattering and the gating
effect is seen from the color code as a slow decrease of the
background conductance from 2 to about 1.95 × 2e2/h as the
tip moves closer to the QPC. The constriction is about 1 μm

away from the lower border of the scan frame, i.e., from y = 0
μm. These observations are in agreement with those of
others17,30 and with our previous measurements.21 The gating
effect makes it difficult to resolve small variations of the
conductance at 0 < y < 1 μm.
To compensate it with the help of the results of the grid

measurement technique, we use G(x, y,Vg) curves (Figure 1b)
to determine the values of Vg plotted in Figure 1d
corresponding to the middle of the second plateau at each
tip position (x, y). The gate voltage Vpl at the middle of a
plateau corresponds to a zero in the first derivative dG(Vg)/
dVg, which we determine numerically from the data. We then
determine a value of the conductance G(Vpl(x, y)) that
corresponds to Vpl. This procedure performed at each tip
position results in compensated conductance maps G(x, y,Vpl(x,
y)). The result is given in Figure 1e, where the value 2e2/h was
subtracted. As seen from the uniform background color, the
gating effect is compensated and only the backscattering effect
(branches) of the tip is present. The shape of the branches at 0
< y < 1 μm is also uncovered. Subtracting ΔG in (e) from G in
part c, we obtain a smooth background with a local rougness
ΔG/G of less than 0.5%. In addition, no branches are seen in
the Vpl(x, y) map in Figure 1d. Fringes originating from
interference of backscattered electron waves16,17,21,31 are not
visible in the images in Figure 1, parts c and e, due to
insufficient spatial resolution intentionally chosen to decrease
the measurement time.
The G(x, y, Vpl(x, y)) map in Figure 1e has two

contributions: a decrease of G for electrons transmitted
through the lowest QPC mode, and a decrease of G for
electrons transmitted through the second QPC mode. We plot
the effect of the tip on a specific plateau in the following way.
We determine the center of plateau i for each point (x,y) using
the corresponding minimum at Vpl,i(x, y) of dG(x, y,Vg)/dVg.
This gives the conductance Gi(x, y, Vpl,i(x, y)). By subtracting
the quantized value G0,i = i × 2e2/h, we obtain δGi(x, y,Vpl,i(x,
y)) = Gi(x, y,Vpl,i(x, y)) − G0,i ≤ 0. In addition, by subtracting

Figure 3. (a) Conventional technique: G(x, y) as a function of tip position (raw data) close to the QPC when the constriction is biased on each of
the five G plateaus (labeled). (b) Scanning gate grid measurements: ΔG(x, y) plotted using the technique described in the main text resolving the
structure of the first five QPC modes (labeled). Blue arrows mark some of the regions where distorted QPC conductance plateaus manifest
themselves in scanning gate maps.
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δGi−1(x, y, Vpl,i−1(x, y)) of the previous plateau, we obtain the
effect of the tip only on a particular plateau i (we assume that
the contribution of plateau i − 1 to the conductance at the gate
voltage of plateau i is the same as at the gate voltage of plateau i
− 1):

Δ =

− −− −

G x y V x y G x y V x y

G x y V x y e h

[ , , ( , )] [ , , ( , )]

[ , , ( , )] 2 /

i i i i

i i

pl, pl,

1 pl, 1
2

(1)

The result of this analysis is shown in Figure 2, parts a and b.
Both plots use the same color scale and the same range on the
color axis without any offset. Differences in the intensity and
position of branches are clearly seen. For comparison we show
δG2 in Figure 2c (same as in Figure 1e).
Using parts a and b, one can plot a map of tip positions at

which the effect of the tip on a certain plateau exceeds a given
threshold value. To do this, we introduce a parameter β that
can take integer values 0 (no branches) and β > 0 (there is a
branch in ΔGi), and choose threshold values ΔG1,th = −0.007 ×
2e2/h and ΔG2,th = −0.011 × 2e2/h in Figure 2, parts a and b,
respectively. The threshold values are chosen by eye to select
most of the branches. Then for all values below the threshold of
ΔG1 we set β = 1 and for those below that of ΔG2 we set β = 2.
Then, if β = 1, 2, and 3, the tip affects only the first plateau,
only the second plateau and both plateaus, respectively. The
result is shown in Figure 2d. The branches colored in green are
regions where the tip affects only the first plateau, in yellow

only the second plateau and in brown both plateaus. The blue
color corresponds to areas where there is no backscattering by
the tip and therefore ΔGi = δGi = 0. This result shows that as
the tip moves across a branch, it can affect several QPC
plateaus one after another or simultaneously along its way. At
the same time the conductance can exhibit a single dip.
Far from the QPC the main advantage of the grid technique

is to separate effects of the tip on each conductance plateau.
The gating effect is relatively weak there. However, gating
becomes significant when scanning closer to the QPC as seen
in conventional SGM images at fixed gate voltages in Figure 3a.
The border of the scan area at y = 0 μm is about 0.5 μm away
from the QPC. As one can see in Figure 3a, the tip can reduce
G by up to 2 × 2e2/h depending on QPC width. As a result, G
variations (branches and fringes) are not discernible in the
lower half of the images. Nevertheless, interference fringes can
already be seen in some regions. Scanning gate grid
measurements allow us to compensate the gating effect (Figure
3b) leaving the size of the tip-depleted region to be the only
limiting factor preventing to scan even closer to the QPC. As a
result, the QPC mode structure and spreading of the
interference pattern can be resolved. The technique depends
on the width W of the tip-induced potential. The range of Vg
needed to compensate the gating effect is larger for larger W. In
our paper the related change in QPC potential is tiny. As the
QPC widens, more modes transmit through it leading to an
angular lobe pattern. The number of lobes is equal to the
number of modes at the Fermi energy, which in turn is equal to

Figure 4. (a) ΔG(x, y) for the second QPC mode. Inset: G(Vg) at the tip position marked by the black arrow in the main plot. Dashed lines are
guides to the eye. Numbers “1” and “2” on the vertical axis correspond to G in units of 2e2/h. Short thick vertical blue and green lines indicate
deviations of G from 1 and 2 × 2e2/h, respectively. Values of this deviation in units of 2e2/h are labeled with a corresponding color. Points “A” and
“B” marked by orange circles correspond to the value of G in the middle between a maximum and a minimum and at a maximum of a distorted
plateau, respectively. (b) Difference in the conductance of points “A” and “B” at the first G plateau in the inset of part a in units of 2e2/h as a function
of tip position. Inset: see description in part a. (c) Difference ΔGAB,second in the conductance of points “A” and “B” at the second G plateau in the
inset of part b in units of 2e2/h as a function of tip position. (d−f) Conductance along lines I, II and III in parts a and c. Colors of the curves
correspond to those of the lines in parts a and c. Vertical lines are guides to the eye. (g−i) Fringe spacing along the lines in part a. The horizontal
dashed line marks half the Fermi wavelength (λF/2 = 33 nm). Zeros along the r axis correspond to the lower ends of the three lines in parts a and c.
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the number of maxima of the squared confined wave function
|Ψ|216 in the direction normal to the transport axis. For
example, for the first QPC mode in Figure 3b, one lobe is
observed at 0 < y < 0.15 μm. At y > 0.15 μm, it branches out.
For the second mode there are two lobes of the angular pattern.
For higher modes branching slowly takes over not allowing us
to observe the lobe pattern clearly.
In comparison with other works to image angular patterns of

individual modes,16 the presented grid technique allows
observing interference fringes coexisting with the angular
lobes. It helps compensating the gating effect to study more
subtle quantum interference phenomena. This is done point by
point in space making it possible to scan large areas neglecting
time drifts of the sample as it takes much less time to record the
conductance at a single point than in the entire area. We learn
how the characteristic QPC curves G(Vg) are affected by the tip
at each point in space. This information is inaccessible in
standard SGM experiments.
Resolving the QPC mode structure allows us to study it in

more detail. One can notice fringes between the lobes in Figure
3b seen as alternating dark and bright red stripes (some of them
are marked by blue arrows as an example). Fringes of the dark
red color correspond to ΔGi > 0, i > 1. [The color scale was
limited to ΔGi < 0 in all figures to simplify descriptions of the
observed effects. Limiting ΔGi < 0 separates different effects of
the tip more transparently.] In Figure 4a, G(x, y)
corresponding to the second mode (as in Figure 3b) is
shown. Interference fringes are visible between the two lobes of
the angular pattern.
When the tip is placed at a fringe minimum in Figure 4a (see

upper arrow), the corresponding G(Vg) dependence is shown
in the inset in Figure 4a. The first plateau is distorted: there are
a local maximum (point “B” in the inset) and minimum. To
resolve the QPC mode structure in Figure 3b, G between the
maximum and minimum was used, i.e., G at point “A”.
According to eq 1, ΔG2 = δG2 − δG1 > 0 as seen from the
inset: the deviation of G from 1 × 2e2/h is larger than that from
2 × 2e2/h. For this reason there are tip positions at which ΔG2
> 0. We find regions where this occurs to be directly related to
regions (tip positions) where the first plateau is distorted. We
note that δGi < 0 always, i.e., the tip never increases G above i ×
2e2/h. The difference in G between points “A” and “B” is shown
in Figure 4b. For the nondistorted plateau this difference is zero
(uniform dark blue color). Regions where it is larger than 0 are
tip positions at which the plateau is distorted. We thus
conclude that when a plateau i is distorted, the upper plateau i
+ 1 deviates from (i + 1) × 2e2/h less than the distorted plateau
i from i × 2e2/h leading to ΔGi+1 > 0 for the plateau i + 1.
A G(Vg) curve, which corresponds to a tip position at a fringe

maximum in Figure 4a (see lower arrow), is plotted in the inset
of Figure 4b. From eq 1 ΔG2 = δG2 − δG1 < 0 as usually
observed in scanning gate experiments.
The interference fringe spacing for different QPC modes is

found to be similar to our previous studies21 in which
simultaneous contributions from several modes were studied.
Deviations from expected λF/2 reach 35% in some regions
despite the very high quality of our 2DEGs. Using the scanning
gate grid technique we relate it to the distorted QPC
conductance plateaus. Indeed, the second plateau in the inset
of Figure 4b is distorted. We plot in Figure 4c the difference
ΔGAB,second in G between points “A” and “B” on the second
plateau as a function of tip position. This difference oscillates in
space and in some regions looks similar to the fringes observed

in ΔG2 plotted Figure 4a. We compare the fringe spacing along
lines I, II, and III shown in Figure 4, parts a and c. In Figure
4d−f, ΔGAB,second and G2 are plotted along these lines. Maxima
of ΔGAB,second in parts d−f (red curve) coincide with minima or
maxima of ΔG2 (black curve) indicating that the fringe spacing
in ΔGAB,second and G2 is very similar. The separation between
the fringes in ΔG2 is plotted in Figure 4g−i. We note that
deviations of the fringe spacing from λF/2 for the second QPC
mode occur at tip positions at which the second plateau is
distorted. For example, lines I and II, along which this deviation
reaches about 35%, are drawn in areas where the second plateau
is distorted (see part c and the red curve in parts d and e).
Along line III, the first plateau is sightly distorted only at the
beginning of the line (see part f), which could be the reason for
the stronger deviation of the fringe spacing from λF/2 at the
beginning of the curve in part i. In the rest of the curve, the
fringe spacing deviates from λF/2 only by about 10%.
We therefore propose another scenario for the large fringe

separation in addition to those described in our previous
work.21 Regions where distorted plateaus occur can give rise to
interference fringes with fringe-spacing significantly deviating
from λF/2. Tip-induced nonadiabaticity of the QPC is likely to
be the reason for the distorted plateaus.38,39 Indeed, the tip-
induced potential affects the shape and size of a QPC making
the evolution of the wave function less adiabatic. This leads to a
resonance-like structure in the conductance (distorted
plateaus). We rule out the presence of an impurity(s) inside
the QPC channel, because measurements of G as a function of
asymmetric voltages applied to the two top gates of the QPC40

revealed only flat or shoulder-like plateaus.
In the analysis used in this paper we assumed that the

transmission coefficient for the ith QPC conductance plateau is
the same for plateaus j > i. Our finding that the tip distorts
plateaus as seen in Figure 4a−c may indicate that this
assumption does not hold for all tip positions. The grid
technique allows identifying regions with distorted plateaus and
excluding them from the mode-analysis.
In conclusion, we have presented scanning gate grid

measurements of a quantum point contact. Its advantages
include (i) knowledge of QPC G(Vg) curves affected by the tip
at each point in the plane, (ii) compensation of the gating
effect, (iii) possibility to bring the tip closer to a nanostructure
without pinching it off, (iv) imaging and investigating the effect
of the tip on a particular QPC mode (plateau), and (v) a single
measurement containing G(x,y) in a broad range of Vg. With
this measurement technique, we were able to detect and image
branches, across which the tip affects several plateaus at once or
one after another on its way, and the mode structure close to
the QPC. We also found that the tip can distort conductance
plateaus, an effect observable thanks to the grid technique,
which indicates tip-induced nonadiabaticity in the QPC. We
have argued that it is this effect that leads to the large fringe
spacing observed in our scanning gate experiments. We believe
that the grid technique can be a powerful tool to gain more
information about the studied system at each tip position
compared to standard SGM measurements. For example, one
can apply the grid technique to phenomena that manifest
themselves as shoulders or narrow plateaus observed between
regular QPC plateaus at integer multiples of 2e2/h, such as the
0.7 anomaly, integer and fractional quantum Hall states, as well
as single electron detection. The gating effect will be especially
significant here since the QPC conductance is most sensitive to
changes in the potential between the regular plateaus.
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