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A A Kozikov1, C Rössler, T Ihn, K Ensslin, C Reichl
and W Wegscheider
Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
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Abstract. Scanning gate microscopy is used to locally investigate electron
transport in a high-mobility two-dimensional electron gas formed in a
GaAs/AlGaAs heterostructure. Using quantum point contacts, we observe
branches caused by electron backscattering decorated with interference fringes
similar to previous observations by Topinka et al (2000 Science 289 2323). We
investigate the branches at different points of a conductance plateau as well as
between plateaus, and demonstrate that the most dramatic changes in branch
pattern occur at the low-energy side of the conductance plateaus. The branches
disappear at magnetic fields as low as 50 mT, demonstrating the importance of
backscattering for the observation of the branching effect. The spacing between
the interference fringes varies by more than 50% for different branches across
scales of microns. Several scenarios are discussed to explain this observation.
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1. Introduction

Scanning gate microscopy (SGM) is a scanning probe technique in which the conducting tip of
an atomic force microscope (AFM) acts as a moveable gate locally changing the electron density
beneath it. It allows the investigation of the electron behavior beyond conventional transport
measurements. Its successful implementation started about 16 years ago [2] and was followed
a few years later by the pioneering experiment to image the electron backscattering through a
narrow constriction in a high-mobility two-dimensional electron gas (2DEG) [1, 3]. Since then
the SGM technique has become widely used for local studies of electron transport in different
nanostructures [4–12].

Back in the year 2001 when electron backscattering through the quantum point contact
(QPC) was imaged by Topinka et al [3], it was unexpectedly found to be dominant along
narrow branches decorated by interference fringes [3] about half the Fermi wavelength apart.
The branching behavior has been studied for several years since then [13–17]. It was found that
classical mechanics could explain the formation of branches [3], whereas quantum mechanics
was needed to account for their stability upon initial conditions [14]. Local electron transport
through a QPC was used to study electron–electron interactions [17] or to map the local carrier
density [13].

The branching effect occurs due to focusing of electron waves by small-angle scattering
off a random background potential created by ionized doping atoms in the heterostructure. The
interference fringes close to the QPC appear because of the interference of electron waves
coming from the QPC to the tip-depleted region and those scattered back to the constriction.
A few microns away from the QPC such interference may not survive either due to electron
dephasing or due to thermal averaging or due to both. In this case, interference of electron waves
scattered between the tip and closely located sharp impurity potentials becomes essential.

Imaging electron backscattering is possible due to the effect the tip has on the 2DEG. By
applying a sufficiently negative voltage to the tip, a depleted region in the 2DEG appears, which
acts as a backscatterer. Electron waves leaving the QPC are scattered back to the constriction
by the potential induced by the tip. When the tip is placed in a way that it interrupts parts of
the flow from a particular QPC mode, the transmission of this mode decreases. This is seen as a
change in the conductance across the sample, which is measured as a function of the tip position
allowing imaging electron backscattering through the QPC.

In this paper, we show in detail how the QPC conductance is affected by the tip position,
tip bias and low magnetic fields. We study the details of the local potential landscape, which
can be inferred from the spacing between interference fringes. Our sample has a mobility which
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is about a factor of two higher than the best previously studied samples [15]. We find that the
variations of the spacing of the interference fringes can reach 50% on a scale of a few hundreds
of nanometers independent of the tip used, top gate voltage and thermal cycles. We discuss
several scenarios to explain these variations and it turns out that each consideration has its
shortcomings. These scenarios are based on a locally varying or constant carrier density. We
investigate how the behavior of backscattering changes as a function of the top gate voltage
by taking several images on a conductance plateau as well as between the plateaus. Studies of
the branches of electron backscattering and interference fringes in a perpendicular magnetic
field highlight that backscattering is indeed required for the observation of the branched flow. In
order to show the functionality and quality of our device, we show a series of experiments
in the appendix (figure A.4) which have been performed in a similar way by Topinka and
collaborators in a number of papers.

2. Experimental methods

The 2DEG under investigation is embedded in a GaAs/AlGaAs triangular quantum well
structure with an aluminum content of 24.4% (figure 1(a)). It is located 120 nm below the surface
and has a mobility of around 8 × 106 cm2 V s−1 and an electron density n = 1.2 × 1011 cm−2

determined from Hall effect measurements at 300 mK. The corresponding Fermi wavelength
and the elastic mean free path are λF = 72 nm and lp = 49 µm, respectively, and the Fermi
energy is EF = 4.4 meV. Silicon donor atoms are located in a plane 70 nm above the 2DEG.
A list of all quantities relevant for the experiment is given in table 1.

All structures are defined electrostatically using Ti/Au gates (height 30 nm) on top of the
GaAs surface (figure 1(b)). Due to the presence of the gaps between the gates, it is possible to
use only some of the structures shown in the figure. Experiments are performed with the QPC
encircled in figure 1(b). The lithographic width of the constriction is around 300 nm. All other
top gates are grounded.

The differential conductance across the sample, G = dI/dVSD, is measured using a standard
lock-in technique in a two-terminal configuration by applying an ac rms source–drain voltage
of 100 µV. The QPC is formed (figure 1(c)) when the 2DEG beneath the gates is depleted at
Vg = −380 mV. (As seen from figure 1(b) the width of the top gates varies. The electron gas is
first depleted beneath the wide part at around −250 mV, which is close to the value estimated
using a parallel plate capacitor model and then beneath the narrow part at −380 mV, for which
this capacitor model is not valid.) At more negative gate voltages, the width of the constriction
decreases as well as the conductance through it. Six plateaus spaced by 2e2/h are clearly seen
(figure 1(c)) until the QPC pinches off at Vg = −830 mV.

SGM experiments are performed at a base temperature of 300 mK using a home-built AFM
in an He-3 system [18]. The differential conductance, G, across the sample is measured as a
function of the tip position (x, y). Unless stated otherwise, the Pt/Ir tip is placed 60 nm above
the GaAs surface and biased to −4.5 V. Most of the images presented here are obtained by
scanning an area of 3.5 × 3.5 µm2 located about 1.5 µm to the left of the QPC (red square in
figure 1(a)). Red circles in figure 1(c) indicate gate voltages at which the electron backscattering
is imaged.

Figure 2 shows the QPC conductance (the same contact resistance as in figure 1(c) has been
subtracted) as a function of the tip position in the middle of the second conductance plateau
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Figure 1. (a) Schematic diagram of the heterostructure layers. The z-axis shows
the direction of growth. The blue line corresponds to a profile of the conduction
band edge and the dashed line to the Fermi energy. The 2DEG is located at
the AlGaAs/GaAs interface 120 nm below the surface. Silicon (Si) donor atoms
(3.2 × 1012 cm−2) are separated from the 2DEG by the AlGaAs spacer 70 nm
thick. (b) An image of the investigated sample obtained at room temperature by
a commercial AFM. The dark area is the surface of the GaAs heterostructure and
yellow contacts are top gates. The QPC used to study electron backscattering is
marked by a red circle. All other top gates are grounded. Conductance across
the sample as a function of the tip position is imaged at the location of the red
and green squares. The right-hand side borders of the squares are about 1.5 and
0.5 µm away from the center of the constriction, respectively. The sizes of the
squares are 3.5 × 3.5 and 1.7 × 2.0 µm2. (c) Gate voltage dependence of on the
conductance measured in a two-terminal configuration at about 300 mK. Plateaus
spaced by 2e2/h are clearly seen. The contact resistance has been subtracted.
Red circles indicate the gate voltages at which electron backscattering is imaged.
Letters a–f by these circles correspond to the graphs in figure 4. The inset shows
a schematic diagram of the AFM tip scanning over the surface of the GaAs
heterostructure. When negatively biased the top gates and the tip create depleted
regions (shaded area) in the 2DEG with the random background potential.

(see figure 1(c)). One can see that in the largest part of the image the conductance is very close
to 4e2/h, meaning that the tip has a very small effect on the QPC conductance. In this region
there are narrow branch-like areas (bright red) where the conductance decreases. A cross-section
along the vertical dashed line (the blue curve on the right-hand side) shows a series of dips in
G that correspond to the bright spots along the dashed line. When the tip moves closer to the
QPC, the conductance drops to about 1.2e2/h. A 1D cross-section at the top indicates how G
varies along the horizontal dashed line: G remains almost unchanged until the tip comes closer
to the QPC causing a rapid decrease in G. One can also see wiggles on this curve (a zoomed-in
region shown as an inset). These wiggles are also seen in the 2D color plot (upper right corner),
which is a zoomed-in region of the main graph indicated by a rectangle.

Thus, during scanning there are changes of the conductance occurring on distinctly
different scales: (i) an overall change in G on a length scale of microns (the curve at the top) and
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Table 1. Parameters of the sample at 300 mK. Here lth = (h D/kBT )0.5 and lϕ are
the thermal and dephasing length, respectively, and Vtip is the tip bias.

λF EF µ n lp lth Vtip

(nm) (meV) (m2 V s−1) (1011 cm−2) (µm) (µm) (V)
72 4.4 800 1.2 49 9 −4.5
lϕ QPC 2DEG Gate height Spacer
(µm) width depth (nm) thickness Tip–surface

(µm) (nm) (nm) distance (nm)

200 300 120 30 70 60

Figure 2. The QPC conductance as a function of the tip position in units of
2e2/h (see the color scale) measured in the area indicated by the red square in
figure 1(b). The one-dimensional (1D) plot at the top (on the right-hand side) is a
cross-section along the horizontal (vertical) dashed line. A small color plot in the
upper right corner is a zoomed-in region shown in the main graph by a rectangle.
The color scale is slightly different compared to the main graph to make the
interference fringes more visible. These fringes are also seen in a zoomed-in
region in the horizontal cross-section.

on a conductance scale of 2e2/h, (ii) there are branch-like areas on a length scale of 100 nm (the
curve on the right-hand side) and on a conductance scale of 0.1 × 2e2/h and (iii) the wiggles
on a length scale of the Fermi wavelength (the curve at the top) and on a conductance scale of
0.01 × 2e2/h. Following the existing notation [1, 3], we call the wiggles interference fringes.
Below, we discuss possible origins of their formation based on our experimental results. These
are the effects that the negatively biased tip has on the QPC conductance.
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Figure 3. The G(Vg) curves measured when the tip is placed away from branches
(a), above a central branch (b) and above a side branch (c) at different tip biases,
0 and −6 V, and magnetic fields, 0 and 25 mT.

To exhibit the effect of the tip-induced potential on the QPC conductance more clearly, we
present a set of the G(Vg) curves measured as a function of the tip position, tip bias and magnetic
field (figure 3). When the tip is placed above the branch-free areas, figure 3(a), and the tip bias
is gradually changed from 0 to −6 V, the conductance at the plateaus does not change, but
the entire curve shifts toward positive gate voltages. Therefore, when the tip scans the surface
(even microns away from the QPC) at a fixed Vg, the conductance decreases. The tip acts as a
top gate to regions remote from the directly depleted area below the tip. Its induced potential
changes the local potential of the constriction and thereby decreases the conductance across
the sample. We call the horizontal shift of the G(Vg) curve the gating effect. This is consistent
with the horizontal cross-section in figure 2: at the largest distance from the QPC, the biased
tip reduces the conductance to about 1.9 × 2e2/h. As it moves closer to the QPC, G does not
change much, because the gradient of the tip-induced potential at the QPC is small (tails of a
Lorentzian). Close to the constriction this gradient is large; therefore the conductance decreases
rapidly. Applying a perpendicular magnetic field (figure 3(a)) does not change the G(Vg) curves
as expected.

Figure 3(b) shows the situation when the tip is placed above the central branch (in front of
the QPC). Again we see that the curve shifts toward positive gate voltages (gating effect) when
the tip bias reaches −6 V. But apart from that, the plateau conductance decreases, because the
tip depleted region scatters electrons back to the constriction reducing the transmission of a
particular QPC mode, leading to a decrease of the conductance. The central branch is populated
by electrons from QPC modes with odd quantum numbers in the confinement direction. That
is why the step heights from pinch-off to the first and from the second to the third plateaus
are smaller than 2e2/h and that from the first to the second plateau equals 2e2/h. As one
can see, G is most sensitive to electron backscattering when the tip is placed above a branch.
This branching effect was shown in the vertical cross-section in figure 2. The magnetic field
suppresses backscattering and, therefore, increases the conductance, figure 3(b). At 25 mT the
conductance of all plateaus is restored. This can also happen if the Lorentz force bends electron
trajectories in a way that the electrons do not reach the tip.

When the tip is placed above a side branch, figure 3(c), all plateaus apart from the first
one are affected. This is due to the angular distribution of electrons leaving the constriction [1],
which depends on the number of open QPC modes. As seen from the height of the plateaus
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(a) (c)(b)

(d) (e) (f)

Figure 4. (a)–(f) Numerical derivative of the conductance, dG/dx , plotted in
color scale as a function of tip position at different gate voltages shown by red
circles in figure 1(c): (a) Vg = −0.655 V, (b) Vg = −0.675 V, (c) Vg = −0.684 V,
(d) Vg = −0.690 V, (e) Vg = −0.725 V and (f) Vg = −0.750 V. Red arrows in
(f)–(d) indicate the appearance of new branches during a transition from the first
conductance plateau to the second. The color scale has the units of 10−6 S m−1

and it is the same for each plot.

in the figure, the second and the third mode fill the side branch. A magnetic field of 25 mT is
enough to restore the conductance. The magnitude of the magnetic field sufficient to restore the
plateau conductance depends on how far away the tip is from the QPC in comparison with the
cyclotron radius.

As seen from figure 2 the interference fringes are almost not seen in raw data. Therefore,
we plot the differentiated conductance, dG(x, y)/dx , in further images. This way the strong
effect of the background will be eliminated and the interference fringes are enhanced.

Figures 4(a)–(f) show the evolution of the branches at several closely spaced values
(figure 1(c)) of the gate voltage. One can see that when the value of the conductance through
the QPC is not an integer and lies above a plateau (figure 4(a)), as well as anywhere on the
plateau, figures 4(b)–(d), the branching pattern is almost the same. When the conductance is
just below a plateau value, the pattern changes significantly (figures 4(d) and (e)). Such a trend
is observed for other plateaus, e.g. for the first plateau (figures 4(e) and (f)). In other words,
when the source and drain electrochemical potentials lie between two neighboring minima of
the subband energy dispersion relations, the observed branch pattern stays the same. As more
and more modes contribute to the conductance as we increase the QPC gate voltage, the pattern
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(a) (b) (c)B = 0 mT B = 4 mT B = 8 mT

Figure 5. Numerical derivative of the conductance, dG/dx , plotted in color scale
as a function of the tip position for different magnetic fields. The conductance
across the sample is G = 6e2/h. (a) B = 0 mT, (b) B = 4 mT and (c) B = 8 mT.
The values for the cyclotron radius in (b) and (c) are 14 and 7 µm, respectively.

changes and branches can be observed in a larger angular range. A transition from the middle
of the first plateau to the onset of the second is accompanied by additional branches appearing,
shown by red arrows in (f)→(d). Each branch in panels (a)–(f) is decorated with interference
fringes mostly running perpendicular to the direction of electron backscattering. (A larger size
of the plots is required to clearly see them. An example is given in figure A.1). The origin of the
fringes will be discussed in detail below. In previous experiments, several models were proposed
to explain the fringe formation [14, 15]. Here we have to take into account the higher mobility
of our sample and the tip geometry and size.

The experimental conditions, such as the tip bias and the tip–surface distance, used in
our experiments, were experimentally found to be sufficient to create a depleted region in
the 2DEG and, therefore, to observe interference fringes and the branching effect. The tip
placed 60 nm above the surface starts depleting the electron gas when biased at about −2.7 V.
At −4.5 V the size of the depleted region is of the order of 1 µm. A comparison between
different tip–surface distances and tip biases is given in figure A.1. In previous studies of
electron backscattering, SGM images were obtained by placing the tip about 10–30 nm above
the surface [15]. The lateral tip–QPC distance in our experiments, L , fulfills the relations
λF � L � lp and L . lth. Scanning more than a micron away from the constriction is important
to be less affected by the gating effect.

One can also see from figure 4 that it is difficult to distinguish between different branches
in the area closest to the QPC. This happens due to the gating effect that becomes stronger when
the tip moves closer to the constriction. Later we show how images change when this effect is
compensated for.

Previously, we showed how the magnetic field affects the QPC conductance as a function
of the gate voltage at different positions of the tip. In figure 5, we image this effect when the
conductance is set to 3 × 2e2/h. One can see that as the magnetic field increases from 0 to 8 mT,
the branches and the fringes gradually disappear. Although they are still seen at 8 mT, applying a
higher magnetic field makes both of them fade away completely. These images together with the
G(Vg) curves in figure 3 illustrate again that backscattering is an essential part of the involved
phenomena. As seen from the images, some branches and fringes disappear faster than others.
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The effect of the magnetic field on the QPC conductance at different positions of the tip is
shown in figure 3. This indicates that the mechanism of their formation is different in different
parts of the scan area. For example, in the case of multiple scattering off the tip and impurities,
interference can survive due to the presence of different possible paths that electron waves can
move along without losing their coherence (because the thermal length is larger or of the order
of the tip–QPC distance). The upper and lower branches in figure 5(c) disappear already at 8 mT.
A cyclotron radius of about 7 µm corresponds to this magnetic field. Therefore, these branches
and fringes are likely caused by direct backscattering since they are located at 2–4 µm away
from the QPC, which is comparable with the cyclotron radius. In the center of the scan area
the main mechanism of branch and fringe formation seems to be multiple scattering off the tip,
impurities and top gates. One can also see in figures 5(b)–(c) that at some positions of the tip the
change in the conductance becomes stronger, which is in contrast to the fact that the magnetic
field restores the conductance at the plateaus and therefore its change should eventually become
zero. This may happen when electron trajectories bent by the Lorenz force come back to the
QPC after scattering off the tip. These events, however, can be quite random due to the presence
of the background potential.

In the images shown so far the gating effect has been significant. It prevents observing
details of the electron backscattering close to the point contact. In order to scan near the QPC
and to increase the resolution, we partially compensate for the gating effect in the following
by performing a two-pass technique. In the first pass, the tip is lifted by 120 nm above the
surface and scanned at a constant height. At the same time the conductance through the QPC
is kept constant by varying and recording the voltage applied to the gates, which is done by an
additional feedback loop. At 120 nm the tip biased at −4.5 V does not deplete the electron gas
beneath it (see figure A.3). Therefore, only the gating effect is present. In the second pass, the
tip is lowered to 60 nm above the surface and the conductance through the QPC is measured.
The top gate voltage is changed according to the recorded data from the first pass. The result
is shown in figure 6. The scan area is slightly reduced and shifted by about 1 µm closer to the
QPC (green box in figure 1(a)).

The gating effect depends on the tip–surface distance close to the constriction, which can
be seen in the figure. The current through the QPC drops to zero in the region closest to the
constriction (an almost rounded region of the same color). However, away from it the gating
effect is fully compensated for, leading to a clear observation of interference fringes. The region
of zero current can also be due to blocking any electron flow by the large tip before electrons
reach the QPC. There is a small overlap between images in this figure and those in figure 4. The
upper branch in figure 4(c) (encircled) is a continuation of that in figure 6(a) (see dashed line I).
All other features in figure 6 become visible only after compensating for the gating effect. The
interference fringes appear more pronounced than in previous images. They start at the region
of zero current and run predominantly perpendicular to the radial directions. One can also see
an area where fringes cross each other. Away from it, they form circular arcs (ring pattern) of
different spacings between maxima/minima. Scanning closer to the QPC allows us to observe
the widening of the interference pattern as a function of the QPC transmission even though the
lobes are not seen well.

Thus, the gating compensation technique allows one to distinguish small changes in the
conductance due to the backscattering effect by eliminating larger changes due to the gating
effect. This essentially means that this technique shifts the G(Vg) curves in figure 3 horizontally
back to their original position at Vtip = 0 V. When the tip moves above a branch, only the
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(a) (b) (c)2nd plateau 3rd plateau 4th plateau

I

II

III

IV

Figure 6. Electron backscattering through the QPC imaged using a gating
compensating technique when the QPC is biased on the second (a), third (b)
and fourth (c) plateaus. Dashed arrows indicate lines and directions along which
1D profiles are analyzed (shown only for the second plateau).

changes in conductance at the plateaus are seen in the images. The technique becomes very
useful when scanning close to the QPC. A similar procedure to compensate for the gating effect
was reported in [15]. There the authors also scanned the surface twice at different heights of the
tip in order to detect only the effect of electron backscattering.

3. Analysis of interference fringes

The interference fringes, which decorate the branches, consist of a series of maxima and minima
of dG(x, y)/dx . The separation between maxima (minima) is determined from the profiles taken
along the four dashed lines shown in figure 6(a) for the three cases of the second, third and fourth
conductance plateaus. As an example, such a profile along line I is shown for the case of the
second plateau in the inset of figure 7(a). As can be seen from this profile, the spacing between
the fringes changes noticeably: the first half micron it increases and then decreases. The profiles
are used to determine the separations between neighboring maxima (minima). For each such
maximum and minimum of the profiles eight extrema from each side (17 points in total) are
taken and the average over 17 data points gives one data point in the following graphs. For the
dashed line I in figures 6(b) and (c) (not shown) the averaging is performed over 11 points.
For line III for all plateaus this is done over seven points. The result of averaging is shown
in figures 7(a)–(c) for the dashed line I. One can see that close to the constriction the spacing
between the fringes is pretty accurately given by half the Fermi wavelength. Then it increases
by more than 30% and decreases to the original value over a length scale of about 700 nm.
This trend is independent of the transmission of the QPC. Although line I does not go through
the phase gradient along its entire length, correcting its position in some regions will not change
the qualitative and quantitative conclusion about a strong deviation of the fringe spacing.

We consider several scenarios to explain the observed variations of the spacing between the
fringes, 1r , and the ring pattern. In the first, we neglect the smooth background potential coming
from the ionized donor atoms. Therefore, electron waves can be represented as geometrically
straight lines. We also assume that the fringes appear due to interference of an electron wave
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(a) (b)

(d) (e) (f)

(c)

0.3 0.6 0.9 1.20.3 0.6 0.9 1.2

Distance ( m)Distance ( m)Distance ( m)

r
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m
)

3rd plateau

0.3 0.6 0.9 1.2

30

36

42

48

54
2nd plateau 4th plateau

Tip

QPC

Top gates

Impurity

0.0 0.6 1.2

1/1.2

1/0.8

1/0.6

1/2.4

Figure 7. (a)–(c) Left-hand side scale: the separation between interference
fringes as a function of distance along the dashed line I (see figure 6(a)) for
the case of the second, third and fourth conductance plateaus. The dashed lines
indicate half the Fermi wavelength. Error bars show the standard deviation of
the mean. Right-hand side scale: the inverse variations of the extracted carrier
density in units of 1/(1011 cm−2) as a function of distance determined using
equation (1) in scenario 1. The bulk carrier density is 1.2 × 1011 cm−2. (d)–(f)
Explanations of the fringe spacing variations shown in panels (a)–(c) and
the ring pattern: (d) scenario 1, (e) scenario 1 involving sharp impurities and
(f) scenario 2, which takes into account the smooth but random background
potential leading to the wavy electron trajectories.

directly reflected from the QPC and that transmitted through it and backscattered off the tip
(figure 7(d)). In this case, the phase difference between them is 1φ = 2

∫ r̃
0

√
2πn∗(r) dr , where

n∗(r) is the local carrier density at a distance r from the QPC and r̃ is the distance from the
constriction to the edge of the tip-depleted region. The phase difference becomes equal to an
integer multiple of 2π between two neighboring maxima (minima), see the inset of figure 7(a).
Thus, a spatially dependent spacing 1r of the interference fringes results in a local carrier
density, n∗(r):

n∗(r) =
π

21r 2
. (1)

This result does not depend on angle, because the interfering waves meet at 180◦ as was
assumed. In this scenario, it is also possible that the electron wave transmitted through the
QPC scatters off the tip and a sharp impurity potential and returns back to the constriction
(figure 7(e)). In this case, the fringe spacing could be larger than λF/2 since the interfering
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waves may include a finite angle. Experiments in samples with different levels of disorder
confirm that in high-mobility samples the number of impurities with a short-range potential is
very small [14]. The fact that we see a strongly varying fringe spacing for a number of different
experimental situations renders this particular case of scenario 1 rather unlikely.

In scenario 2, we assume that the local carrier density is constant in space and equal to the
bulk density (figure 7(f)) everywhere. Interference occurs at the QPC between different partial
waves backscattered from the tip, which meet at the constriction under some angle. This is
possible due to the relatively large size of the tip-depleted region (of the order of a micron). The
spacing between the fringes in this scenario depends on the angle and also on the details of the
spatially modulated background potential between the tip and the constriction, without which
the waves will not meet at the QPC after backscattering off the tip.

Variations of the carrier density extracted using equation (1) of scenario 1 along profile I are
shown in figures 7(a)–(c) (right-hand side scale). One can see that the extracted carrier density
at the beginning and at the end of the profile is the same as the bulk density determined from the
Hall effect measurements (n = 1.2 × 1011 cm−2). However, in between it decreases to almost
half the value. A similar analysis is done for profiles II–IV in figure 6(a). The extracted density
along line II is similar to that along line I: n∗ increases gradually from 0.7 to 1.2 × 1011 cm−2.
Along line III, n∗

≈ 1.2 × 1011 cm−2 and along line IV it is 25% higher. Considering the fact
that our experiments are done on high-mobility material which shows Shubnikov–de Haas
oscillations at magnetic fields as low as 100 mT and also displays clear features of the fractional
quantum Hall effect, it is rather counterintuitive that the density should be modulated by 50%
on the scale of microns, i.e. on a scale which is about 100 times smaller than the elastic mean
free path.

Following the derivations in [19], we can estimate how large the fluctuations of the
potential can be in the studied sample. The mean of the squared random screened potential
created by ionized donor atoms is expressed by the relation

〈F2
〉 = W 2 1

4(qss)2
, (2)

where W =
√

2πCe2/κ , e is the electron charge, κ is the dielectric constant, C is the density of
donors, qs = 2/aB is the screening parameter, aB = 10 nm is the Bohr radius and s is the spacer
width. For the studied sample, s = 70 nm, C ∼1012 cm−2, W ≈ 30 meV. Thus,

√
〈F2〉 ≈ 1 meV.

Since the spatial distribution of the charged donors, C(r), is assumed to be random and not
correlated, then 〈C(r)〉 = 0 and 〈C(r)C(r − r ′)〉 = δ(r ′). Therefore, 〈F〉

2
= 0, and

√
〈F2〉 is

nothing but the variance. The standard deviation is then δF =
√

〈F2〉 ≈ 1 meV. Translating
energy into carrier density, one obtains: δn ≈ 0.3 × 1011 cm−2. From the variations of n∗

(figure 7) for the four studied lines, one can determine that n∗
= 〈n∗

〉 ± δn∗
= (1.1 ± 0.2) ×

1011 cm−2, where 〈n∗
〉 is the carrier density averaged over all data points in the figure, and δn∗

is the standard deviation. The standard deviation estimated theoretically following [19] agrees
with that determined experimentally.

A similar analysis has been performed for different cooldowns of the same sample with
different tips (to change the tip the sample was warmed up to room temperature and then cooled
back down to base temperature). The results resemble those of figure 6 including the lobe pattern
and the ring pattern. The behaviors of the fringe spacing as well as of the extracted carrier
density are independent of gate voltage, thermal cycling and the tip used. They are an intrinsic
property of the sample.
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Interference due to direct backscattering off the tip, as assumed in the first part of
scenario 1, is the most probable process to occur. Theoretical estimations of the carrier density
variations agree with our experimental findings. However, due to the high purity of the studied
heterostructure it is rather counterintuitive that variations of the fringe spacing are caused by
inhomogeneities of the local carrier density (scenario 1) on this large scale (up to 50%). The
presence of sharp impurities that would lead to the angle-dependent fringe spacings is also
unlikely, due to the high mobility of our sample. As was also mentioned before (scenario 2),
electron waves can backscatter off the tip and meet at the QPC at different angles. In this case, all
waves have to hit the tip under a normal angle, which is not a very probable process to occur due
to the randomness of the background potential. Summing up, each scenario alone cannot explain
strong variations in the fringe spacing. Rather, a combination of all the physics discussed would
result in a model that could account for the observed effects. In the absence of any background
potential fluctuations, one may expect a regular pattern of circular-shaped interference fringes.
Considering the fact that several interfering paths are more prominent because of the presence of
the random background potential, these fringe spacings could change locally since now waves
coming from different directions could interfere with each other.

When the QPC transmission is less than one, a ring pattern is expected due to the
interference of waves backscattered off the tip and off the QPC (scenario 1, figure 7(d)). When
the number of the QPC modes increases, more angular lobes appear, but the ring pattern remains.
It is this effect that is seen in figure 6. A similar ring pattern has been observed in the previous
experiments [15].

We would also like to point out that the wiggles in the QPC conductance may also result
from the Friedel oscillations of the electron density. The oscillations formed around the tip may
reach the QPC, causing modulation of the QPC transmission, which is seen in the scanning gate
images. Such a possibility is also mentioned in [20]. The Friedel oscillations may survive for
distances of the order of a micron, which is enough to explain the appearance of the ring pattern
in the gate compensated images, figure 6. The ring pattern seems to start with a high-intensity
fringe followed by oscillations which decay with distance.

4. Conclusion

We performed SGM experiments of electron backscattering through a quantum point contact
fabricated on a high-mobility GaAs heterostructure. A branching behavior was observed
together with interference fringes that decorate the branches. We imaged its evolution at several
points on a plateau as well as between plateaus. We found that for a fixed lateral position of the
QPC the number and the intensity of branches change only when the QPC conductance becomes
lower than an integer multiple of 2e2/h. When it is equal to or higher than an integer multiple
of 2e2/h, the electron backscattering pattern remains stable. A lateral shift of the QPC, which
changes the injection conditions, affects the branching pattern. The branches are thus related to
the random disorder potential in the 2DEG.

Measurement of the QPC conductance as a function of the gate voltages at different tip
biases, tip positions and low perpendicular magnetic fields showed that the conductance at
the plateaus was restored when the B-field was applied. At the same time, in the images
of electron backscattering the branches of the pattern and the interference fringes gradually
disappeared. This illustrated that backscattering is important for the observation of the branches
and interference fringes. Some of them faded away faster than others, which means that different
mechanisms of fringe formation are present.
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Figure A.1. Numerical derivative of the conductance, dG/dx , plotted in color
scale as a function of tip position. It is the same as figure 4(a). Its size is increased
to see the interference fringes more clearly.

Implementing the gating compensation technique eliminated the gating effect and enabled
us to observe smaller effects due to electron backscattering. This allowed scanning closer
to the QPC and increasing the resolution of the SGM images. We determined the spacing
between the fringes as a function of distance and found large deviations from the expected
value corresponding to half of the Fermi wavelength. Several scenarios should be taken into
account to explain this observation.
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Appendix

Due to the small size of figure 4, the interference fringes are not very well seen. As an example,
to show that they indeed decorate the branches we increased the size of figure 4(a). The result
is shown in figure A.1.
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(a) (b)B = 10 mT B = -10 mT

Figure A.2. Numerical derivative of the conductance, dG/dx , plotted in color
scale as a function of tip position for different magnetic fields. The conductance
across the sample is G = 6e2/h. (a) B = 10 mT and (b) B = −10 mT.

(a) (b) (c) (d)

(e) (f) (g) (h)

120 nm 90 nm 60 nm 40 nm

- 2.7 V - 3.5 V - 4.5 -V 6.0 V

Figure A.3. (a)–(d) The branching behavior as a function of the tip–surface
distance: (a) 120 nm, (b) 90 nm, (c) 60 nm and (d) 40 nm. The tip bias is kept
constant at −4.5 V. The QPC conductance is 6e2/h. (e)–(h) Electron flow as a
function of the tip bias: (e) −2.7 V, (f) −3.5 V, (g) −4.5 V and (h) −6.0 V. The
tip–surface distance is kept constant at 60 nm and the QPC conductance is 6e2/h.

Figure A.2 shows a comparison of the branching effect at opposite magnetic fields. Both
images look very similar: the magnetic field suppresses electron backscattering restoring the
conductance at the plateaus. Some features, which are the same in (a) and (b), seem to appear at
slightly different positions. This shift can be due to the time-dependent sample drift. Branches
in the upper part of the images at 10 mT are brighter than at −10 mT. The reason for this slight
difference is a magnetic hysteresis: the two fields are not exactly opposite. The branches in the
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Figure A.4. Electron backscattering imaged as a function of unequal top gate
voltages. The conductance across the sample is G = 6e2/h (third plateau). (a)
Transconductance, d2G/dVUdVL, as a function of the voltages, VL and VU,
applied to the lower and the upper top gates, respectively. Numbers correspond
to the numbers of conductance plateaus. (b)–(d) Electron flow through the QPC
at gate voltages marked by red circles in (a).

lower part of the images are the same, which was also observed at different positive magnetic
fields in figure 5 where the branches in this part of the images disappear more slowly than in the
upper part. Thus, opposite magnetic fields affect the branching behavior in the same way.

Electron scattering through the QPC is studied at different tip–surface distances
(figures A.3(a)–(d)) and tip biases (figures A.3(e)–(h)). When the tip biased at −4.5 V is far
away above the surface, e.g. at 120 nm, it does not deplete the electron gas beneath it. There is no
backscattering and therefore no branches and interference fringes. As the tip moves closer to the
surface a depleted region beneath it appears. The tip-induced potential is strong enough to scatter
electrons back to the constriction, reducing the QPC conductance and leading to the observation
of the interference fringes and the branching effect (figure A.3(b)). At smaller distances above
the surface, the depleted region increases and more electrons can be backscattered. This
increases the width of the branches and their intensity (see figures A.3(a)–(d)). A similar
situation occurs when the tip bias is made more negative (see figures A.3(e)–(h)).

Figure A.4 shows the branching behavior depending on the lateral shift of the QPC similar
to what has been done in [14]. In figure A.4(a) the transconductance d2G/dVUdVL is plotted
as a function of the voltage, VL, applied to the lower top gate and the voltage, VU, applied to
the upper gate (figure 1(b)). The light blue color in the bottom left part of the diagram and
in the rest of it corresponds to regions where the conductance through the QPC is zero or an
integer multiple of 2e2/h, respectively. The white color corresponds to the transition regions
between the plateaus. Similar measurements were carried out on another QPC fabricated in a
high-mobility GaAs heterostructure [21] and agree with ours. Electron backscattering is studied
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for gate voltages marked by red circles in (a). The conductance is kept at 6e2/h and a voltage
applied to each of the two top gates is varied. When the QPC is shifted up (figure A.4(b))
by about 70 nm with respect to the symmetric case, VU = VL (figure A.4(c)), the upper side
branch (encircled) becomes more pronounced; then the lower one (encircled) and the pattern
between them remain almost unchanged. In the opposite situation, when the QPC is shifted
down (figure A.4(d)) by the same distance, the upper branch disappears and the lower one
becomes wider and more intense. These images directly demonstrate the shifted injection point
into the branches originating from the gate-controlled lateral shift of the QPC. No new branches
appear upon the constriction shift. This means that they are fixed in space and become more/less
intense and wider/narrower depending on the injection conditions, i.e. the distribution of the
injected carriers. Thus, the branches are related to the disorder potential landscape in the 2DEG.
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