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Counting statistics of hole transfer in a p-type GaAs quantum dot with dense excitation spectrum
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Low-temperature transport experiments on a p-type GaAs quantum dot capacitively coupled to a quantum
point contact are presented. The time-averaged as well as time-resolved detection of charging events of the dot
are demonstrated and they are used to extract the tunneling rates into and out of the quantum dot. The extracted
rates exhibit a super-linear enhancement with the bias applied across the dot, which is interpreted in terms of
a dense spectrum of excited states contributing to the transport, characteristic for heavy hole systems. The full
counting statistics of charge transfer events and the effect of back action is studied. The normal cumulants as
well as the recently proposed factorial cumulants are calculated and discussed in view of their importance for
interacting systems.
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I. INTRODUCTION

Quantum dots (QDs or simply dots) are small conducting
islands that confine charge carriers in three dimensions,
resulting in a discrete spectrum of excited states. This spectrum
is often studied in transport experiments by measuring the
current,1 which is allowing carriers to tunnel between the
dot and source and drain leads (reservoirs). The capacitive
coupling of QD to nearby gates enables tuning the energy of
excited states with respect to electrochemical potential of the
leads. It is a fascinating experimental observation that a similar
capacitive coupling to a nearby electrical current passing
through a constriction provides the possibility of measuring
the charge of the dot with a precision of a small fraction of
an electron’s charge.2 The conductance of the constriction
changes as a function of the average charge population of the
QD.

Two-level fluctuations (random telegraph noise) of the
detector current provide more information about the dot than
just the average current. The fluctuations of the current enable
the time-resolved detection of single-particle charging and
decharging events in the QD.3–5 This, on the other hand,
reveals more information about the energy spectrum of the
dot, the relaxation of excited states to the ground state, and
their coupling to the leads.6 This information is valuable for
the case of p-type QDs, where the present understanding of
their properties is limited by the lack of experimental results.

Counting statistics of the charge transfer is another tool to
study quantum dots. Experimental studies of counting statistics
using charge detection with a quantum point contact (QPC)
were started by Gustavsson et al.7,8 and Fujisawa et al.9 and
continued by Fricke et al.10,11 All these experiments were
performed on n-type GaAs or InAs electronic systems.12

Therefore, it is interesting to compare these results with those
obtained in a QD realized on a p-GaAs two-dimensional
hole gas (2DHG), where the carrier-carrier interactions are
supposedly stronger both in the dot and in the leads compared
to n-type systems.

In this article, we investigate these effects in a p-type GaAs
QD system for which heavy holes (HHs) are the main carriers.

The large effective mass of holes (m∗
HH ∼ 0.4m0

13,14) is several
times larger than that of conduction band electrons making
carrier-carrier interaction effects more pronounced compared
to the kinetic energy than in their electronic counterparts.15

The same reason leads to the fact that screening is expected to
be stronger and that the single-particle energy spacing is much
smaller in confined p-type systems, making it very difficult
to be resolved at accessible temperatures.16 Additionally,
the strong spin-orbit interaction in the valence band holds
promise for interesting spin physics in these QDs.17 Successful
optical manipulation of holes and large coherence times
measured in these experiments (an order of magnitude larger
than electrons)18–22 is another motivation for realization of
hole-based qubits and their studies using transport.

However, the fabrication of tunable p-type QDs is
challenging,23 essentially because metallic gates on top of
shallow p-doped heterostructures have a low Schottky barrier,
resulting in leaky and hysteretic behavior, and different
fabrication techniques have to be adopted. The Coulomb
blockade effect in lithographically defined dots in p-type GaAs
heterostructures was first demonstrated by Grbic et al.23 using
local oxidation lithography. The same technique was later
shown to be effective in further confining the carriers and
observing the individual excited energy states in a QD.16

Induced SETs were also fabricated using undoped GaAs
heterostructures and were shown to exhibit Coulomb blockade
effects.24 In spite of this progress, the level of control on
the fabrication of these nanostructures and the understanding
of the role of interactions in hole systems is still far from
complete. In this article, we attempt to improve on this
understanding by realizing time-resolved charge detection of
hole tunneling into a QD fabricated by shallow wet chemical
etching.

II. SAMPLE AND SETUP

Figure 1(a) shows an AFM micrograph of the sample, which
was patterned in the 2DHG by electron beam lithography
followed by shallow wet chemical etching.15 The trenches
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FIG. 1. (Color online) (a) AFM micrograph of the sample
consisting of a QD with an integrated charge read-out QPC. The
dark regions are trenches created on the surface of the heterostructure
by chemical etching. The applied voltages are shown on the same
figure. (b) QD current (blue) and QPC current (green) as a function
of VG2 measured at the temperature of T ≈ 1.2 K. (c) QPC current as a
function of time, showing a few holes tunneling into and out of the QD
over a timescale of 200 μs. The lower current level corresponds to a
state when the dot holds one excess hole. The QPC current was filtered
with a 3 kHz software filter and resampled at a frequency of 14 kHz.
The random variables τin and τout quantify the times it takes for a hole
to tunnel into and out of the dot, respectively. (d) The probability
density function (PDF) obtained from normalized histogram of the
detector current showing two distinct current levels corresponding to
the two charge states of the QD. (e) The histogram of times a hole
needs to tunnel into the QD (blue), tunnel out of the QD (green), and
the event time defined as the sum of two consecutive tunneling in and
out events (red) for a symmetric configuration (�in = �out). The green
curve exactly overlaps with the blue curve. (f) The occupation of the
QD and the number of charge events as the gate voltage is swept over
a Coulomb blockade peak with fits to the Fermi-Dirac distribution
(green curve) and its derivative (red curve), respectively.

seen in Fig. 1(a) are 20 nm deep and locally deplete the
2DHG situated 45 nm below the surface, thereby separating the
2DHG plane into laterally disconnected regions. Each of them
is connected to metallic leads via ohmic contacts. The host
material consists of a C-doped GaAs/AlGaAs heterostructure
grown along the (100) plane.25 Prior to sample fabrication,
the quality of the 2DHG was characterized by standard
magnetotransport measurements at 4.2 K and a hole density
of n = 2.7×1011 cm−2, and a mobility of μ = 60 000 cm2/Vs
were obtained.

The sample consists of a QD together with a nearby QPC.
The measurement setup and the applied bias voltages are also
schematically shown in Fig. 1(a). The dot bias and the QPC
bias are both applied symmetrically. The overall potential of
the QPC (Vqpc) is used to control the electrochemical potential
of the QD, while the plunger gate (PG) is used to tune the QPC
transmission. The in-plane gates G1 and G2 are used to tune
the tunnel coupling between the QD and source (S) and drain
(D), but they also have a significant lever arm on the dot.

III. RESULTS AND DISCUSSION

A. Time-averaged/time-resolved charge detection

Figure 1(b) shows simultaneous measurements of QPC and
QD currents as a function of the voltage applied to the gate
G2 at the temperature T ≈ 1.2 K. As the gate voltage is
increased, the holes are unloaded from the dot one by one.
The dot current shows clear conductance resonances at the
charge degeneracy points, where the charge state of the dot
changes by one elementary charge. This can be clearly seen
as a step of 30 pA in the QPC current (≈ 4%) at the position
of the Coulomb peaks. Note that the average QPC current
decreases with G2 (due to the corresponding lever arm), since
no electrostatic compensation was performed here in order to
avoid activating additional fluctuators in the sample, which
degrade the detector signal. For the remainder of the paper we
will consider the results obtained in a dilution refrigerator with
a base temperature of 100 mK.

When the bandwidth �D of the detector circuit is small
compared to the tunneling rates of the QD, it only responds to
the average charge population of the dot. As �D is increased
to about 3 kHz and the tunneling barriers are tuned sufficiently
opaque, time-resolved charge detection becomes possible. The
detector current then exhibits a two-level fluctuating behavior
as a function of time because holes tunnel into and out of the
dot [shown in Fig. 1(c)]. The two levels on the histogram of
the detector current [Fig. 1(d)] are a result of the two charging
states of the dot. The random variables τin/out quantify the time
it takes for a hole to tunnel into or out of the QD and are used to
calculate the tunneling rates according to �in/out = 〈τin/out〉−1

(angle bracket denotes an ensemble averaging). The latter
can be used to quantify the coupling symmetry of the QD
to the leads by defining the normalized coupling asymmetry
a = (�in − �out)/(�in + �out). The histograms of τin/out and
the event length (τevent = τin + τout) are plotted in Fig. 1(e)
for a symmetric configuration of the QD (a = 0). About 2
million events, accumulated over more than 5 h, were used
to produce these histograms, indicating the stability of the
sample. The exponential distribution of the tunneling rates
motivates the use of the rate equation technique to study the
statistics of the charge transfer. The short-time suppression
of τevent is a consequence of the correlated transport and
sequential tunneling through the QD.6

Figure 1(f) shows the occupation probability of the QD
(extracted from the duty cycle of the detector current) together
with the average number of events (in 1-s time traces) as the
gate voltage is swept over a Coulomb blockade peak. They can
be fitted with a Fermi-Dirac distribution, from which a hole
temperature of Thole ∼ 180 mK is obtained.
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FIG. 2. (Color online) (a) Event rate �event and tunneling rates (b)
�in and (c) �out as a function of the gate voltage and the applied QD
bias, demonstrating half of a Coulomb diamond. All the rates increase
with the dot bias. White arrows indicate the relative position of the
QD electrochemical potential μ0

N with respect to those of source and
drain. (d) In the case of a moderate energy-dependence of barriers,
tunneling into and out of the dot both involves many excited states
and relaxation does not change the qualitative picture.

B. Excited state spectrum

Figure 2(a) shows the event rate as a function of the QD
bias VSD and the gate voltage VG2. Due to a strong energy-
dependence of the tunneling rates, tunneling on the adjacent
Coulomb peaks is either too fast or too slow to be properly
detected. The charging energy of the QD is EC ≈ 2 meV, which
corresponds to a total capacitance of C� ≈ 40 aF. Assuming
a disk-like shape for the dot with C� = 4ε0εrr , where r is the
dot radius and εr = 12.9 for GaAs, this provides an (upper)
estimate of ≈160 nm for the electronic diameter of the dot
and an upper limit of 55 for the number of holes in the QD.
With this diameter, the mean single-particle level spacing can
be calculated from � = πh̄2/m∗

HHA with A = πr2, giving
� ≈ 29 μeV comparable to kBT . The large effective mass
of the holes results in a dense spectrum of confined states
and, therefore, p-type QDs can be considered to be in the
crossover between electron QDs with a discrete and metallic
SETs with a continuous excited state spectrum for the sizes
investigated here. This manifests itself in the fact that it is not
possible to resolve excited states in the diamond measurements
as shown in Fig. 2. Were this resolution possible, we would
expect a stepwise increase of the number of events with the
steps parallel to the edges of the diamond.6 Nevertheless, it
can already be seen in this figure that the number of events
generally increases with increasing QD bias. Note that the
event rate in Fig. 2(a) is not symmetric with applied bias,
presumably due to some tunneling asymmetry of the barriers.

More insight into the role of the dot excitation spectrum
is obtained by looking at Figs. 2(b) and 2(c), where �in and

�out are plotted instead of the number of events. The increase
in �in and �out with VSD can be understood in terms of the
additional available tunneling channels in a system with dense
spectrum. The relative position of the QD electrochemical
potential μ0

N with respect to those of left (μL) and right
(μR) leads are indicated with white arrows. Lines of constant
�in/out are parallel to the edges of the diamonds. In particular,
�in depends only on the difference of the electrochemical
potentials of the source (μS) and the dot μS − μ0

N (for positive
bias μS = μL and μD = μR , while for negative bias μS = μR

and μD = μL). This suggests that the number of available
(excited) states between these two levels is the cause of the
increase in the tunneling rate. Provided that it has enough
energy, a tunneling-in hole can occupy any of these states and
this increases the tunneling rate with bias (see the Appendix
for a simple example in which tunneling rate into the dot
becomes the sum of tunneling-in rates into ground state and
excited state). Similarly, �out depends only on the difference
between the electrochemical potentials of the drain (μD) and
the dot μ0

N − μD , meaning that the number of options for
holes tunneling-out also increases with the bias. For example,
it is possible for a hole in the (N + 1)-hole ground state to
tunnel out and leave the dot in any of the N -hole excited
states. Motivated by these ideas, the level diagram of the dot
is represented in Fig. 2(d) with a dense ladder of excited states
both above and below the ground state transition μ0

N with
an electrochemical potential of μ±m

N (the index m refers to a
transition involving excited states), which contribute to �in and
�out, respectively.

C. Rate equation simulation

To verify the ideas discussed in the previous section we
performed rate equation simulations, for a dot in which both N

and (N + 1)-charge configurations have many excited states.
The occupation probabilities (pN

i and pN+1
j ) of individual

states are calculated in the steady state and the total tunneling-
in/-out rates are obtained from

�out =
∑
ij

�
i←j

N←N+1p
N+1
j

/ ∑
j

pN+1
j

(1)

�in =
∑
ij

�
j←i

N+1←NpN
i

/ ∑
i

pN
i .

The parameters of the model [f̄ (ε) ≡ 1 − f (ε)],

�
i←j

N←N+1 = �Lf̄
(
μL − μ

j−i

N

) + �Rf̄
(
μR − μ

j−i

N

)
�

j←i

N+1←N = �Lf
(
μL − μ

j−i

N

) + �Rf
(
μR − μ

j−i

N

)
,

depend on the gate and the applied bias through the argument of
Fermi distributions f (ε). All the states in the dot are assumed
to be coupled to the leads with the same coupling (�L = �R =
100 Hz). Since we expect our QD to be far from the few-hole
regime, a linear spectrum with a constant mean-level spacing
is assumed: 20 levels with the energy-separation of 100 μeV
are taken into account. A strong energy relaxation (γ = 1 kHz)
to the ground state is assumed for all levels.

The tunneling-in rate �in is shown in Fig. 3(a). It increases
each time an excited-state transition of the (N + 1)-charge
configuration enters the bias window. Had we assumed no
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FIG. 3. (Color online) Rate equation simulation of a dot with a
dense spectrum of 100 μeV equidistant energy levels. �in in (a) and
�out in (b) both increase with the dot bias. The equi-�in lines and
equi-�out lines are parallel to source and drain lines, respectively. (c)
�event. (d) Horizontal cut through �in, �out, and �event in Figs. 2(a)–2(c)
at resonance. (e) Same as described in the legend for Fig. 2(d)
but assuming an exponential energy-dependence of barriers. (f)
Horizontal cut through the measurement data in Figs. 2(a)–2(c) at
resonance as described in the legend of Fig. 2(d).

excited states for the N -charge configuration, �out would stay
constant and the event rate would saturate at the value of the
tunneling-out rate, which would become the bottleneck.

However, since a similar spectrum of excited states is
assumed for the N -charge configuration, �out also increases
with the bias and this simple model is able to qualitatively
reproduce the measurement result, as shown in Fig. 3.
Figure 3(d) shows a horizontal cut through Figs. 3(a)–3(c)
at resonance. The linear increase of the tunneling rates with
bias is a consequence of equal tunnel couplings of individual
states, which is slightly different than the nonlinear increase
of the tunneling rates observed in the measurement [Fig. 3(f)],
but it must be noted that the difference can be easily captured
by assuming an energy-dependence of the tunneling rates as
shown in Fig. 3(e).

D. Counting statistics

Figure 4(a) shows the histogram of the number of events
in a 50-ms time window with symmetric tunneling coupling
(a = 0) of the dot [point A in Fig. 2(a)]. Three distributions,
namely the Poisson distribution, the Gaussian distribution, and
the model of Bagrets-Nazarov26 with two states are plotted in
the same figure. The fact that the model of Bagrets-Nazarov
(BN) matches perfectly to the data indicates that, in spite of
the dense spectrum of the dot and its contribution to transport
(as shown in the previous section), the statistics is dominated
by a two-state Markovian model. This is presumably due to a
strong relaxation in the quantum dot.

The barrier asymmetry a can be tuned in our experiment
by applying asymmetric voltage offsets to the gates G1 and
G2, while keeping their symmetric component constant in
order to stay at the point A of Fig. 2. The Fano factor (F =

FIG. 4. (Color online) (a) Histogram of the number of events
during T = 50 ms at the point A in Fig. 2(a) with symmetric
barriers (a = 0). The blue and green curves show the Poisson and
Gaussian distributions, respectively, calculated using the mean and
variance of the measured data (all these distributions are discrete
and the connecting lines are just guides to the eye). While the
Gaussian distribution fits reasonably well to the histogram, the data
is best described by the Bagrets-Nazarov distribution with the input
parameters �in and �out. (b) The first two normalized cumulants
of the statistical distribution of events as a function of tunneling
barrier asymmetry a, calculated from 100 time traces, each 10 s
long. The blue points show C2/C1 or the Fano factor and the red
points show C3/C1, which is the skewness. The solid lines are the
model predictions. While the Fano factor agrees quite well with the
model the skewness points are scattered much more due to limited
statistics. (c) �in, �out, and �event as a function of the bias voltage on
the QPC. The decrease in �in and increase in �out is most probably
due to a gating effect. (d) Fano factor and skewness as a function
of QPC bias showing that the statistics of electron transport is not
influenced by the emission of energy quanta by the QPC. The dashed
lines show the model predictions discussed in the text augmented by
finite-bandwidth corrections (B.W.C.).31 The red shaded area shows
the onset of the detector signal degradation due to charge fluctuators
in the QPC (Counting was not possible for V bias

QPC < 50 μV).

C2/C1) and the skewness (S = C3/C1) extracted from the
data are plotted as a function of the asymmetry a in Fig. 4(b),
together with the corresponding predictions of the BN model
(Cn is nth cumulant of number of events in a series of 10-s-
long time traces). The agreement of the model with the data
indicates that, again, a two-state Markovian model is sufficient
to describe the observed statistics.

It is not a priori clear whether each event in a given time
trace corresponds to a charge transfer from source to the drain.
In a quantum dot without any excited states in the relevant
energy window, the ratio between the charges tunneled back
to the source to those transferred to the drain is essentially
kBT /VSD, which is 1/40 at the point A in Fig. 2(a). This
has motivated the use of counting experiments as an accurate
tool to measure the current in this weakly coupled regime, in
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which the current itself is too small to be directly measured.12

However, in a quantum dot with a dense spectrum with energy-
dependent tunneling rates, the ratio can be higher. In the
presence of a strong energy-dependence of the tunneling rates,
relaxation (whose rate is denoted by γ ) is crucial to ensure fully
unidirectional transport. While this condition �in/out 	 γ is
presumably satisfied in our case (�in/out 	 �D 	 γ ), with the
detector bandwidth of �D = 3 kHz, this might not be the case
in more strongly coupled regimes.

E. QPC back-action

The power dissipated in and around the QPC is emitted
as photons and phonons close to the QPC and, hence, may
cause back-action on the QD either by increasing the effective
temperature of the leads,27 or by excitation of the QD due
to photon and phonon-assisted tunneling (PAT).28,29 These
PAT effects are usually understood in terms of energy transfer
between the QPC and the electrons/holes in the dot so that
they could overcome the relevant energy barrier (Coulomb
blockade or single-particle level spacing).30 Therefore, they
are characterized by an energy cut-off corresponding to the
mean-level spacing of the dot, below which this energy transfer
does not take place. Identifying the dense spectrum of our
p-type QD as the source of the peculiar bias dependence of the
tunneling rates, it would be interesting to see if the detector
has any back-action on the dot due to PAT and how much it
contributes to the transport and its statistical properties.

Figure 4(c) shows how the variation of the bias on the
detector QPC (V bias

QPC) influences the tunneling rates of the
dot. For small QPC bias (V bias

QPC < 70 μV) detection is not
possible due to low signal-to-noise ratio, while for large
QPC bias (V bias

QPC > 600 μV) many fluctuators in the QPC are
activated and the overall quality of the signal is degraded by
the additional telegraph noise due to these fluctuators. The red
shaded area shows the onset of this degradation. Figure 4(d)
shows the effect of QPC bias on the Fano factor and skewness
of the hole transfer distribution. The agreement between the
measurements and the two-state Markovian BN model (dashed
line) implies that the effect of the QPC on the dot can be
phenomenologically lumped into the tunneling rates �in and
�out. This is in contrast to what is expected from a master
equation calculation, which can be slightly modified to include
the effect of PATs. It is shown in the Appendix using a simple
model that the presence of an excited state generally alters the
statistics obeyed by a dot unless relaxation is faster than both
the tunneling rates and the photoexcitation rate.

Furthermore, while �out shown in Fig. 4(c) increases
monotonically with the QPC bias, �in decreases, suggesting
that the influence of the QPC on the dot is at least partially
a simple gating effect. Considering the close proximity of the
QPC leads and the dot tunneling barriers in Fig. 1(a) and the
equal polarity of the dot and QPC biases, this is not surprising
as most of the applied bias voltage drops over the QPC. As
a result, the height of the source tunneling barrier increases
(decreasing �in) and the height of the drain tunneling barrier
decreases (increasing �out) for positive QPC bias. Moreover,
since a symmetric bias of 700 μV is applied to the dot [point
A in Fig. 2(a)], �out is expected to exhibit a step at a QPC
bias of about 350 μV as the holes can tunnel out to the source

FIG. 5. (Color online) (a, b) First 12 normalized cumulants of
charge transfer as a function of time (mean number of events in
time traces with a given length cut from a very long time trace)
calculated from the data collected at point A in Fig. 2(a) along with
the predictions of BN model, which fits remarkably well to the data.
The amount of statistics decreases for longer time traces causing
the size of error bars to increase. (c, d) First 12 factorial cumulants
(FCs)34 calculated from the normal cumulants. FCs of different order
alternate sign and grow exponentially with time and, therefore, it
is more convenient to follow their trend in logarithmic scale as
shown in Figs. 5(e) and 5(f). No zero-crossing oscillations in FCs are
observed, which is consistent with a two-level Markovian model.34

The white arrows point to the development of faint non-zero-crossing
oscillations appearing in higher-order FCs, probably due to finite
statistics.

lead, while the measurement shows a monotonic increase of
�out. Similar experiments were performed in an off-resonance
configuration and no change in the tunneling rates were
observed for V bias

QPC < 600 μV. Therefore, we conclude that
the relaxation is dominant in our experiment and the results of
Figs. 4(c) and 4(d) are mainly gating effects in the window of
QPC biases investigated. For the other counting measurements,
the QPC bias was kept at 250 μV.

F. Normal versus factorial cumulants

For a closer look at the statistics, we have calculated the first
12 cumulants of the tunneling events and plotted them together
with the predictions of the two-state Markovian BN model in
Figs. 5(a) and 5(b). In general, the finite bandwidth, the limited
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signal-to-noise ratio, and the finite statistics influence the
calculation of the cumulants. While the first two problems can
be, in principle, taken into account by introducing additional
Markovian states into the model,31,32 the finite statistics is
responsible for the error bars in Figs. 5(a) and 5(b). The latter
is calculated from the covariance formula33 〈�Cn�Cm〉 =
m!σ 2mδmnN

−1 + O(N−2). The N in the denominator signifies
the importance of the amount of statistics for a reasonable
accuracy. For a fixed total number of events K (two million
in our case), used to calculate the cumulants as a function
of 〈n〉, the amount of statistics is equal to N = K/ 〈n〉. Also
note that C2 = σ 2 eventually grows linearly with 〈n〉 in the
steady-state and, therefore, the error in the cumulant Cm grows
with 〈n〉(m+1)/2. Overall, a reasonable agreement between
theory and experiment is obtained. Universal oscillations of the
cumulants10 highlight the difference between the distribution
and a Gaussian distribution for which Cn = 0 for n > 2
and provide additional information about the probability
distribution. An interesting piece of information is the position
of the zeros of the generating function (ZGF) in the complex
plane which, according to Abanov et al.,35 is expected to be
on the negative real axis for noninteracting systems. This
is interesting as the strong interactions in p-type QDs may
cause deviations from single-particle physics.16 However, it is
difficult to extract any useful information directly from normal
cumulants, as the poles of the cumulant generating function are
displaced from the real axis by construction. Recently, Kambly
et al.34 proposed the use of factorial cumulants (FCs) for this
purpose as any zero-crossing oscillations in the latter directly
indicate the offset of ZGF from the real axis pointing toward
relevance of interactions. We have calculated the first 12 FCs
from our data, which are shown in Figs. 5(c) and 5(d) and on the
logarithmic scale in Figs. 5(e) and 5(f). Due to the logarithmic
scaling of the FCs, the latter plot is more convenient to follow
the evolution of the results.34 Note that consecutive FCs alter-
nate sign as indicated by red and blue colors. For a two-state
Markovian system, no oscillations in the factorial cumulants
are expected in agreement with the fact that there is no clear
zero-crossing oscillations in the data. This again implies that
the two-level system is a surprisingly good model to describe
the statistical properties of our multilevel QD, presumably due
to the strong relaxation, as explained in the Appendix.

IV. CONCLUSION

We have demonstrated time-averaged as well as time-
resolved charge detection in a p-type GaAs QD. The extracted
tunneling rates suggest the presence of a dense spectrum of
excited states in the dot contributing to transport. The full
counting statistics of the QD is studied and shown to follow the
two-state Markovian BN model in spite of multilevel transport.
This result and the absence of QPC back-action are interpreted
in terms of a strong energy relaxation of holes in the QD, which
also ensures unidirectional transport within the bandwidth of
our measurement.
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APPENDIX

Hidden states are a set of internal states of a system that are
indistinguishable from the perspective of the charge detector.
These could be some two-level systems in the barriers that
affect the rates, some excited energy states within the dot
or even some internal states of the charge detector.31 In this
Appendix, we consider a simple model of the presence of an
excited state in addition to the ground state of the dot, showing
that when the hidden state is traced out, the dot appears to be
obeying non-Markovian statistics. However, in the presence
of strong relaxation, Markovian statistics is recovered. Similar
problems have been considered by Belzig36 and Flindt et al.37

The starting point is the master equation for the three state
system

⎛
⎝ ṗ0

ṗg

ṗe

⎞
⎠ =

⎛
⎜⎝

−�+
in z�

g
out z�e

out

�
g
in −�

g
out − Eeg γ ge

�e
in Eeg −γ ge − �e

out

⎞
⎟⎠

⎛
⎝ p0

pg

pe

⎞
⎠ ,

(A1)

where �±
in = �e

in ± �
g
in and a similar expression for �±

out. γ
ge is

the relaxation rate, Eeg is the rate of photon-assisted excitations
and z is the complex-value counting field34 [pi = pi(z,t) for
i = 0,g,e and standard results are recovered for z = 1]. The
charge detector is sensitive only to the occupation of the dot and
not to the particular state occupied by the carrier. Therefore,
writing p1 = pg + pe, we have

⎛
⎝ ṗ0

ṗ1

ṗe

⎞
⎠ =

⎛
⎜⎝

−�+
in z�

g
out z�−

out

�+
in −�

g
out −�−

out

�e
in Eeg −γ ge − �e

out

⎞
⎟⎠

⎛
⎝p0

p1

pe

⎞
⎠ .

(A2)

Concentrating on the visible subspace by defining

w ≡ v̇ − Mv M ≡
(−�+

in z�
g
out

�+
in −�

g
out

)
, (A3)

where v ≡ ( p0 p1 )T , it can be seen that deviations from
Markovian statistics (w = 0) are caused by the population of
the excited state

w = �−
out

(
z

−1

)
pe. (A4)

This deviation is also proportional to �−
out and it vanishes for

�
g
out = �e

out as the two states become statistically indistinguish-
able. In the limit of γ ge 
 �e

in,E
eg , this population vanishes

(pe → 0) in the steady state, and the Markovian solution is
recovered. This can be seen by using Eq. (A1) to eliminate pe

from the previous equation:

ẇ + (
�e

out + γ ge
)
w = �−

out

(
z�e

in Eeg

−�e
in −Eeg

)
v. (A5)
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In the limit γ ge 
 �e
in,E

eg , the right-hand side can be
neglected and w = 0 solves the resulting equation.

In the opposite limit of γ,E → 0, we expect that the
tunneling-out rate depends on the occupied state of the dot
so that the histogram of �out in Fig. 1(e) is no longer a single
exponential. Generally, the tunneling-out (in) histogram will
be a piecewise linear function on a semi-log plot with the
number of slopes equal to the number of excited states of

N + 1 (N )-charge configuration. Furthermore, the statistics
will exhibit deviations from the two-level Markovian BN
model shown here. We have never observed any deviation
from the single-exponential distribution of the tunneling rates
and we attribute this to the dominant relaxation regime. The
crossover regime in which the relaxation rate is finite but not
enough to restore the Markovian statistics is beyond the scope
of the present manuscript and we leave it as a future project.
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and R. J. Haug, Proc. Natl. Acad. Sci. USA 106, 10116 (2009).

11C. Fricke and F. Hohls, C. Flindt, and Rolf J. Haug, Physica E 42,
848 (2010).

12S. Gustavsson, I. Shorubalko, R. Leturcq, S. Schön, and K. Ensslin,
Appl. Phys. Lett. 92, 152101 (2008).

13R. Winkler, Spin-orbit Coupling Effects in Two Dimensional
Electron and Hole Systems (Springer, Berlin, 2003).

14F. Nichele et al. (to be published).
15Y. Komijani, M. Csontos, I. Shorubalko, T. Ihn, K. Ensslin, Y. Meir,

D. Reuter, and A. D. Wieck, Europhys. Lett. 91, 67010 (2010).
16Y. Komijani, M. Csontos, T. Ihn, K. Ensslin, D. Reuter, and A. D.

Wieck, Europhys. Lett. 84, 57004 (2008).
17D. V. Bulaev and D. Loss, Phys. Rev. Lett. 98, 097202 (2007).

18D. Brunner, B. D. Gerardot, P. A. Dalagarno, G. Wüst, K. Karrai,
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34D. Kambly, C. Flindt, and M. Büttiker, Phys. Rev. B 83, 075432
(2011).

35A. G. Abanov and D. A. Ivanov, Phys. Rev. B 79, 205315 (2009).
36W. Belzig, Phys. Rev. B 71, 161301 (2005).
37C. Flindt, A. Braggio, and T. Novotný, AIP Conf. Proc. 922, 531
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