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We demonstrate an experimental method for measuring quantum state degeneracies in bound state
energy spectra. The technique is based on the general principle of detailed balance and the ability to
perform precise and efficient measurements of energy-dependent tunneling-in and -out rates from a
reservoir. The method is realized using a GaAs=AlGaAs quantum dot allowing for the detection of
time-resolved single-electron tunneling with a precision enhanced by a feedback control. It is thoroughly
tested by tuning orbital and spin degeneracies with electric and magnetic fields. The technique also lends
itself to studying the connection between the ground-state degeneracy and the lifetime of the excited states.
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Degeneracies play an important role in quantum statistics
[1]. They often arise from symmetries of the underlying
system [2,3] and govern the theoretical description of
macroscopic quantum phenomena such as superconduc-
tivity [4] and the quantum Hall effect [5] but also play an
important role for atomic spectra [6]. Theoretical concepts
of topological protection are based on ground-state degen-
eracies [7], and modern schemes to control qubits make use
of tunable degeneracies [8]. While the concept is omni-
present in quantum theory, measuring the degeneracy of
an energy level in a quantum system seems to be less
developed. A familiar way to experimentally demonstrate
the existence of a degeneracy consists in breaking under-
lying symmetries, thereby lifting the degeneracy as in the
Zeeman [9–12] or the Stark effect. Alternative techniques
use selective excitations such as left- or right-circularly
polarized light to distinguish degenerate excitations [13].
We demonstrate an experimental method of measuring the

degeneracy of discrete energy levels alternative to the
techniques mentioned above. The method is based on a
general relation derived from detailed balance andmakes use
of tunneling spectroscopy and our ability to detect individual
tunneling events in real time [14,15]. We overcome previous
accuracy limitations of this technique [16] by implementing
a feedback control. A single few-electron quantum dot in
GaAs serves as the system of choice to test our experimental
method. In this system, ground and excited states are well
studied [9,17–25], and the presence of degeneracies is
established from symmetry-breaking measurement tech-
niques [9,11,17,20,21,26–30]. Our method reliably traces
these degeneracies with great accuracy. Furthermore, the
system combined with our measurement method allows us to
controllably alter the degeneracy of energy levels. The
method of degeneracy detection is very general and can
be directly transferred to other systems where states are
accessible by tunneling. For example, similar considerations

have been used to study degeneracies in a time- and
ensemble-averaged fashion in [31].
Our samples are made from a GaAs=AlGaAs hetero-

structure hosting a two-dimensional electron gas 90 nm
below the surface. As shown in Fig. 1(a), we form a
quantum dot by applying negative voltages to the metallic
top-gate fingers, thereby depleting the electron gas below.
The quantum dot is coupled by tunneling to an electron
reservoir at a temperature of T ≈ 50 mK. The presented
measurements are performed on two different samples, in
different cooldowns and cryostats.
At fixed gate voltages, single electrons tunnel back and

forth between the dot and the reservoir if the addition
energy μN for adding the Nth electron to the quantum dot is
within the thermal energy window of approximately
3.5kT ≈ 15 μeV (k is the Boltzmann constant) around
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FIG. 1. Measurement setup. (a) The surface of the crystal with
Ti=Au top gates in light gray and the two-dimensional electron
gas underneath the dark area. An electron (white circle) tunnels
back and forth between the quantum dot and the reservoir (blue
and green arrows). The dotted line indicates a closed barrier, and
biased gates are plotted in a brighter color than grounded gates.
(b) The current (red arrow) through the charge detector as a
function of time measures the occupation of the quantum dot
[ðN − 1Þ ≈ 1.46 nA, N ≈ 1.21 nA]. The voltage, converted to
energy, applied to the gate plunger gate (black) indicates the
energies E� of the state μN , as indicated in the energy diagram of
the quantum dot-reservoir system in (c).
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the reservoir Fermi energy [32]. The addition energy μN is
the energy difference between the N-electron and the
(N − 1)-electron many-body ground-state energies EN
and EN−1, respectively, of the quantum dot. Each of these
two energies can be degenerate, meaning that a number of
microstates exist sharing the same N and EN . The dot
occupation changes through single-electron tunneling only
between N and N − 1, i.e., by only one electron, owing to
the Coulomb blockade effect characterized by a charging
energy of 1 meV ≫ kT. In our experiment, we investigate
small electron numbers N < 9.
We measure the quantum dot occupation with the current

ICD through a quantum point contact charge detector
[see Fig. 1(a)] coupled capacitively to the dot [14,15].
Time-resolved traces of ICD [see Fig. 1(b)] provide the
statistically distributed waiting times τin for single-electron
tunneling from the reservoir into the dot and τout for
tunneling from the dot into the reservoir. An exponential
speed-up compared to previous measurement schemes
[14,30] allows us to measure these waiting times when
μN is detuned from the Fermi energy EF by much more
than kT, where tunneling in one direction is exponentially
suppressed due to the lack of occupied (empty) states in the
reservoir for tunneling in (out). To speed up the measure-
ment in the fast direction, we implement a feedback
mechanism to switch the level cyclically between E� ¼
EF � E [see Figs. 1(b) and 1(c)]. The waiting time for an
electron to tunnel out at μN ¼ EF þ E gives an instance of
τoutðEÞ. After the detection of the tunneling-out event, we
quickly switch the empty level to μN ¼ EF − E, where we
wait for an electron to tunnel in, thereby measuring an
instance of τinð−EÞ. The occupied level is switched back to
EF þ E, where the cycle restarts. An electronic feedback
triggers the voltage switch between E� when the respective
change in occupation has been detected. Tunneling rates
Γout=inð�EÞ ¼ hτout=inð�EÞi−1 are obtained by averaging
the waiting times over time traces of 10 s.
Measurements of Γout=inðEÞ are shown in Fig. 2 for

tunneling resonances corresponding to filling the first eight
electrons into the quantum dot. We observe that tunneling-
in rates (green) are essentially constant for energies below
resonance, usually with a weak linear energy dependence
superimposed [33]. Above resonance, these rates are
exponentially suppressed according to the Fermi-
distribution function. Conversely, tunneling-out rates (blue)
are essentially constant for energies above resonance (with
a weak linear energy dependence superimposed) and
decrease exponentially for energies below. All measured
curves in Fig. 2 agree with

ΓinðEÞ ¼ WinðEÞfðEÞ;
ΓoutðEÞ ¼ WoutðEÞ½1 − fðEÞ�; ð1Þ

with the Fermi-distribution function fðEÞ and the energy-
dependent tunnel couplings Win=outðEÞ. Fitting the mea-
sured tunneling-in and -out rates to Eqs. (1) with the

functions Win=outðEÞ ¼ W0;in=outð1þ αEÞ and the fitting
parameters W0;in=out and α, we determine the ratios of
tunneling rates on resonance W0;in=W0;out. For the first
eight resonances of the quantum dot, they alternate between
integer ratios 2∶1 and 1∶2, as indicated in Fig. 2.
This result may seem surprising in the light of the time-

reversal symmetry of tunneling. In this view,W0;in ¼ W0;out
is expected, as the tunnel coupling of a given quantum dot
state to the reservoir does not depend on the direction of
tunneling. However, this reasoning is incomplete, because
it neglects possible degeneracies of the initial and final
quantum dot states involved in the tunneling event [16,33].
One finds on the basis of detailed balance that

W0;in

W0;out
¼ pN

pN−1
¼ m

n
; ð2Þ

where m is the degeneracy of the N-electron and n that of
the (N − 1)-electron energy level and pN and pN−1 are the
time-averaged occupation probabilities of the two levels.
Equation (2) is the basic relation that allows us to determine
the degeneracies of the different EN from the measurements
in Fig. 2. It is likely that different orbitally degenerate states
have different tunnel couplings. Nevertheless, Eq. (2) is a
ratio of integers, given only by the degeneracy of the initial
and final states. For weak energy dependence α, this ratio
can be read directly from the saturation values of the
tunneling rates at high and low energies.
For example, the resonance for filling the first electron

in Fig. 2 is a transition between the singly occupied dot
(N ¼ 1) and the empty dot (N − 1 ¼ 0), which has a
nondegenerate energy E0 ¼ 0 leading to n ¼ 1. The
measured ratio W0;in∶W0;out ¼ m∶n ¼ 2∶1 indicates a
twofold degenerate (m ¼ 2) level E1. It is well known
for this system that indeed the E1 state has a twofold spin
degeneracy [34]. The resonance for filling the second
electron is a transition between the twofold degenerate
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FIG. 2. Tunneling rates of the first eight resonances around the
reservoir Fermi energy (zero energy reference). Green and blue
denote the tunneling-in and tunneling-out rate, respectively.
The solid lines are fits to Eq. (1), and the red lines are guides
to the eye indicating the ratioW0;in∶W0;out of the tunnel couplings
to alternate between 2∶1 and 1∶2.
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E1 state (n ¼ 2) and the E2 state. The measured ratio of
W0;in∶W0;out ¼ m∶n ¼ 1∶2 indicates a nondegenerate level
E2. This agrees with the well-known nondegenerate spin-
singlet ground state of the two-electron dot [9,12,26,34,35],
where two electrons with opposite spin occupy the lowest
orbital single-particle state. Along these lines, we interpret
the series of results in Fig. 2 as a sequence of alternating
spin-up and spin-down filling into the quantum dot, where
energy levels EN are spin degenerate for odd N and
nondegenerate for even N up to N ¼ 8. This result fits
well to the expectations in an asymmetric confinement
potential with orbitally nondegenerate single-particle
states [36].
To further test the applicability of Eq. (2), we use an in-

plane magnetic field to lift the spin degeneracy of the one-
electron ground state by the Zeeman effect. The result is
shown in Fig. 3(a) for the tunneling transitions between the
empty and the one-electron dot and in Fig. 3(b) for the
transition between the one- and two-electron ground state.
The ratio of the ground-state transition rates now changed to
W0;in∶W0;out ¼ 1∶1 in both cases as predicted by Eq. (2) for
nondegenerate zero-, one-, and two-electron ground states.
The feedback technique also gives access to excitations

far above the ground-state energies on the scale of kT.
Excited states of the N-electron system can be accessed
[33,37–39], when the dot is initially in the (N − 1)-electron
ground state, and the tunneling-in process takes the system
into an N-electron excited state [see the schematic in

Fig. 4(a)]. An example of such a process is shown in
Fig. 3(a), where a thermally broadened step is seen in the
tunneling-in rate into the empty dot (green) close to
E ¼ −9kT ≈ −ΔEZ, the Zeeman energy, due to the addi-
tional tunneling-in channel provided by the spin excitation.
A pronounced step is observed in the tunneling-out rate at
ΔEZ in Fig. 3(b) due to the same spin excitation of the
one-electron dot, in which the dot remains after the
tunneling-out event.
The analysis of the excited states gives more insight

into the tunnel coupling of the different states to the lead.
We fit the tunneling-in rate in Fig. 3(a) to ½W0;infðEÞ þ
W0;esfðE − EesÞ�½1 − αE� and find W0;in ¼ W0;es ¼ 1∶1.
Analyzing the same excited state in Fig. 3(b), we find
the same ratio for the tunneling-out rates. This result agrees
with the notion that the orbital single-particle wave func-
tions of the two spin states are the same. This precise
[relative error < 14% in Fig. 3(a)] experimental validation
of equal tunneling rates is important for charge-to-spin
conversion by spin-selective readout of the charge state
[37,39–41].
The spin-triplet excitations of the two-electron state

provide the possibility to compare their tunnel rates
quantitatively. In Fig. 3(c), we observe two excitations
in the transition between ðN − 1Þ ¼ 1 and N ¼ 2,
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FIG. 3. Tunneling rates at a finite magnetic field for the first (a)
and second (b) resonance. The Zeeman energy is ΔEZ ¼ gμBB ¼
jEesj with the g factor jgj ¼ 0.44 and the Bohr magneton μB.
The solid blue and green lines are fits to a modification of
Eq. (1) with adding energetically offset tunneling rates. The red
lines are guides to the eye and indicate the ratios 1∶1∶1 for
tunneling into the ground state, tunneling into the Zeeman-split
excited state and tunneling out of the ground state. The ratios
for the first and second electron are W0;out∶W0;in∶WZ

0;in ¼
76.7∶78.5∶75.4 and W0;out∶W0;in∶WZ

0;in ¼ 49.9∶54.7∶59.1, re-
spectively. (c) Excited state spectroscopy of the second electron.
The solid lines are fits toEq. (1)with three (two) energetically offset
tunneling-in (-out) rates. The red lines indicate the ratio 2∶1 for
tunneling into the triplet states T− and T0,W

T−
0;in∶W

T0

0;in ¼ 105∶54.

FIG. 4. Excited state spectroscopy (kT ≈ 3.4 μeV), showing
that the feedback technique allows us to infer degeneracy,
excitation spectrum, and spin states from one quick measurement.
The quantum dot states are driven symmetrically as shown in
(a) to measure the tunneling rates Γin and Γout. The data are
plotted as open squares (closed circles) in (b) for the one-electron
(two-electron) state being driven around the Fermi energy.
N-electron excitations are indicated with red bars and show a
short-lived excitation (no step) for the N ¼ 1 state and long-lived
excitation (step visible) for the N ¼ 2 state. The spectroscopy
around μN¼5 is shown in (c) for the spin-degenerate (top-left
panel, d ¼ 2) and the orbital degenerate (bottom-left panel,
d ¼ 4) ground state in open squares and closed circles, respec-
tively. The right panel shows an enlargement around zero energy
with the tunnel barrier being slightly more open.
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corresponding to the triplet states T0 and T−, where the
tunnel rate of the T− state is twice as large as that of the T0

state. The Tþ excited state is not observed. These obser-
vations are entirely due to the overlap of the spin parts of
initial and final states. The initial state is a statistical
mixture of the one-electron quantum dot ground state with
spin parallel to the magnetic field and any spin orientation
in the reservoir, i.e., of j↓i ⊗ j↓i and j↓i ⊗ j↑i. Its overlap
with the final Tþ state j↑↑i where both spins in the dot are
antiparallel to the field is therefore zero, and the Tþ excited
state is not observed [12,42,43]. In contrast, the T0 final
state is ðj↑↓i þ j↓↑iÞ= ffiffiffi

2
p

, giving a factor of 1=2 in the
squared overlap between initial and final states as compared
to the T− state j↓↓i.
At zero magnetic field, we perform spectroscopy of the

orbital states utilizing the feedback technique. Figure 4(b)
shows an excited state measurement, where an excitation
of the two-electron (one-electron) dot is filled at
−120kTð−460kTÞ ≈ −520 μeV (−2 meV), as seen in the
tunneling-in rate (green). Interestingly, a corresponding
step appears at þ120kT in the tunneling-out rate (blue) in
the two-electron case. Obviously, the two-electron dot
remains in the excited state for a longer time than the
feedback needs to switch the system to higher energy,
which is 1.2 ms in our experiment. Tunneling out from this
excited state contributes to the tunneling-out rate at higher
energies [see Fig. 4(a)]. This attests to the long relaxation
time of this lowest excitation, which is known to be the
spin-triplet state above the spin-singlet ground state [38,39]
requiring a hyperfine-interaction- or spin-orbit-interaction-
mediated spin flip [44,45] for relaxing to the spin-singlet
ground state [34,46–48]. A similar mirror step was not seen
for the excited state in the left panel in Fig. 4(b), because
orbital excitations have lifetimes shorter by many orders of
magnitude than those of spin excitations [34,48]. This
example illustrates the remarkable ability [34,49] of the
excited state measurement scheme to distinguish spin
excitations from orbital excitations, at zero magnetic field.
We observe a variant of the excited state spectroscopy for

the tunneling transition between the four- and the five-
electron quantum dot shown in the top panel in Fig. 4(c). In
addition to the fast decaying (purely orbital) excitation of
the five-electron state visible in the tunneling-in rate (green)
at −120kT ≈ 520 μeV, a pronounced step is observed in
the tunneling-out rate at þ30kT ≈ 130 μeV. We interpret
this step as an excitation of the four-electron (N − 1) dot, in
which the dot remains after the tunneling-out event, and
therefore label it “hole.” An anisotropic two-dimensional
harmonic oscillator [50–52] has a single-particle spectrum
with two excited state orbitals close in energy but far above
the single-particle ground-state orbital. It is plausible that,
in our quantum dot, two electrons occupy the lowest orbital
and that the observed orbital excitation of the four-electron
system is a single-particle excitation into the higher lying of
the nearly-degenerate orbitals.

Next, we turn our attention to the degeneracy measure-
ment of orbitally degenerate states, which in general have
different tunnel coupling constants. The orbital excitation
of the four-electron system is tuned into resonance with the
ground state by a suitable change in gate voltages [24].
The tunneling rates measured in this situation are shown in
the lower panel in Fig. 4(c), where the five-electron
excitation is still seen in the tunneling-in rate, but the
four-electron excitation is resonant with the four-electron
ground state, giving a nontrivial further testing ground for
the application of Eq. (2). The enlargement in the right
panel in Fig. 4(c) shows that the ratio of tunneling rates
W0;in∶W0;out has changed from 2∶1 (open squares;
cf. Fig. 2) to 2∶3 (solid circles).
The 2∶3 ratio of degeneracies of the five- and four-electron

quantum dot is understood within the picture of the single-
particle orbital states of the anisotropic two-dimensional
harmonic oscillator [52]. The single-particle orbital lowest in
energy takes two electrons. If the next higher orbital energy is
twofold degenerate (hence fourfold degenerate in total due to
the spin degeneracy of each orbital), the three-electron
system has a degeneracy of four, the four-electron system
of six, and the five-electron system of four. These numbers
are obtained from counting the number of ways electrons can
be distributed onto the four degenerate single-particle states.
According to Eq. (2), this scenario indeed accounts for the
observed ratio 2∶3 ¼ 4∶6 for the tunneling transition
between the four- and the five-electron dots. Equation (2)
is valid also for degenerate states with different tunnel
coupling, because it is derived only from detailed balance
and the second law of thermodynamics.
The lifetime of the five-electron quantum dot excitation

seen at −120kT in the top left panel in Fig. 4(d) is short
compared to our switching time, if the four-electron ground
state is twofold spin degenerate. After tuning this degen-
eracy to four, the lifetime of the five-electron excitation has
increased as witnessed by the mirror step at þ120kT in the
lower panel in the same figure. We conclude from the long
lifetime that at least one relaxation channel requires a spin
flip [inset in Fig. 4(d)], which means that the four-electron
ground state is a spin-triplet state (Hund’s rules). This
demonstrates the connection between ground-state degen-
eracy and the excitation lifetime and agrees with measure-
ments where parallel spin alignment of the four-electron
ground state has been observed in circular [17,53,54] but
not in elliptical dots [10,55].
In conclusion, we demonstrated ways to precisely

measure and tune the degeneracy of a quantum state, by
accessing its tunneling rates in a large energy window. We
showed how a quick measurement of the tunneling rates
simultaneously provides information about the degeneracy
and spin configuration. It will be interesting to measure the
magnetic field dependence of the lifetimes of excited states
and, in particular, to study the lifetime of the T0 state in
comparison to the lifetime of the T− state. Additionally, the
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feedback loop can be operated in the reverse direction and
thereby realize, for example, a Maxwell demon setting,
which enables cooling of the reservoir using information.
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