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While thermodynamics is a useful tool to describe the driving
of large systems close to equilibrium, fluctuations dominate the
distribution of heat and work in small systems and far from
equilibrium. We study the heat generated by driving a small
system and change the drive parameters to analyze the tran-
sition from a drive leaving the system close to equilibrium to
driving it far from equilibrium. Our system is a quantum dot
in a GaAs/AlGaAs heterostructure hosting a two-dimensional

electron gas. The dot is tunnel-coupled to one part of the two-
dimensional electron gas acting as a heat and particle reservoir.
We use standard rate equations to model the driven dot–reservoir
system and find excellent agreement with the experiment. Ad-
ditionally, we quantify the fluctuations by experimentally test-
ing the theoretical concept of the arrow of time, predicting our
ability to distinguish whether a process goes in the forward or
backward drive direction.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction While equilibrium thermodynamics is
powerful in describing the energy balance in large systems
[1], fluctuations need to be taken into account when driv-
ing small systems away from equilibrium. Over the past two
decades, the understanding of non-equilibrium thermody-
namics has been enhanced by fluctuation theorems such as
the Jarzynski and Crooks relations [2–4], and their quantum
extensions [5–8]. These results reveal that fluctuations in a
system driven arbitrarily far from equilibrium can be related
to a very basic equilibrium quantity, the free energy of the
system. Effectively, they allow us to write statements of the
second law of thermodynamics, for small systems, as equali-
ties rather than inequalities. Experimental tests have verified
these predictions in the classical [9–18] as well as the quan-
tum regime [19, 20]. Although on average, the second law
of thermodynamics is valid, it might be violated in single
realizations of a process in the presence of fluctuations.

We study in detail the transition from equilibrium to
non-equilibrium in the example of dissipation caused by sin-
gle electrons in a semiconductor quantum dot coupled to a
reservoir. A suitable gate voltage can dynamically drive the
single-particle states of the quantum dot with respect to the
Fermi levels of the reservoirs. The dissipation is measured
for every single drive realization, which makes a statistical

analysis of the distribution possible and enables us to char-
acterize the fluctuations. Depending on whether the drive is
slow or fast compared to the tunneling rates between dot and
reservoir, the process can be considered to be equilibrium
or non-equilibrium. We show how the resulting distribution
of dissipation resembles a Gaussian shape near equilibrium,
and we explain the less regular curve and the origin of the
sharp features away from equilibrium. Finally, we use our
experiments to verify a theoretical prediction that, in effect,
quantifies the ability to determine the direction of the arrow
of time, in small systems driven away from equilibrium [21].

2 Experimental In our experiment, we grow a
GaAs/AlGaAs heterostructure to host a two-dimensional
electron system 90 nm below the surface. We define a quan-
tum dot by applying negative voltages to top-gates, as shown
in Fig. 1a, thereby depleting the two-dimensional electron gas
below. The confinement gives rise to a spectrum with typical
single-particle level spacings of the order of 100 �eV. The
Coulomb repulsion between electrons in the quantum dot in-
troduces an additional energy splitting of the order of 1 meV
which prevents a second electron from entering the quantum
dot at the same energy, and allows for studying tunneling pro-
cesses of single electrons between the dot and the reservoir.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 Experimental setup. (a) shows a scanning electron mi-
crograph of a sample with the same lithographic design as was used
for our experiment. An electron, drawn in black, can tunnel back
and forth between the quantum dot and the reservoir “R”. The cur-
rent ICD measures the occupation of the dot. The schematics of the
dot–reservoir system in (b) show how work and heat are defined
in our experiment. The upper panel shows a realization where the
quantum dot is occupied in the beginning, hence ΔQ ≤ A. In the
lower panel, the dot is empty at t = 0, and a tunneling event at small
t > 0 time can lead to |ΔQ| ≈ 2A.

For this, we utilize the current ICD through a nearby channel,
which is sensitive to changes in the occupation of the quan-
tum dot [22, 23]. The quantum dot is tunnel-coupled to one
region of the two-dimensional electron system (labeled “R”
in Fig. 1a) acting as a heat and particle reservoir. The reservoir
is described by a Fermi distribution with a Fermi energy EF

and a temperature T = 40 mK corresponding to an energy of
3.4 �eV. The temperature has been extracted from the width
of a Coulomb resonance, which measures the thermal broad-
ening of the Fermi distribution in the reservoir [24, 25].

The schematic illustrations in Fig. 1b show the lowest-
lying electrochemical potential μ of the quantum dot, to-
gether with the reservoir Fermi distribution. In thermody-
namic equilibrium, if μ � EF, the state at μ is occupied,
while it is empty for μ � EF. If the energy of the dot level is
within an energy window of about 4kT around the reservoir
Fermi energy, the electron is allowed to statistically tunnel
back and forth between the dot and the reservoir, at a tun-
neling rate which we tune to about 50 Hz. Due to the two-
fold spin-degeneracy of the lowest energy level [26, 27], the
tunneling-in rate, Γ , is twice as large as the tunneling-out
rate, Γout = 2Γ [28, 29]. By measuring the tunneling rates in
thermodynamic equilibrium we probe the Fermi function of
the electron reservoir, which provides the energy scale kT in
units of applied gate voltage, as described in Ref. [18].

3 Heat and work in a driven quantum dot An
arbitrary-wave form generator connected to the gate “PG”
shifts the energy of μ with a time-periodic wave-form shown
in green in Fig. 2a. We distinguish two sections in this wave-
form, namely a waiting time of 0.5 s (flat sections) which
allows the quantum dot to reach thermal equilibrium with
the reservoir, and the drive (sections with finite slope). The
drive consists of half a period of a sine with a frequency f and
an amplitude A. Over the course of the entire measurement,
we monitor the occupation (empty = “out”, occupied = “in”)
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Figure 2 Drive realizations. In (a), a full time trace of ten seconds
shows the energy of the quantum dot (green) being driven between
±8 kT , as well as the equilibration periods in between. The charge
detector current (blue) meanwhile monitors the occupation of the
dot. In (b), we plot realizations of the drive for different frequencies,
amplitudes, and tunneling rates.

of the dot with the charge detector current, as shown in blue
in Fig. 2.

In the following, we analyze the dissipation and work
attributed to driving the quantum dot level from μ = −A

to μ = A. Many hundreds of time traces are recorded for a
given parameter setting f, A, Γ . An example of such a time
trace is shown in Fig. 2a. Small energy drifts of the quantum
dot due to its environment are taken care of by readjusting
gate voltages regularly such that the average dot occupation
stays constant. Different realizations of the dot occupation
q(E) for different parameter settings are plotted in Fig. 2b.

If the level is occupied, work ΔW is performed on the
electron in the dot [30, 10] while the level is shifted in energy,
as shown in Fig. 1b. Through an elastic tunneling process,
the electron can leave the dot and relax in the reservoir. The
dissipation ΔQ in the relaxation process equals the energy
difference E(t) − EF between the dot level at the time t of
the tunneling event and the reservoir Fermi energy [30, 10].
With the measured parameter q(E) describing the occupation
(empty = “out” = 0, occupied = “in” = 1) of the quantum dot
at a certain energy E, as obtained from ICD traces, these con-
siderations allow us to determine the total work performed
on the quantum dot and the total dissipation in the reservoir
within one section of the drive by calculating

ΔW =
∫ E=A

E=−A

q(E)dE, (1)
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Figure 3 Distributions of dissipated heat for the upward (forward)
drive direction and drive settings as described in Fig. 2b. The circles
are experimental values, and the solid lines are master-equation
simulations without free parameters.

ΔQ =
∫ E=A

E=−A

(
− dq

dE

)
EdE. (2)

The derivative −dq/dE is non-zero only at energies, where a
tunneling event occurs, and is positive for tunneling-out and
negative for tunneling-in events.

In most cases, the dot is occupied when the drive starts
at μ = −A. When μ is driven up in energy and comes closer
to the reservoir Fermi energy, electron tunneling events be-
tween the dot and the reservoir are observed, as is visible
in the charge detector signal (blue) in Fig. 2. The number
of events is larger for large tunneling rate Γ and slow drive
frequency f .

4 Heat distribution The ensemble of several thou-
sand realizations for each parameter setting allow for a sta-
tistical analysis of the dissipation [17, 31, 18]. The individual
realizations shown in Fig. 2b are typical traces corresponding
to the distributions shown in the four panels of Fig. 3.

In Fig. 3, the distribution shown in panel (i) has an almost
Gaussian shape, as expected for a nearly static drive with
large amplitude but low frequency. After the equilibration
period, at μ = −A, the quantum dot is occupied with high
probability. The low frequency drive and high tunneling rate
keeps the dot–reservoir system close to equilibrium during
the full drive time, leading to the Gaussian shape [17, 31, 16].
Due to the large number of tunneling events, the dissipation
scatters around a mean value of zero, with the variance de-
pending on the temperature [32]. With the dot occupied in
the beginning of the drive, the maximum possible dissipation
is ΔQ = A.

We compare the experimental distribution with a sim-
ple rate equation model [10]. The model is fully defined by
the drive parameters f, A, the tunneling rate Γ , and the con-
version factor between voltage on “PG” to energy. All these
parameters are known from the experiment, as described also
in Ref. [18]. The initial condition of the drive is set by the

probability pin(E = −A) of the quantum dot level μ to be
occupied at the energy E = −A, which can be directly calcu-
lated from the partition function Z(E = −A) of the quantum
dot. The relevant single-particle energies are ε0 = 0 for the
empty dot and ε1,2 = −A for each of the two spin-degenerate
states where an electron occupies the dot. This gives

Z(E = −A) =
∑

i

e− εi
kT = 1 + 2e

A
kT , (3)

pin(E = −A) = 2

Z
e

A
kT , (4)

pout(E = −A) = 1/Z. (5)

We plot the result from the rate equation simulation as solid
lines in Fig. 3 and find excellent agreement to the measured
data.

For the second distribution, shown in panel (ii), the drive
amplitude A and tunneling rate Γ are equal to those in (i), but
the drive frequency f is doubled. This leads to an increased
frequency of measuring positive dissipation: according to
Eq. (2), positive contributions to the dissipation result from
electrons tunneling into the quantum dot at negative energies
(μ < EF), and electrons tunneling out of the quantum dot
at positive energies (μ > EF). Considering that tunneling-in
(-out) only occurs if an occupied (free) state is available in the
reservoir, it becomes clear that positive dissipation is more
probable.

For the distribution shown in panel (iii), the tunneling
rate has been decreased by a factor of three, while the drive
frequency has been kept equal. Effectively, this decreases
the number of tunneling events and drives the dot further
out of equilibrium with respect to the reservoir. As a result,
sharp features appear at ΔQ = 0, A. While the peak at zero
dissipation will be discussed below, let us concentrate first
on the sharp step. A realization with ΔQ ≈ A is shown in
Fig. 2b (iii). The dot is occupied in the beginning and the
electron tunnels out at high energy E ≈ A, leading to dissi-
pation of about A. The tunneling events in-between are close
to each other and therefore do not contribute significantly to
the total dissipation. These realizations are likely because of
the fast drive, but also the shape of the drive: the sinusoidal
form enhances the probability for the electron to tunnel out at
high energy. On the other hand, dissipation ΔQ > A occurs
only in realizations where the dot is empty in the beginning
of the drive, which is suppressed by pin/pout = 2 exp(A/kT ).
Due to the lower drive amplitude in panel (iii) compared to
(i) and (ii), a significant number of events are observed with
large dissipation.

Interestingly, the twofold degeneracy of the dot en-
ergy level also influences the shape of the distribution. The
probabilities for an empty and occupied dot are equal at
E = kT ln(2). Therefore, if the drive is symmetric around
the Fermi energy, the heat distribution has a different shape
for the drive upwards in energy than downwards in energy,
although all other drive parameters are equal, as illustrated
in Ref. [18].

www.pss-b.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4 Arrow of time: the plot shows the likelihood L(F ) that
a specific value ΔW is measured in a realization in the forward
direction. The green, blue and black markers show values obtained
from the experiment as described in Eq. (7) (with the error bars
indicating the statistical error), while the red line shows the theo-
retical prediction according to Eq. (6). The green squares and black
triangles correspond to the data shown in Fig. 3, panels (iii) and
(iv), respectively.

The distribution shown in panel (iv) results from an even
faster drive of f = 10 Hz. In this case, realizations with very
few tunneling events are likely. For example, the peak at zero
dissipation results from realizations like the one shown in
Fig. 2b(iv), where no tunneling event occurs and dq/dE = 0
everywhere. On the other hand, realizations with finite but
small dissipation become unlikely, because they require tun-
neling events to occur at μ ∼ EF, where the drive is steepest.
Hence, the peak in the distribution is a delta-peak. Steps are
visible at ΔQ = ±A, as explained above, due to the sinu-
soidal waveform, which favors tunneling events at the be-
ginning and end of the drive; and due to the unlikely initial
condition required for ΔQ > A. The distribution found here
is very similar to that found in Ref. [18], though it is mea-
sured with a different drive amplitude.

5 Arrow of time The distributions in Fig. 3 show the
presence of fluctuations in the heat dissipation in the dot–
reservoir system which we study here. Using the thermo-
dynamic state variable ΔU describing the change in internal
energy, we can obtain the workΔW = ΔU − ΔQperformed
during any realization of the process, which allows us to study
fluctuations in the work. These fluctuations can be used to
quantify the notion of the arrow of time, as we describe in
the following.

Imagine that we watch a movie of a system undergo-
ing an irreversible, isothermal process, and we must guess
whether the movie is being run in the “forward” or the “back-
ward” direction. In this movie, we observe that an amount
of work ΔW is performed on the system, and the free en-
ergy between the initial and final states of the system is ΔF .
For a macroscopic system, if the inequality ΔW > ΔF is
satisfied then we can state with certainty that the movie is
running forward in time, but if we observe ΔW < ΔF , then

we conclude with equal confidence that the movie is being
run backward in time. In other words, for large systems the
arrow of time points in a direction specified by the second
law of thermodynamics.

With small systems, where fluctuations dominate, this
distinction becomes blurred. Nevertheless, we can quantify
our ability to determine the direction of time’s arrow [21].
Specifically, given values of ΔW and ΔF , the likelihood that
the movie is being run forward is [33, 34]:

L(F ) =
[
1 + e− (ΔW−ΔF )

kT

]−1

. (6)

When |ΔW − ΔF | � kT , this result gives L(F ) ≈ 1 or
L(F ) ≈ 0, in agreement with the macroscopic case. How-
ever, when ΔW is very close to ΔF , L(F ) takes on an in-
termediate value, reflecting the difficulty in distinguishing
between forward and backward in time. We have used our
data to test Eq. (6).

In our experiment, we drive the quantum dot in two di-
rections, upwards (“forward”) and downwards (“reverse”)
in energy, as shown in Fig. 2a. Each cycle of driving thus
contains one realization of forward driving, followed by one
realization of reverse driving. For each realization in the re-
verse direction, we multiply the work by −1, to obtain the
value that we would observe if a movie of the process were
run backward in time; in such a movie, it would appear that
we are observing a realization of the forward process. By
this procedure, from N cycles we obtain 2N values of ΔW ,
all of which putatively represent realizations of the forward
process. Half of these work values are obtained from true re-
alizations of the forward process; the other half are “fakes,”
coming from time-reversed realizations of the reverse pro-
cess.

We binned both the forward (“true”) and the backward
(“fake”) work values, letting nfwd/bwd denote the number of
forward/backward counts in a specified bin ΔW . For each
bin, we then computed the fraction of forward counts:

pfwd(ΔW) = nfwd(ΔW)

nfwd(ΔW) + nbwd(ΔW)
. (7)

This fraction represents the empirical likelihood L(F ) that
a work value ΔW is due to the forward (rather than a back-
ward) realization of the process under study. The free energy
difference has been computed analytically by utilizing the
partition function of the system (Eq. (3)) and the relation
F = −kT log(Z).

In Fig. 4, we plot the theoretical prediction, Eq. (6), as
a solid red line together with the probability pfwd obtained
from experimental data with different drive parameters, but
the same tunnel coupling Γ = 42 Hz. The data collapse onto
a single curve given by Eq. (6), confirming that the form
of this curve depends only on the temperature, and not on
other parameters such as the amplitude and frequency of
driving. The error bar denotes the error due to the finite statis-
tics of few thousand realizations. An additional systematic

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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error occurs due to voltage drifts and the fluctuations in the
electrostatic environment in the quantum dot. However, the
good agreement between data and simulation shown in Fig. 3
suggest the systematic error to be small.

Mathematically, Eq. (6) is essentially a consequence of
Crooks’s fluctuation theorem [3, 4]. Conceptually, however,
it is rather remarkable that the ability to distinguish the direc-
tion of time’s arrow can be quantified by a formula as simple
and universal as Eq. (6).

6 Conclusions We utilize a GaAs/AlGaAs quantum
dot for measuring heat distributions in a small system, where
fluctuations dominate and equilibrium predictions fail. By
driving the quantum dot with different drive parameters, we
show how the distributions of heat dissipation can deviate
largely from the Gaussian form that arises near equilibrium.
We characterize the work fluctuations in terms of the arrow
of time and find that in small systems, the fluctuations blur
the distinction between forward and backward realizations in
a thermally broadened window of values for the work around
the equilibrium free energy.
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