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Abstract. By using a quantum point contact as a charge detector, we show the
measurement of current fluctuations in a semiconductor quantum dot by counting
electrons tunneling through the system one by one. This method gives direct access
to the full counting statistics of current fluctuations. In the sequential tunneling
regime, we show the suppression of the noise compared to its classical Poissonian
value, which is expected due to Coulomb blockade.

1 Introduction

In addition to the mean of the current, current fluctuations are very impor-
tant in order to understand the transport mechanisms in a conductor [1].
In particular, they provide information on the involved charge. Many ex-
periments have been concerned with measuring the shot noise, which is the
variance of the current fluctuations. Not only the variance can be of interest,
but also higher moments of current fluctuations could provide new informa-
tion on the system, as it is widely used in quantum optics for probing photon
entanglement [2]. For electronic systems, the third moment is of particular
interest since it is not affected by the thermal noise, and could be used to
determine the nature of the charge transport at high temperature [3, 4].

For independent particles, current fluctuations are expected to follow a
Poissonian distribution. In the case of a quantum dot (QD) in the sequen-
tial tunneling regime, the noise is suppressed compared to the Poissonian
distribution due to correlations between the electrons tunneling through the
QD [5]: because of Coulomb blockade, an electron occupying the QD blocks
the transport of the next electron. This suppression is maximum when the
QD is symmetrically coupled to the leads, but vanishes for asymmetrically
coupled QDs since the transport is limited by the weakly coupled contact.
Few experiments on vertical quantum dots could measure a suppression of
the noise [6–8], but measurements on lateral quantum dots are difficult due
the very low current level involved.

An alternative way of measuring current fluctuations is to detect directly
the charges traveling through a conductor. This method has been suggested
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Fig. 1. (a) AFM micrograph of the oxide lines defining the nanostructure. The QD
(circle) is connected to two leads S and D, and a nearby QPC is electrostatically
coupled to the QD. Voltages applied on the lateral gates G1, G2 and P allow to
tune respectively the coupling to source (S) and drain (D), and the conductance
through the QPC. A bias voltage V is applied between S and D, and the conductance
through the QPC is measured by applying a constant dc voltage and measuring the
current IQPC. (b) Energy diagram of the QD connected to the leads in the case
where the level in the QD is aligned with the chemical potential in the leads, leading
to equilibrium charge fluctuations in the QD. (c) Energy diagram of the QD in the
case eV/2− εi � kBT , for which electrons tunnel into the QD from the source and
tunnel out of the dot through the drain

by theories known as full counting statistics [9], and has been used since then
as a theoretical tool to calculate current fluctuations in conductors. However,
first attempts to measure the current by counting electrons could not achieve
enough resolution in order to study the statistics of current fluctuations [10–
12]. By using a quantum point contact (QPC) as a charge detector, we show
here the direct measurement of the full distribution of current fluctuations in
a semiconductor quantum dot [13].

2 Experimental Methods

The sample shown in Fig. 1a has been realized by local oxidation of the surface
of a GaAs/AlGaAs heterostructure using an atomic force microscope. The
oxide line obtained by scanning the biased AFM tip on top of the surface
depletes the two-dimensional electron gas situated 34 nm below the surface,
and allows to create high quality nanostructures [14,15]. Our sample consists
in a quantum dot (QD) connected to two leads, source (S) and drain (D),
and a nearby quantum point contact (QPC) capacitively coupled to the QD.
The lateral gates G1 and G2 are used to tune the coupling of the QD to
the leads, while the gate P controls the conductance of the QPC. The mea-
surements have been done in a 3He/4He dilution refrigerator. The electronic
temperature, measured by the Coulomb peak width, is 230mK.
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Fig. 2. (a) Typical time trace of the current measured through the QPC for a
constant bias voltage applied on the QPC. The two levels correspond to zero (N)
and one (N +1) excess electron in the QD. τin is the time it takes for an electron to
tunnel into the QD, and τout the time it takes for an electron to tunnel out of the
QD. (b) Probability density of the times τin and τout. The points are experimental
data, and the lines are fits with (13)

The strong dependence of the conductance of a QPC on the neighbor-
ing electrostatic potential makes it a very sensitive electrometer. A QPC can
detect the charge state of a QD [16]. Time resolved detection of single elec-
trons tunneling in and out of a QD has been used to detect spin states in a
single [17] and double quantum dots [18], and to measure equilibrium charge
fluctuations in a QD connected to a single lead [19, 20]. In these last experi-
ments, the configuration was similar to the one depicted in Fig. 1b, in which
thermal fluctuations induce hopping of electrons back and forth from one
contact to the same contact (the second contact being pinched-off in these
experiments). Here we propose to use the QPC to detect charge fluctuations
in a QD connected symmetrically to two leads S and D. For a sufficiently large
bias voltage applied between the two leads, the only possibility for an electron
to tunnel through the QD is to come from the source contact, and to leave
by the drain contact (see Fig. 1c). In this regime, the charge fluctuations
measured in the QD are directly related to the fluctuations of the current
through the QD, measured by detecting the tunneling of single electrons.

A typical time trace of the current measured through the QPC is shown
in Fig. 2a. Fluctuations of charges in the QD are monitored by this current,
which fluctuates between two states, corresponding to zero (upper states, N)
and one (bottom state, N +1) excess electron in the QD. The trace of Fig. 2a
shows the high signal-to-noise ratio in this set-up, allowing to measure single
tunneling events with a short time resolution.

For a large bias voltage applied between S and D on the QD, a pair of one
step downwards and one step upwards corresponds to one electron tunneling
though the QD. The current through the QD can then be deduced from
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time traces similar to the one of Fig. 2a by counting the number of electron
tunneling into the QD (corresponding to a step N → N + 1, see arrows in
Fig. 2a, given that, due to Coulomb blockade, only one electron can enter
the QD at a time. The same analysis on electrons tunneling out of the QD
gives the same result. The current is simply given by the number of electrons
tunneling through the QD in a given time interval. The bandwidth of the
QPC circuit is 30 kHz, determined by the capacitance of the cables and the
feedback resistor of the I–V converter. This bandwidth limits the current we
can measure by counting electrons to 5 fA, while the lower limit is determined
by the length of the time trace we take.

This way of counting electrons passing through a conductor to measure the
current has been achieved in different configurations only very recently [10–
12]. However, while these experiments were limited to measurement of the
mean current, our measurement shows that we can measure not only the
mean current, but also its fluctuations in time. In particular, we can deduce
the current noise, which has been widely used to characterize mesoscopic
systems [1]. But we can go even further, and measure the full distribution
function of the current fluctuations.

3 Counting Statistics
in the Sequential Tunneling Regime

The full counting statistics has been calculated for a QD in the sequential
tunneling regime, and in this section we summarize the main results of [21]
adapted to our way of counting events. The evolution of the occupancy of
the QD, with 0 or 1 excess electron, can be describe by the rate equation:

d
dt

(
0
1

)
=

(
−Γin Γout
Γin −Γout

)(
0
1

)
, (1)

with

Γin = gsΓLfL(εi) + gsΓLfL(εi) (2)
and Γout = ΓL (1 − fL(εi)) + ΓR (1 − fR(εi)) , (3)

where fL and fR are the Fermi distributions in the left and right leads, εi

is the energy of the level in the quantum dot, and gs is the spin degeneracy
of this level. These rates can be simplified in the case of large bias voltage,
|±eV/2−εi| � kBT , for which the electron tunnels into the QD only through
a single lead, the source (being either left or right lead, depending on the sign
of the bias voltage), and tunnels out of the QD through the other contact,
the drain:

Γin = gsΓL(R) = Γs and Γout = ΓR(L) = ΓD . (4)
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Here, Γs and ΓD are effective tunneling rates which take into account possible
spin degeneracy. Γs and ΓD are assumed to be energy independent. In this
limit, the model can be extended to the transport through multiple levels in
the QD, the effective tunneling rates being the sum of the tunneling rates
through individual levels.

To perform the counting statistics, we need to introduce a counting
field eiχ in the rate equation. In our case, we count electrons tunneling into
the QD, and the matrix can be written:

M(χ) =
(

−Γin Γout
Γineiχ −Γout

)
. (5)

The distribution function of the number n of electrons tunneling through the
quantum dot during a time t0 can be calculated with the cumulant-generating
function S(χ):

P (n) =
∫ π

−π

dχ

2π
e−S(χ)−nχ , (6)

where S(χ) is given by the lowest eigenvalue of M(χ), λ0(χ):

S(χ) = −λ0(χ)t0 =
t0
2

[
Γs + ΓD −

√
(Γs − ΓD)2 + 4ΓsΓDe−iχ

]
. (7)

From the distribution function P (n), one can calculate all central mo-
ments characterizing the current fluctuations. The three first central mo-
ments μi, in which we are interested in the following, coincide with the cu-
mulants Ci. They can then be deduced from the cumulant-generating func-
tion. The mean current is given by the mean, or the first cumulant C1, of the
distribution:

I =
ie

t0
C1 =

ie

t0

(
dS

dχ

)

χ=0

= −e
ΓsΓD

Γs + ΓD
. (8)

The symmetrized shot noise is given by the variance, or the second cu-
mulant C2, of the distribution:

SI =
2e2

t0
C2 =

2e2

t0

(
d2S

dχ2

)

χ=0

, (9)

. . . from which we can calculate the Fano factor:

F2 =
SI

2eI
=

C2

iC1
=

Γ 2
s + Γ 2

D

(Γs + ΓD)2
=

1
2

(
1 + a2

)
, (10)

where a = (Γs −ΓD)/(Γs +ΓD) is the asymmetry of the coupling. This result
recovers the earlier calculations for the shot noise in a quantum dot [5], and
shows the reduction of the noise by a factor 1/2 for a QD symmetrically
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coupled to the leads, while the Poissonian limit, F2 = 1, is reached for an
asymmetrically coupled QD.

Finally we are also interested in the third central moment, or third cu-
mulant C3, of the fluctuations, which characterizes the asymmetry of the
distribution (skewness):

S3
I =

ie3

t0
C3 =

ie3

t0

(
d3S

dχ3

)

χ=0

, (11)

which can also be characterized by its normalized value:

F3 =
C3

C1
=

Γ 4
s − 2Γ 3

s ΓD + 6Γ 2
s Γ 2

D − 2ΓsΓ
3
D + Γ 4

D

(Γs + ΓD)4
=

1
4

(
1 + 3a4

)
. (12)

This results shows the strong reduction of the third moment, by a factor 1/4,
for a symmetrically coupled QD, and the Poissonian limit, F3 = 1, for an
asymmetrically coupled quantum dot.

4 Determination of the Individual Tunneling Rates

In order to make a quantitative comparison of the experimental results with
the theory, it is important to determine the tunneling rates Γs and ΓD,
which are the only parameters of our model. In the time trace of Fig. 2a,
the time τin represents the time an electron needs to tunnel into the QD,
while the time τout is the time an electron needs to tunnel out of the QD.
In the case where tunneling events are uncorrelated, the probability densities
are expected to follow exponential functions:

Pτin ∝ Γin exp(−Γinτin) and Pτout ∝ Γout exp(−Γoutτout) . (13)

Figure 2b shows that these relations are well followed experimentally, proving
that the tunneling events are uncorrelated. The tunneling rates Γin and Γout
can be determined either by fitting the data in Fig. 2b with (13), or by taking
the averages Γin = 1/〈τin〉 and Γout = 1/〈τout〉.

At large bias voltage, | ± eV/2 − εi| � kBT , the only possibility for
an electron to tunnel in is to come from the source contact, and the only
possibility to tunnel out is to go to the drain contact (see Fig. 1c). In this
case, the tunneling rates from source and to drain can be directly calculated
from the tunneling times considering that Γs = Γin and ΓD = Γout. As we
emphasized in the previous section, this model can be extended to several
levels.

5 Distribution Function of Current Fluctuations

In order to determine the distribution function of current fluctuations from
the measurement, a time trace of length T = 0.5 s is divided into intervalles
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of length t0, during which we count the number n of electrons tunneling
into the QD. The distribution function of the number of events in this time
intervalle t0 is shown in Fig. 3a, and characterizes directly the current fluctu-
ations. In order to compare the experimental result with the theory presented
in Sect. 3, the tunneling rates are first determined as explained in Sect. 4, and
then included in (7) and (6) in order to determine the probability distribu-
tion Pt0(n). The result is shown as a plain line in Fig. 3a. The agreement with
the experimental data is striking, knowing that no adjustable parameters are
used.

From the time traces, we can also calculate the central moments given by
μ = 〈n〉 and μi = 〈ni − 〈n〉i〉. For i ≤ 3, the central moments are equal to
the cumulants. For this reason we will use the same notation Ci for both, but
experimentally only the central moments are calculated.

An important parameter for the analysis is the time t0 in which we count
the events. In Fig. 3b we show the values of the second and third central mo-
ments determined for several values of t0. For small time t0 � 1/Γs, 1/ΓD,
we expect to measure either 0 or 1 event, meaning that the resulting distri-
bution will tend to a Bernoulli distribution, with a probability of measuring
one event being:

p =
〈ntotal〉t0

T
= t0

ΓsΓD

Γs + ΓD
. (14)

〈ntotal〉 is the average total number of events expected within the time T .
The central moments of this Bernoulli distribution are:

C1 = p , C2 = p(1 − p) and C3 = p(1 − p)(1 − 2p) . (15)

Since p tends to 0 when t0 tends to zero, the normalized central moments
C2/C1 = (1 − p) and C3/C1 = (1 − p)(1 − 2p) both tend to 1 when t0
tends to zero in Fig. 3b. For this reason it is important to choose a time
t0 > 1/Γs, 1/ΓD, corresponding to an average number of events measured
during t0 larger than one, 〈n〉 > 1. For all analysis, 〈n〉 is kept close to 3.

6 Coulomb Diamonds Measured by Counting Electrons

By changing the gate voltage VG1 and the bias voltage V , we can map out the
charge stability diagram of the QD (so called Coulomb diamonds). We have
measured the distribution function for each point (V ,VG1), and the three first
central moments are shown in Fig. 4. We point out that our method gives
the current through the QD only under the condition | ± eV/2 − εi| � kBT ,
i.e., far from the conduction edges of the Coulomb diamonds. In particular,
the enhancement of C1 along the edges of the Coulomb diamonds is due to
equilibrium fluctuation of charges between the QD and the leads (see Fig. 1b)
and is not related to the current.
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Fig. 3. (a) Distribution function of the number of electrons tunneling into the QD
during a time t0, obtained for VG1 = −44 mV and at large bias voltage. In this
configuration, the tunneling rates are Γs = 1748 Hz and ΓD = 1449 Hz, determined
as described in Sect. 4. The red line is calculated from (6) with the same tunneling
rates. (b) Normalized central moments determined for different values of the time t0,
represented in the x-axis by the average number of event measured during the
time t0, 〈n〉 = t0ΓsΓD/(Γs + ΓD). The horizontal lines are the expected values

Figure 4a is very similar to conventional Coulomb diamonds measured by
transport in quantum dots, and show well resolved excited states. However,
the currents measured here are lower than 1 fA, and are well below what could
be achieved with any conventional current measurement. The second central
moment shows features that are very similar to the mean, and we have shown
that excited states can also be resolved [13, 22], as it has been also observed
for noise measurements in QDs formed in carbon nanotubes [23].

In most of the regions, the central moments correspond to a sub-Poissonian
noise, with C2/C1 < 1 and C3/C1 < 1. This reduction of the noise is charac-
teristic of a quantum dot in the Coulomb blockade regime, and is compatible
with the model of sequential tunneling transport through a single level, or
through multiple independent levels. This situation is however not true in the
region encircled in Figs. 4b and 4c, corresponding to the chemical potential
of one lead being aligned with the chemical potential in the dot (eV/2 = εi).
In this region, the noise is clearly super-Poissonian, with C2/C1 > 1 and
C3/C1 > 1. This situation is of great interest since it corresponds to bunching
of electrons, which is not expected for the transport of independent fermions.
It is also not expected for interacting electrons in the model of sequential
tunneling presented in Sect. 3, which can be extended to the situation where
eV/2 = εi. Using an extended model, we can show that this bunching is due
to transport through two states with very different tunneling rates, given that
the excited state has a long relaxation time [22].



Counting Statistics in a Quantum Dot 39

Fig. 4. Measurement of the charge stability diagram of the QD as a function of
the voltage on gate G1 (used as plunger gate) and the bias voltage V . (a) First
central moment, proportional to the mean current; (b) normalized second central
moment, which is the Fano factor of the shot noise; (c) normalized third central
moment. The gray (green online) vertical bar in (a) represents the range over which
the analysis of Fig. 5 is done

7 Counting Statistics and Sub-Poissonian Noise

Equations (10) and (12) show that the second and third normalized cu-
mulants depend on the tunneling rates only through the asymmetry a =
(Γs −ΓD)/(Γs + ΓD). To further check how the theory applies to our system,
we have measured the distribution function for different values of the asym-
metry a. Changing the asymmetry is achieved by changing the voltage on the
gate G1: in addition to acting as a plunger gate and changing the number of
electrons in the QD, as shown in Fig. 4, this gate also modifies the coupling of
the source lead. This is shown in particular following the gray (green online)
vertical bar in Fig. 4a, for which the asymmetry changes from −0.5 to 1, as
shown in the inset of Fig. 5.

In Fig. 5, the second and third central moments are plotted as a function
of VG1 and a. To increase the resolution, each data point correspond to an
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Fig. 5. (a,b) Second and third normalized central moments as a function of the
gate voltage VG1. (c,d) Same data as a function of the asymmetry of the tunneling
rates. The points are experimental data, averaged over several traces in a bias
voltage window of 1.5 < V < 3 mV. The lines are the theoretical predictions given
by (10) and (12). Inset: asymmetry of the tunneling rates a = (Γs −ΓD)/(Γs + ΓD)
vs. the gate voltage VG1

average over 50 time traces at a given gate voltage VG1 and in a bias window
1.5 < V < 3mV, for which a does not change. We have plotted in Figs. 5c
and 5d the theoretical predictions for the cumulants given by (10) and (12).
Here again, the agreement between experiment and theory is very good, given
that there is no adjustable parameter [13].

8 Equilibrium Charge Fluctuations

As pointed out before, the measurement of charge fluctuations in the QD
are equivalent to current fluctuations only at large bias voltage, i.e., | ±
eV/2 − εi| � kBT . This condition is shown in Fig. 6a presenting the central
moments as a function of the bias voltage for a fixed gate voltage. While the
equivalence between charge and current fluctuations is not valid at small bias
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Fig. 6. (a) Central moments measured as a function of the bias voltage V for a
fixed gate voltage VG1 = −2 mV. The gray region represents the region where the
condition | ± eV/2− εi| � kBT is not valid, and the charge fluctuations in the QD
are not directly related to the current fluctuations through the QD. (b) Second
and third normalized central moments in the same conditions. Lines are given
by the theory of Sect. 3 extended to take into account equilibrium fluctuations.
(c) Distribution function of the charge fluctuations at V = 0.6 mV, corresponding
to the scheme in the inset. In this case, the chemical potential of the source lead
is aligned with the chemical potential of the QD, and the equilibrium fluctuations
dominate the charge fluctuations. The effective tunneling rates used for the fit are
Γin = 7800 Hz and Γout = 7900 Hz. (d) Distribution function at large bias voltage,
resulting from an averaging of data at large bias voltage 2.5 < V < 3mV. The
effective tunneling rates used for the fit are Γin = Γs = 19500 Hz and Γout = ΓD =
1300 Hz

voltage (gray regions in Fig. 6a), the theory of counting statistics presented in
Sect. 3 can still be applied in this case. Taking into account the full expression
for the tunneling rates in (2) and (3), including the Fermi distributions in
the leads, we can calculate the distribution function of charge fluctuations in
the QD (see Fig. 6b).

Qualitatively, the strong reduction of the second and third normalized
moments at the conduction edge observed in Fig. 6b can be understood as
follows. For eV/2 ≈ εi, the effective tunneling rates are functions of the value
of the Fermi distribution at εi. When increasing the bias voltage, this value
changes from 0 to 1, and the effective tunneling rate of the left lead (i.e.,
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ΓLfL(εi) in (2)) changes from 0 to ΓL. Considering the tunneling rate of
the right lead constant in this region, and with the condition ΓR � ΓL, the
asymmetry of the coupling will then change continuously from −1 to 0 and 1,
giving this strong reduction of the normalized central moments to 1/2 and 1/4
when the asymmetry is close to zero. This effect is similar to the suppression
of the noise in vertical quantum dots near the conduction edges [6–8].

9 Conclusion

Using a quantum point contact as a charge detector, we have measured the
charge fluctuations in a quantum dot at large bias voltage. In this regime,
the charge fluctuations are directly related to current fluctuations in the QD.
This method allows to measure current and noise levels that could not be
reached with conventional current measurements, and is of great interest in
order to measure the shot noise in lateral semiconductor quantum dots. In
addition to the mean current and the shot noise, this method gives direct
access to the distribution function of current fluctuations, known as the full
counting statistics.
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