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Ultranarrow ionization resonances in a quantum dot under broadband excitation
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Semiconductor quantum dots driven by the broadband radiation fields of nearby quantum point contacts provide
an interesting setting for probing dynamics in driven quantum systems at the nanoscale. We report on real-time
charge-sensing measurements of the dot occupation, which reveal sharp resonances in the ionization rate as a
function of gate voltage and applied magnetic field. Despite the broadband nature of excitation, the resonance
widths are much smaller than the scale of thermal broadening. We show that such resonant enhancement of
ionization is not accounted for by conventional approaches relying on elastic scattering processes, but can be
explained via a mechanism based on a bottleneck process that is relieved near excited state level crossings. The
experiment thus reveals a regime of a strongly driven quantum dynamics in few-electron systems. The theoretical
results are in good agreement with observations.
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Semiconductor quantum dots with proximal quantum point
contacts (QPCs) are versatile systems in which a wealth of
quantum dynamical phenomena can be realized and probed
[1]. In this work, we employ such a system to investigate ion-
ization in a nanoscale artificial atom (a double quantum dot),
using the QPC in a dual capacity as both a broadband emitter
[2–4] and as a sensitive time-resolved charge detector [5–10].

Ionization is the process through which a bound electron
in a quantum system is ejected to the continuum. Typically,
ionization is a threshold process, turning on sharply when
the quantum of energy in the excitation source exceeds the
electronic binding energy. Additional structure in the above-
threshold ionization rate may also appear at particular values
of the excitation energy due to the presence of quasibound
excited states (resonances). Such resonances are widely seen
in atomic [11,12], molecular [13], and nanoscale solid state
systems [14,15]. However, when the excitation source has a
broad power spectrum, all sharp features of the ionization
spectrum are expected to be smeared out.

In contrast to the picture above, in our experiment we
find sharp resonances in the ionization rate as a function of
gate voltages and external magnetic field. We attribute these
features to pairs of excited states that are swept through level
crossings when the external fields are varied. Strikingly, even
though the radiation is broadband, the observed linewidths are
very narrow: Converting to an energy scale, we estimate the
narrowest lines to be significantly narrower than the thermal
broadening kBT of electron energies in the leads [16,17].

We stress that the sharp resonances observed in our
experiment are of a very different nature from those known,
e.g., in resonant tunneling in double dots (cf. Ref. [17]). In
our case, resonances appear in a photon-assisted inelastic
transport regime, when pairs of excitation energies become
degenerate; they do not require an absolute alignment of
levels in the two dots, and remain sharp even for a broadband
distribution of photon energies. Furthermore, the observed
resonant enhancement of ionization is not accounted for by
models relying on perturbative scattering through the excited

states. As discussed in greater detail below, such models
predict, quite generally, ionization rates which are independent
of level detuning.

To explain the phenomenon, we argue that the resonances
arise from a new mechanism, which relies on a bottleneck
process that is relieved near the level crossing [Fig. 1(a)]. The
essential ingredients of the model are the existence of a short-
lived excited state with strong tunnel coupling to a reservoir,
and another state, which is strongly coupled to the ground state
by microwave excitation from the QPC. Coupling between
these states near a level crossing eliminates a bottleneck for
ionization, resulting in a sharp enhancement of the electron
escape rate. Crucially, the resonances appear only when the
interlevel transitions are strongly driven, near saturation. This
is consistent with the observed power dependence of the
experimental traces (see below).

As illustrated in Figs. 1(b) and 1(c), electronic transitions
are triggered by nonequilibrium fluctuations emitted from
the voltage-biased QPC [18,19], leading to ionization of the
DQD system which we detect in real time by monitoring
the conductance of the same QPC [20]. To bring the system
into the regime where controlled ionization occurs and where
the ionization rate can be measured, we reduce the tunnel
couplings between the QDs and source and drain leads to a few
kHz. This ensures that the electron dwell times on and off the
QDs are longer than the time resolution of the detector (τdet ∼
50 μs), thus enabling real-time counting of tunneling events.

In Fig. 2(a), we plot the count rate of electrons tunneling
into and out of the dot as a function of the potential μ2 of
dot 2 relative to that of the drain lead, measured for several
values of VQPC. The peak at μ2 = 0 is due to equilibrium
tunneling back and forth between dot 2 and the drain, with
the peak height determined by the tunnel coupling and the
peak width 3.5kBT set by the temperature T = 90 mK in
the lead [21]. For |μ2| � kBT , equilibrium fluctuations are
suppressed. However, fluctuations in the QPC current may
also drive inelastic transitions in the DQD when the energy
eVQPC supplied by the QPC voltage bias exceeds the required
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FIG. 1. (Color online) Resonant enhancement of ionization at a
level crossing. (a) Broadband radiation from a QPC strongly couples
the ground state |0〉 to an excited state |1〉. A bottleneck occurs
because electron escape to the leads must take place through a
different excited state, |2〉. Near the level crossing, the states |1〉 and
|2〉 hybridize to form new states |1′〉 and |2′〉 [Eq. (3)]. Both states
couple to the leads, thus relieving the bottleneck. (b) AFM image of
the sample. The structure consists of two quantum dots (marked by 1
and 2) strongly coupled to a sensor/emitter QPC. Each QD contains a
few tens of electrons. (c) Schematic showing how the model in panel
(a) arises in a DQD. The many-body excited states |1〉 and |2〉 are
distributed in both dots, with |2〉 localized mostly in dot 2 offering
the primary coupling to the leads.

excitation energy [3,20], giving rise to the broad ionization
shoulder seen in Fig. 2(a) for large values of VQPC.

Note that the height of the shoulder is the only feature
in Fig. 2(a) that depends on VQPC. Neither the width of
the shoulder, corresponding to the excitation energy ε2 =
180 μeV [see Fig. 1(c)], nor the shape of the equilibrium peak
at μ2 = 0, are influenced by VQPC. Furthermore, the shoulder
only appears when eVQPC is larger than ε2, consistent with the
emission spectrum of the QPC [2]. In Appendix B we show
that only the rate for tunneling out of the QD depends on VQPC,
thus confirming that the increased count rate originates from
ionization by radiation emitted by the QPC.

Using this method for measuring the ionization rate, we now
study the rich phenomena that emerge when the excited states
of the DQD are tuned by perpendicular (out of plane) magnetic
field B and gate voltages. Figure 2(b) shows the electron count
rate versus magnetic field and μ2. Similar to Fig. 2(a), the
bright vertical feature indicating strong tunneling for μ2 ≈ 0
arises from equilibrium fluctuations between dot 2 and the
drain contact, while features at μ2 < 0 (to the right) indicate
inelastic ionization processes. At B = 0, the ionization rate is
low, displaying only a weak shoulder of enhanced tunneling.
At other values of B, however, sharp peaks appear indicating
a resonant enhancement of ionization.
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FIG. 2. (Color online) Ionization measurements of a double
quantum dot. (a) Number of electrons tunneling in and out of the
dot per second, measured as a function of the electrostatic potential
of dot 2 (μ2), relative to the Fermi energy of the drain, for different
VQPC. The data is taken at B = 0 T, with the potential of dot 1
fixed at μ1 = −500 μeV (the values μ1,2 refer to the ground state
levels and are obtained from the known capacitive lever arms of the
gates [17]). (b) Count rate versus μ2 and magnetic field, measured
at VQPC = 350 μV and μ1 = −400 μeV, with dot 1 containing one
more electron than in panel (a). The region μ2 < 0 exhibits sharp
resonances as a function of magnetic field. (c) Ionization rate as a
function of magnetic field and dot potential μ1, with μ2 = −90 μeV.

It is important to point out that resonances occur when
the excitation energies in the two dots are equal, ε1 = ε2,
irrespective of the absolute alignment of the levels. Thus these
features generally would not show up as tunneling resonances
in elastic transport through the dots.

The results shown in Fig. 2(b) are surprising, as both the
widths of the resonances (as low as a few mT) and their
separations involve magnetic field scales that are much smaller
than the fields associated with a flux quantum threading either
the ring enclosed by the QDs (120 mT) or one of the QDs
(several hundred mT) [22]. Two features in Fig. 2(b) are
particularly illuminating. First, the magnetic field strongly
affects the ionization rate within the inelastic shoulder, while
having only a weak effect on the shoulder extent [marked
by a dashed white line in Fig. 2(b)]. This is consistent with
the schematic in Fig. 1(c), provided that the energy level ε2

depends only weakly on B. Second, the equilibrium-tunneling
peak at μ2 = 0 displays almost no B-field dependence. Thus,
the resonant peaks in ionization cannot be explained by a
B-field-induced modulation of the tunnel coupling between a
single QD level and the lead.

Further insight into the origin of the resonances can be
obtained by tuning the gate voltages, which alters the confining
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FIG. 3. (Color online) Ionization resonances as a function of
magnetic field and dot potential μ1, measured for a different charge
configuration than in Fig. 2. Many of the resonant features are
significantly narrower than the thermal broadening of the electrons
in the leads, as indicated by the scale bar in the lower-right corner
of the figure. The conversion factor between energy and B field is
0.8 meV/T.

potential of the QDs and changes their excitation spectra. As
shown in Fig. 2(c), upon sweeping both μ1 and the magnetic
field, different resonances behave essentially independently
from each other: Some resonances shift strongly with μ1, while
others shift weakly. Interestingly, two of the resonances cross
near B = ±115 mT, displaying no signatures of an avoided
crossing (see Appendix C). Figure 3 shows the results of a
similar measurement, this time obtained with one electron
removed from dot 1. Individual resonances shift with B

field and μ1 in a manner qualitatively similar to that of the
resonances in Fig. 2(c), but because of a larger number of
resonances, the overall picture is more complex. We note
that the nonequidistant spacing of the resonances and their
B-field dependence make them conceptually different from
the phonon absorption reported in Ref. [23]. The observed
response of the resonances to μ1 and the reshuffling of
resonances upon recharging dot 1 suggest that the resonant
features arise from excited states in both dots. An example
of an energy level configuration leading to such a pattern of
resonances is discussed in Appendix E.

How narrow are the resonances? The narrowest peaks in
Fig. 3 have a full width at half maximum (FWHM) of about
3 mT, which converted to energy gives an upper bound of
2.4 μeV (see Appendix D). This is substantially lower than the
width of the thermally broadened peak in Fig. 2(a), which has
a FWHM of 3.5kBT = 27 μeV. To illustrate this comparison,
we draw a scale bar in Fig. 3 that corresponds to the FWHM
of the thermally broadened peak.

Below we show that ultranarrow resonances can be
understood within the simple model depicted schematically
in Fig. 1(a). Before proceeding, it is important to point out
that a simple perturbative calculation of the ionization rate
does not account for the sharp resonances when excited
states are nearly degenerate. Formally, this “sum rule” is
illustrated as follows. Consider three levels, |0〉, |1〉, and
|2〉, corresponding to the DQD ground state and two excited
states. The state of the system |ψ(t)〉 evolves according to

[i d
dt

− H0]|ψ〉 = V (t)|ψ〉, with

H0 =
(

E0 0
0 H12

)
, V (t) = α(t)(|ϕ12〉〈0| + H.c.). (1)

Here |ϕ12〉 = C1|1〉 + C2|2〉, with |C1|2 + |C2|2 = 1, and H12
is a 2 × 2 (non-Hermitian) Hamiltonian accounting for the
excited state energies, couplings, and decay rates to the leads
(via imaginary level shifts). Broadband radiation is described
by α(t)α(t ′) = W0 δ(t − t ′).

Assuming the system is initialized in the state |0〉
at time t = 0 and setting E0 = 0, we expand |ψ(t)〉 as
|ψ(t)〉 = |0〉 + ∫ ∞

0 dt ′G0(t − t ′)V (t ′)|0〉 + · · · , with G0(t −
t ′) = −ie−iH0(t−t ′) θ (t − t ′). Keeping terms up to second order
in V (t), and averaging over all realizations of the broadband
noise, the ionization rate 	(t) = − d

dt
ln 〈ψ |ψ〉 is given by

	(t) = W0[1 − 〈ϕ12|eiH†
12t e−iH12t |ϕ12〉] (in the regime W0t 	

1 where the perturbative approach is valid). For times longer
than the intrinsic excited state lifetimes, the decay rate
approaches a constant value 	̄ = W0, independent of the
details of H12.

Consistency of the approach requires that the excited
dot state populations must remain small, implying that the
excitation must be weak compared with the smallest escape
rate from the excited states. In this case the ionization rate
is controlled by coupling of the ground state to the excited
states, which, under broadband excitation, is not sensitive to
energy level detunings. Thus the ionization resonances are not
captured in this approach.

The bottleneck effect responsible for the ionization reso-
nances appears when we consider the population dynamics
of the three-level system introduced above. We illustrate the
effect with a minimal model in which the broadband noise
V (t) primarily couples the ground state and one of the excited
states, |ϕ12〉 = |1〉 in Eq. (1), while electron escape occurs
from the other state, |2〉. Dynamics within the excited state
subspace are described by

H12 =
(

ε1 
/2

/2 ε2 − iγ /2

)
, (2)

where 
 describes the coupling between excited states |1〉
and |2〉, with energies ε1 and ε2, and γ is the escape rate to
continuum.

This model describes the generic situation for our system,
in which various states typically have very different character-
istics.

For simplicity, we have set the direct excitation rate to state
|2〉 to zero. More generally, resonances appear as long as states
|1〉 and |2〉 couple differently to the excitation source and to
the leads.

We investigate the behavior near level crossing δε =
ε1 − ε2 ≈ 0, taking into account the fact that the weak tunnel
coupling regime realized in our system, with dwell times on
a microsecond scale, is described by γ 	 
. In this case,
suppressing γ and setting V (t) = 0, we diagonalize within
the excited subspace spanned by |1〉 and |2〉 to obtain new
hybridized eigenvectors

|1′〉 = α1|1〉 + β1|2〉, |2′〉 = α2|1〉 + β2|2〉. (3)

115304-3



S. GUSTAVSSON et al. PHYSICAL REVIEW B 89, 115304 (2014)

This yields the eigenvalues ε′
1 − iγ ′

1/2, ε′
2 − iγ ′

2/2, where the
decay rates are γ ′

1 = |β1|2γ , γ ′
2 = |β2|2γ [see Fig. 1(a)]. The

time-dependent field gives rise to nonzero transition rates from
the ground state |0〉 to the excited states |1′〉 and |2′〉, given by
w′

1 = |α1|2W and w′
2 = |α2|2W , where the net excitation rate

W is determined by the power spectrum of V (t).
When the detuning is large, |δε| � 
, excitation occurs

mainly to the nondecaying excited state; the |0〉-|1〉 transition
may become saturated, with population transfer from the
excited QD state to the continuum acting as a bottleneck
for ionization. Near resonance, |δε| � 
, coupling between
the excited states relieves the bottleneck and the ionization
rate is enhanced. Note that when driving is weak, such
that the excitation rate is small compared with γ ′

1,2, excitation
is the limiting step and no resonant enhancement is expected.

Using the excitation and decay rates defined above, we
describe the dynamics of the populations P = (P0,P1,P2)T of
the three states via

Ṗ = −LP, L =
⎛
⎝w′

1 + w′
2 −w′

1 −w′
2

−w′
1 w′

1 + γ ′
1 0

−w′
2 0 w′

2 + γ ′
2

⎞
⎠ . (4)

The expected time τ before ionization is given by τ =∫ ∞
0 [P0(t) + P1(t) + P2(t)]dt . Solving Eq. (4) as P(t) =

e−LtP(0), we have

τ = (111)

( ∫ ∞

0
e−Ltdt

)
(100)T = (111)L−1(100)T. (5)

From this expression we find that the net ionization rate
	(δε) = τ−1 has a Lorentzian dependence on the detuning
from level crossing (see Fig. 4):

	(δε) = 	0

δε2 + γ 2∗
, γ 2

∗ = 
2 3W 2 + γ 2 + 4Wγ

8Wγ
, (6)

with 	0 = 
2(W + γ )/8. Strikingly, the width γ∗ of the
Lorentzian (6) is a nonmonotonic function of the excitation
power W , diverging both in the limit of weak excitation,
W 	 γ , and in the limit of strong excitation, W � γ . The
narrowest resonance is realized when the excitation rate W

takes an optimal value such that the bottleneck for ionization
is due to coupling between unhybridized states |1〉 and |2〉.
Minimizing γ∗, we find W = γ /

√
3. In this case, the width of

the resonance equals γ∗ min = 
(31/2 + 2)1/2/2 ≈ 0.97
.
In Fig. 4, we plot the measured ionization rates for a

resonance similar to the ones shown in Figs. 2 and 3, for several
values of the QPC bias voltage (excitation power). The solid
lines indicate fits to a modified form of Eq. (6) which includes
the effect of internal relaxation processes from the excited
states back to the ground state (see Appendix F). Such relax-
ation, which is not fundamental to the mechanism but appears
needed for good quantitative agreement with the experimental
observations, limits the efficiency of the ionization process
while preserving the Lorentzian form of the resonances. For the
fits, we assume the relaxation time T1 = 9 ns due to phonons
[24,25] to be the same for both excited states, whereas γ =
6 peV is known from the time-resolved measurement of the
tunneling rate between the excited state in dot 2 and the drain
lead. The fitting yields the same coupling 
 = 1.3 ± 0.1 μeV
independent of QPC bias voltage, as expected from the model.
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FIG. 4. (Color online) Line shapes of the ionization resonances.
Main panel: ionization rate as a function of magnetic field, measured
for different values of VQPC. Solid curves are fits to the model,
Eqs. (2)–(6), extended to include energy relaxation (see text). The
resonance broadens when the excitation rate W exceeds the coupling

 between the excited states (at VQPC > 400 μeV). The fits include
a small direct excitation rate (0.5% of W ) between |0〉 and |2〉, to
account for an increase in the background ionization level at high
VQPC. Inset: excitation rate W , extracted from the fits in the main
panel.

The coupling energy is consistent with values typical for
resonant tunneling in quantum dot systems [21].

In summary, we have discovered sharp resonances in
the ionization rate of a quantum dot driven by broadband
radiation. Ionization resonances arise due to a bottleneck
process involving pairs of excited states that couple differently
to a reservoir and to the microwave excitation, with the
state more strongly coupled to the reservoir acting as a
probe for other states. General arguments show that such
resonances are only expected in a strong driving regime,
where the perturbative description based on resonant tunneling
between excited states breaks down. The experiment utilizes
the versatility of the coupled QD/QPC system, providing a
means for probing strongly driven nanoscale systems.

We thank D. C. Driscoll and A. C. Gossard at Materials De-
partment, University of California, Santa Barbara, California,
for fabricating the wafers used in this experiment.

APPENDIX A: METHODS

The device, pictured in Fig. 1(b), was fabricated by
local oxidation [26] of a GaAs/Al0.3Ga0.7As heterostructure,
containing a two-dimensional electron gas located 34 nm
below the surface (mobility 3.5 × 105 cm2/V s, density 4.6 ×
1011 cm−2). The dots are coupled via two separate tunneling
barriers, formed in the upper and lower arms between the dots.
The charging energy and the energy level spacing are about
1.3 meV and 100–200 μeV for each dot. From the geometry
we estimate each QD to contain around 30 electrons. We
measured Aharonov-Bohm oscillations in transport to ensure
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FIG. 5. (Color online) Rates for electrons tunneling into and
out of the QD. The QPC bias is ranging from VQPC =
200,250,300, . . . ,500 μV.

that both barriers are open and have roughly equal tunnel
coupling strength [27]. All measurements were performed in
a dilution refrigerator with an electron temperature of 90 mK.

In this work, we are tuning the excited state levels ε1 and
ε2 by applying a perpendicular magnetic field. Since ε1 and ε2

are defined relative to the ground state energies μ1 and μ2 (see
Fig. 1), we first separately determined how μ1 and μ2 shift with
B field by measuring the resonant tunneling occurring when
the ground states align with the Fermi levels in the leads. For
all B-field measurements presented in the paper, compensation
voltages were applied to the gates G1and G2, to always keep
the ground states aligned with the leads at μ1,μ2 = 0.

APPENDIX B: TUNNELING RATES FOR
ENTERING AND LEAVING THE QDs

In Fig. 5, we plot the rates 	in and 	out for electrons
tunneling into and out of the QD. The rates were extracted
from the same set of data as in Fig. 2(a) in the main paper,
taking the finite bandwidth of the detector into account [28].
At the position marked by I in Fig. 5, the tunneling is due to
equilibrium fluctuations and the rates for tunneling into and out
of the QDs are equal. In the regime of QD excitations (case II in
Fig. 5), the rate related to absorption (	out) increases strongly
with bias voltage over the QPC. Continuing to case III, when
|μ2| > ε2 the excited state drops below the Fermi level of the
source lead and the absorption rate drops quickly. At the same
time, 	in increases as the refilling of an electron into QD2 may
occur through either the ground state or the excited state. The
rate for tunneling into the 	in does not show any major QPC
bias dependence over the full range of the measurement. This
is expected, since the refilling of an electron into the QDs does
not require absorption of energy.

APPENDIX C: MAGNIFICATION AROUND
CROSSING OF RESONANCES

Figure 6 shows a magnification of the region around the
crossing of resonances in Fig. 2(c) in the main paper. The
vertical feature is found to be split into two peaks, with the
smaller subpeaks having a full width at half maximum below
1 mT. There is no anticrossing visible in the regime where

Magnetic field B (mT)

-0.2

-0.3

-0.4

-0.5

μ
1
(m

eV
)

FIG. 6. (Color online) Magnification of a region in Fig. 2(c) in
the main paper. The vertical line is split into two, with the finer
structure having a width below 1 mT. The data is plotted on a linear
linear color scale ranging from 0 to 500 counts/s.

the two main resonances meet. Within the resolution of the
measurement, the two resonances appear to be uncoupled.

APPENDIX D: ESTIMATING THE WIDTH
OF THE RESONANCES

The narrowest resonances seen in Fig. 3(a) in the main
paper have a FWHM of around 3 mT. To convert this width
to an energy scale, we estimate the energy shift required
to bring different states into resonance by changing the B

field. The orbital shift of the QD levels with B is given
by 
E/B0 � 0.4 meV/T, where 
E = 100–200 μeV is
the level spacing and B0 = 500 mT is the magnetic field
associated with a flux quantum threading one of the dots.
This is an upper bound for the shift, since hybridization of
the orbital states generally leads to flattening of the bands
[29], but the value is consistent with the shift marked by the
dashed line in Fig. 2(b). For two states shifting in opposite
directions, we estimate an upper bound of 0.8 meV/T for
the conversion factor from magnetic field to energy. This
yields an upper bound of 2.4 μeV for the FWHM of the
narrowest features in Fig. 3, thus substantially lower than
the width of the thermally broadened peak in Fig. 2(a),
which has a FWHM of 3.5kBT = 27 μeV. To illustrate this
comparison, we draw a scale bar in Fig. 3 that corresponds to
the FWHM of the thermally broadened peak. Since the states
shift differently with magnetic field, the scale bar only serves
as a lower bound for the energy resolution due to the thermal
broadening. Still, it is clear that several of the resonances in
Fig. 3 are considerably narrower than that lower bound.

APPENDIX E: MODEL OF ENERGY LEVELS GIVING
THE POSITIONS OF THE LEVEL CROSSINGS AS A

FUNCTION OF MAGNETIC FIELD AND GATE VOLTAGE

In the main text we argue that the resonances correspond to
level crossings between excited states in the two dots. Here we
describe a plausible configuration of energy levels which yields
a similar pattern of resonances to that observed in the data.
Unfortunately, the data at hand does not provide enough infor-
mation to uniquely determine the energy spectrum of the two
quantum dots. Instead, the purpose of this section is to show
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FIG. 7. (Color online) (a) Magnetic field dependence of the
energy ε2 of the state |2〉 that is strongly coupled to the reservoir.
The curve is the same as the dashed line in Fig. 2(b). (b) Gate voltage
dependence of the energies of states |1a〉–|1c〉, chosen so that panel
(c) reproduces the measured resonances in Fig. 2(c). (c) Position
of the crossings between the state |2〉 and three states |1a〉–|1c〉
as a function of magnetic field and gate voltage, calculated using
the magnetic field and gate voltage dependencies in panels (a)
and (b).

that a simple model involving a few excited states with un-
complicated gate voltage dependence is enough to recreate the
fairly complex resonance curves seen in the experimental data.

We start with the experimental configuration and resonance
data shown in Fig. 2(c). A simple scheme involves level
crossings between a single excited state coupled to the lead
(denoted |2〉) and a set of three isolated excited states |1a〉–
|1c〉, with energies varying differently with gate voltage and
magnetic field. The resonances occur whenever the energy ε2

of state |2〉 matches the energy of one of the other excited
states.

In general, all excited states shift differently as a function
of both the magnetic field and the gate voltages. We assume
that the state |2〉 is localized predominantly in dot 2, and that
it is strongly coupled to the drain reservoir. The energy ε2 of
this state depends only very weakly on the potential μ1 that
controls dot 1. This is consistent with the characteristics of our
device (see Fig. 1 of the main text). With these restrictions, the
conditions for the resonances become

ε2(B) = ε1α(μ1,B), (E1)

where α = {a,b,c}. In the following, we are going to assume
that the energies ε1α(μ1,B) are independent of B field. This
assumption is not physically motivated, but rather serves

to show that we can recreate the resonance data seen in
the experiment with the simplest possible model. With this
simplification, Eq. (E1) becomes

ε2(B) = ε1α(μ1). (E2)

The shape of ε2(B) is known experimentally from the measure-
ment in Fig. 2(b) in the main text (dashed line), which is repro-
duced in Fig. 7(a). By combining the measured dependence of
ε2(B) with the conditions in Eq. (E2), we can determine how
the energies ε1α must shift with potential μ1 in order to produce
the resonances seen in Fig. 2(c) in the main text. The extracted
values of ε1α(μ1) are plotted in Fig. 7(b), and the resulting
positions of the crossings ε2 = ε1a ,ε1b,ε1c as a function of
magnetic field and gate voltage are shown in Fig. 7(c).

Despite the simplicity of the model, the curves reproduce
the pattern of resonances in Fig. 2(c) of the main text.
However, we stress again that the method does not provide any
information about the B-field dependence of ε1a,...,ε1c, and
therefore only serves to show that a simple energy dependence
is enough to recreate the complex resonance maps seen in the
experimental data. A similar approach can be used to recreate
the resonance conditions for the data shown in Fig. 3 of the
main text.

APPENDIX F: MODEL OF IONIZATION RESONANCES

In this section we present the rate equation model used to
describe the resonant enhancement of ionization observed
near excited level crossings. In terms of the excitation and
escape rates w′

1,2 and γ ′
1,2 defined in the main text (below we

suppress the primes for notational simplicity), and additional
internal relaxation rates 	1,2 that describe relaxation from the
excited states |1〉 and |2〉 to the ground state, the dynamics of
the system is described by rate equations for the populations
of the three levels:

Ṗ = −LP,
(F1)

L =
⎛
⎝w1 + w2 −(w1 + 	1) −(w2 + 	2)

−w1 w1 + γ1 + 	1 0
−w2 0 w2 + γ2 + 	2

⎞
⎠ ,

with P = (P0,P1,P2)T.
The lifetime of the system, i.e., the expected time be-

fore ionization, can be found from τ = ∫ ∞
0 [P0(t) + P1(t) +

P2(t)]dt . Solving the rate equations (F1) in terms of a matrix
exponential as P(t) = e−LtP(0), we have

τ = (111)

( ∫ ∞

0
e−Ltdt

)
(100)T = (111)L−1(100)T. (F2)

Inverting the matrix L and substituting the result into Eq. (F2),
we obtain

τ = (w1 + γ1 + 	1)(w2 + γ2 + 	2) + w1(w2 + γ2 + 	2) + w2(w1 + γ1 + 	1)

w1γ1(w2 + γ2 + 	2) + w2γ2(w1 + γ1 + 	1)
. (F3)

The dependence of τ on the detuning from level crossing δε = ε1 − ε2 can be analyzed using the expressions for the rotation
matrix [Eq. (2) in the main text], giving

γ1/γ = sin2 θ, γ2/γ = cos2 θ, (F4)

w1/W = cos2 θ, w2/W = sin2 θ, (F5)
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with

cos 2θ = δε/
√

δε2 + 
2. (F6)

Substituting these expressions into the equation for τ , we arrive at

τ =
(
3W

γ
+ γ

W
+ 4 + 8 δε2


2

) + 4
sin2 2θ

(
2	1

γ
sin2 θ + 2	2

γ
cos2 θ + 	1

W
cos2 θ + 	2

W
sin2 θ + 	1	2

γW

)
W + γ + 	1 + 	2

, (F7)

where cos2 θ = 1
2 (1 + cos 2θ ) and sin2 θ = 1

2 (1 − cos 2θ ), with cos 2θ defined in Eq. (F6). The result (F7) generalizes the
simplified model discussed in the main text, in which 	1 and 	2 were assumed to be small compared to γ and W , and therefore
ignored.

Expression (F7), where 	1,2 are allowed to have arbitrary values and, in principle, arbitrary energy dependence, is rather
complicated. For simplicity, we now take 	1 = 	2, independent of energy, and find a Lorentzian dependence:

	(δε) = 
2(W + γ + 2	1)[
8 + 4

(
2	1

γ
+ 	1

W
+ 	2

1
γW

)]
(δε2 + γ 2∗ )

, γ 2
∗ =


2
(
3W

γ
+ γ

W
+ 4

) + 8	1
γ

+ 4	1
W

+ 4 	2
1

γW

8 + 4
(
2	1

γ
+ 	1

W
+ 	2

1
γW

) . (F8)

The width γ∗ of the Lorentzian (F8) now has a more
complicated dependence on parameters than in the absence of
relaxation. Solving for the minimum width, found by setting
dγ∗/dW = 0, requires finding the roots of a cubic polynomial.
The analysis shows that the dependence of the width γ∗
on the excitation strength W is nonmonotonic, reproducing
the behavior discussed in the main text, with the narrowest
resonance width attained at some finite value of W . We note
that 	1 provides a cutoff at small W , so that the width of the
resonance no longer diverges for small W .

It is important to note that a simple Fermi’s golden rule
(FGR) calculation of the direct ionization rate of the ground
state, which does not account for population buildup in
the excited states, fails to explain the observed behavior.
After integrating the FGR ionization rate over the broadband
spectrum of V (t), we obtain a transition rate which is
independent of the detuning from resonance. Thus taking into
account the bottleneck effect in the rate equations is essential
for understanding the enhancement of the ionization rate near
resonance.
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