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Abstract

We have measured the current fluctuations in a quantum dot using a quantum point contact as a charge detector. By determining the

distribution function for the charge transferred through the quantum dot, we get access not only to the shot noise but also to higher order

moments. The noise in the quantum dot was found to be reduced compared to the single-barrier case. The reduction can be explained by

an increase in temporal correlation due to the Coulomb blockade. Furthermore, we have used the time-resolved measurement techniques

to investigate degenerate states in the quantum dot.
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1. Introduction

Temporal current fluctuations in conductors have been
intensely investigated due to the additional information
they provide compared to the average current, in particular
for interacting systems [1]. Shot noise measurements
demonstrated the charge of quasi-particles in the fractional
quantum Hall effect [2,3] and in superconductors [4].

For independent particles tunneling through a single
barrier, the current fluctuations are expected to follow a
Poisson distribution. In electron transport through a
semiconductor quantum dot (QD), the noise is typically
suppressed compared to the Poisson distribution, giving
sub-Poissonian noise. This is due to the Coulomb block-
ade, which enhances the temporal correlation between
electrons and thereby reduces the noise [5]. However, when
several channels with different coupling strengths contri-
bute to electron transport, interactions can lead to more
complex processes and to an enhancement of the noise
[6–9]. Furthermore, there are predictions that entangled
electrons may lead to super-Poissonian noise, thus making
e front matter r 2007 Elsevier B.V. All rights reserved.
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noise measurements a possible way of detecting entangle-
ment in mesoscopic systems [10,11].
The suppression of shot noise due to Coulomb blockade

has been detected in vertical QDs [12–14]. For lateral QDs,
conventional measurement techniques are difficult to use
due to the very low current levels involved. Recent
attempts include using a resonant circuit together with a
low-temperature amplifier [15,16], a superconductor–insu-
lator–superconductor junction [17] or a second QD acting
as a high-frequency detector [18].
A different approach is to use time-resolved charge

detection methods to count the electrons one-by-one as
they pass through the conductor. From such a measure-
ment, one can directly determine the probability distribu-
tion function pt0

ðNÞ. The distribution gives the probability
that N electrons are transferred through the conductor
within a time interval of length t0. The distribution
function can then be used to calculate both the shot noise
as well as higher order correlations. This way of measuring
is analogous to the theoretical concept of full counting
statistics (FCS), which was introduced as a new way of
examining current fluctuations [19].
A difficulty with the experimental method is that it

requires a very sensitive, non-invasive, high-bandwidth
charge detector, capable of resolving individual electrons.
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Examples of devices fulfilling these requirements include
the single electron transistor [20–22] and the quantum
point contact (QPC) [23–25]. Using charge detection
techniques, the noise and higher order moments of the
current distribution have been measured in both a single
QD [9,26,27] and a double QD [28]. Here, we summarize
the results of previous work [26] and present further results
from measurements involving time-resolved charge detec-
tion techniques.
2. Experimental setup

The QD used in the experiment is shown in Fig. 1(a).
The structure was fabricated using scanning probe
lithography [29] on a GaAs=Al0:3Ga0:7As heterostructure
with a two-dimensional electron gas (2DEG) 34 nm below
the surface. The sample consists of a QD [dotted circle in
Fig. 1(a)] and a nearby QPC. The charging energy of the
QD is 2:1MeV and the mean level spacing is 200–300meV.
From the geometry and the characteristic energy scales, we
estimate that the QD contains about 30 electrons. The QD
is connected to the source and drain leads through tunnel
barriers. The transparency of the tunnel barriers can be
controlled by changing the voltage on gates G1 and G2. In
this experiment, the tunnel coupling strengths between the
QD and the leads were reduced to below 10 kHz. The P

gate was used to tune the conductance of the QPC to a
300 nm
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Fig. 1. (a) Quantum dot with integrated charge read-out used in the experim

electrons tunneling into and out of the QD. The lower current level correspon

between the two levels occur whenever an electron enters or leaves the QD. The

and out of the dot, respectively. (c) Distribution of tunneling times for electron

exponential behavior given by Eq. (2) in the text, with Gin ¼ 1=htini ¼ 7:3 kHz,

in the figure is 0:5 s.
regime where the sensitivity to changes in the dot charge is
maximal. Due to a resonance in the QPC, we chose not to
operate the QPC at the usual operating point half-way
below the first conductance plateau, with GQPC ¼ e2=h.
Instead, the best sensitivity was reached at GQPC�0:25 e2=h.
The conductance was measured by voltage biasing the QPC
ðVbias ¼ 500 mVÞ and reading out the current. Because of
the capacitive coupling between gates G1, G2 and the QPC,
the voltage on gate P had to be adjusted to keep the QPC
in the region of maximum sensitivity whenever a voltage on
the other gates was changed. The bandwidth of the QPC
circuit was 30 kHz. All measurements were performed in a
dilution refrigerator with a base temperature of 60mK.
3. Extracting the tunneling rates

In the low-bias regime, the QD can only hold one excess
electron. Before a second electron can enter, the first one
has to go out. When an electron enters the QD, the
conductance through the QPC is reduced due to the
electrostatic coupling between the QD and the QPC. As
the electron leaves, the QPC conductance returns to the
original value. This gives rise to a QPC current switching
between two levels, as shown in Fig. 1(b). The low level
corresponds to a situation where the dot holds an excess
electron. Transitions between the two levels occur when-
ever an electron enters or leaves the QD. The time between
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quantities tin and tout specify the time it takes for an electron to tunnel into

s entering (squares) and leaving (circles) the dot. The solid lines show the

Gout ¼ 1=htouti ¼ 2:0 kHz. The length of the time trace for the data shown
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Fig. 2. (a) Energy level diagram for the quantum dot in the regime of

equilibrium fluctuations. Electrons may leave or enter the dot from either

of the two leads. (b) Energy level diagram for the quantum in the high-bias

regime. With a large bias applied to the QD, and with the Fermi levels of

the leads far away from the electrochemical potential of the dot, electrons

can only enter the QD from the source lead and only leave to the drain. (c)

Current distribution function pt0
ðNÞ, determined from a trace of data

similar to the one shown in Fig. 1(b). The time t0 was chosen so that

hNi ¼ 3. The solid line shows the result of Eqs. (11), (12) in the text, with

Gin ¼ 1:7 kHz and Gout ¼ 1:4kHz.
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the transitions give the time it takes for an electron to
tunnel into or out of the QD. In Fig. 1(b), these times are
marked by tin, tout.

In the regime of single-level transport, the process of an
electron tunneling into or out of the dot is described by the
rate equation

_pin=outðtÞ ¼ �Gin=outpin=outðtÞ. (1)

Here, pin=outðtÞ is the probability density for an electron to
tunnel into or out of the dot at a time t after a
complementary event. Solving the differential equation
and normalizing the resulting distribution gives

pin=outðtÞdt ¼ Gin=oute
�Gin=outt dt. (2)

Eq. (2) is valid assuming non-degenerate states. In the case
of degenerate states, the rates should be multiplied with the
appropriate degeneracy factor. Here, we assume non-
degenerate states and postpone the discussion of degen-
erate states to Section 6.

The experimental distribution function pin=outðtÞ can be
determined by extracting the tunneling times tin, tout from
a time trace containing a large number of events. Such a
distribution is shown in Fig. 1(c), taken from a trace of
length T ¼ 0:5 s. The data show the expected exponential
behavior of Eq. (2), the black dashed lines are fits with
Gin ¼ 7:3 kHz and Gout ¼ 2:0 kHz.

Even though the probability distribution shown in Fig.
1(c) seems to follow the result of Eq. (2), it should be noted
that the finite bandwidth of the detector introduces
systematic changes in the measured distribution [30]. The
very fast tunneling events are less likely to be detected,
giving a cut-off for short time scales in the measured
distribution. Moreover, since the fast events are not
detected, the measurement will over-estimate the occur-
rence of slow events. The long-time tail of the measured
distribution will still decay exponentially, but the tunneling
rate extracted from a distribution such as the one shown in
Fig. 1(c) will be under-estimated. However, the true
tunneling rates can still be retrieved by compensating for
the finite bandwidth. The compensations are given as [30]

Gin ¼ G�in
ðGdet � G�outÞðGdet � G�in þ G�outÞ

GdetðGdet � G�in � G�outÞ
, (3)

Gout ¼ G�out
ðGdet � G�inÞðGdet þ G�in � G�outÞ

GdetðGdet � G�in � G�outÞ
. (4)

Here, Gin=out are the true tunneling rates, G�in=out are the
detected rates and G�det is the rate of the detector. The
maximal detection rate Gdet is essentially the rise time of the
detector, it depends not only on the measurement
bandwidth but also on the signal-to-noise ratio of the
detector signal as well as the redundancy needed to
minimize the risk of detecting false events [31]. Using
Eqs. (3), (4) with a maximal detection rate of
Gdet ¼ 100 kHz, we find that the true tunneling rates for
the data presented in Fig. 1(c) are Gin ¼ 7:5 kHz and
Gout ¼ 2:2 kHz.
4. Measuring the current statistics

To use the charge detector for measuring current,
one has to avoid that electrons tunnel back and
forth between the dot and the source or drain lead
due to thermal fluctuations [Fig. 2(a)]. This is achieved
by applying a finite bias voltage between source and
drain, i.e. kBT5j � eV= 2� Edj5EC, where EC is the
charging energy, Ed is the electrochemical potential
of the dot and V is the bias voltage, symmetrically
applied to the QD [Fig. 2(b)]. With a finite bias applied
to the QD, and with the Fermi levels of the leads far
away from the electrochemical potential of the QD, the
probability for electrons to tunnel in the opposite
direction is exponentially suppressed. In this regime, we
can attribute each transition n! nþ 1 to an electron
entering the QD from the source contact, and each
transition nþ 1! n to an electron leaving the QD to the
drain contact. The charge fluctuations in the QD corre-
spond to a non-equilibrium process, and are directly
related to the current through the dot. This makes it
possible to measure the current by counting the electrons
traveling through the system.



ARTICLE IN PRESS
S. Gustavsson et al. / Physica E 40 (2007) 103–110106
In the finite bias regime, the tunneling rates Gin and Gout

give directly the current

I ¼ e
GinGout

Gin þ Gout
. (5)

From the tunneling rates, one could calculate all the higher
moments of the current distribution as well. However, the
results are only valid assuming that Eq. (2) is correct. In
order to measure the current and the current distribution
function for any experimental configuration, we instead
focus on determining the current distribution function
pt0
ðNÞ directly from the experimental data.
The distribution pt0

ðNÞ describes the probability that N

electrons are transferred through the conductor within a
time t0. The distribution is formed by splitting a time trace
of length T into m ¼ T=t0 intervals of length t0 and
counting the number of electrons entering the QD within
each interval. An example of such a distribution is shown
in Fig. 2(c). The noise and the higher moments can then be
calculated directly from the measured distribution func-
tion. The second moment ½m2 ¼ hN

2i � hNi2� describe the
variance or the width of the distribution, while the third
moment ½m3 ¼ ðN � hNiÞ

3
� is a measure of its asymmetry.

A complication of the method is the finite length of each
time trace. In the experiment, it is favorable to make t0 as
short as possible in order to increase the number of samples
m ¼ T=t0. This will improve the quality of the distribution
and help to minimize statistical errors. On the other hand,
making t0 too short will alter the distribution and may
diminish the influence of long-time correlations in the
measured noise. It is therefore important to carefully check
the influence of the interval length t0 when analyzing the
data [27].

Another limitation of the method is that the finite
bandwidth of the detector will alter the measured statistics.
The effect is similar to the corrections introduced when
determining the tunneling rates, as described in Section 3.
The finite bandwidth makes it less probable for the detector
to detect fast events, meaning that the probability of
detecting a large number of electrons within an interval t0
will decrease more than the probability of detecting few
electrons. This will cut the high-count tail of the distribu-
tion and thereby reduce both the width and the asymmetry.
The problem can be circumvented by including the detector
into the model of the system and calculating the noise for
the combined detector-QD system [27]. With the limita-
tions of the detector incorporated into the system, it is
possible to calculate the influence of the finite bandwidth
on the measured statistics.

5. Current noise in a single-level QD

To illuminate the principle of operation of our device, we
investigate the noise of the QD in the sequential tunneling
regime. The FCS of electron transport in a QD in this
regime has been calculated before [32]. Here, we summarize
the theory, we apply the conditions appropriate for our
experimental configuration and at the end we compare the
results with the experimental data.

5.1. Theory and model description

We model the occupancy of the QD in the low-bias
regime by the rate equation

d

dt

pn

pnþ1

 !
¼
�Gin Gout

Gin �Gout

 !
pn

pnþ1

 !
. (6)

Here, pn and pnþ1 give the occupation probability for the
states with n and nþ 1 electrons, respectively. The
tunneling rates are given by

Gin ¼ GL f LðEdÞ þ GR f RðEdÞ, (7)

Gout ¼ GL½1� f LðEdÞ� þ GR½1� f RðEdÞ�, (8)

where f L and f R are the Fermi distributions in the left and
right leads and Ed is the electrochemical potential of the
QD. Eqs. (7), (8) are valid assuming non-degenerate states,
the case of degenerate states is discussed in Section 6.
These rates can be simplified in the case of large bias

voltage, j � eV=2� EdjbkBT . Here, electrons can only
tunnel into the QD through one lead, the source (being
either left or right lead, depending on the sign of the bias
voltage), and can only tunnel out of the QD through the
other contact, the drain. With positive (negative) bias, we
have f LðRÞðEdÞ ¼ 1 and f RðLÞðEdÞ ¼ 0. This gives

Gin ¼ GLðRÞ ¼ GS and Gout ¼ GRðLÞ ¼ GD. (9)

In this model, GS and GD are assumed to be independent of
energy. The model can be extended to the transport
through multiple states in the QD. The effective tunneling
rates will be the sum of the individual tunneling rates for all
the involved states.
To perform the counting statistics, we need to introduce

a counting field eiw in the rate equation. In our case, we
count electrons tunneling into the QD, and the matrix from
Eq. (6) can be written as

MðwÞ ¼
�Gin Gout

Gin � e
iw �Gout

 !
. (10)

The distribution function for the number of electrons
tunneling through the QD during a time t0 can be
generated from the cumulant-generating function SðwÞ:

pt0
ðNÞ ¼

Z p

�p

dw
2p

e�SðwÞ�iNw. (11)

In the limit t0bG�1in ;G
�1
out, the normalized distribution

pt0
ðN=t0Þ is independent of t0. In the same limit, the

cumulating-generating function SðwÞ is related to the lowest
eigenvalue of MðwÞ, l0ðwÞ as

SðwÞ ¼ l0ðwÞt0 ¼
t0

2
Gin þ Gout

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGin � GoutÞ

2
þ 4GinGoute�iw

q �
. ð12Þ
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Fig. 3. Normalized moments versus asymmetry of the tunnel coupling, a ¼ ðGin � GoutÞ=ðGin þ GoutÞ. The dashed lines are theoretical predictions for the
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Knowing the distribution function pt0
ðNÞ, one can

calculate all moments characterizing the current fluctua-
tions. In the following we are interested in the three first
central moments mi, which coincide with the first three
cumulants Ci. These can then be generated directly from
the cumulant-generating function SðwÞ. The mean current is
given by the first cumulant C1 of the distribution:

I ¼
e

t0
C1 ¼

e

t0
�i

dS

dw

� �
w¼0
¼ e

GinGout

Gin þ Gout
. (13)

The symmetrized shot noise is given by the variance, or
the second cumulant C2, of the distribution:

SI ¼
2e2

t0
C2 ¼

2e2

t0
�
d2S

dw2

� �
w¼0

, (14)

from which we can calculate the Fano factor:

F2 ¼
SI

2eI
¼

C2

C1
¼

G2
in þ G2

out

ðGin þ GoutÞ
2
¼

1

2
ð1þ a2Þ, (15)

where a ¼ ðGin � GoutÞ=ðGin þ GoutÞ is the asymmetry of the
coupling. This result recovers the earlier calculations for
the shot noise in a QD [5], and shows the reduction of the
noise by a factor 1

2
for a QD symmetrically coupled to the

leads, while the Poissonian limit, F 2 ¼ 1, is reached for an
asymmetrically coupled QD.

Finally, we are also interested in the third central
moment, or third cumulant C3, of the fluctuations, which
characterizes the asymmetry of the distribution (skewness):

C3 ¼ i
d3S

dw3

� �
w¼0

. (16)

The asymmetry can also be normalized to the mean of the
distribution:

F3 ¼
C3

C1
¼

G4
in � 2G3

inGout þ 6G2
inG

2
out � 2GinG3

out þ G4
out

ðGin þ GoutÞ
4

¼
1

4
ð1þ 3a4Þ. ð17Þ

The result shows that for a symmetrically coupled QD, the
third moment is reduced by a factor 1

4
compared to the
Poissonian limit. For an asymmetrically coupled dot with
a!�1, we again retrieve F3! 1.
5.2. Experimental results

Eqs. (15), (17) express the expected noise as a function of
the asymmetry of the tunneling rates. In the experiment,
the tunnel couplings can be tuned by changing the voltages
on gates G1 and G2. Figure 3 shows the measured second
and third moments, determined at eight different gate
voltage configurations. Both the moments and the asym-
metry of each configuration were extracted directly from
the measured time traces. The moments were evaluated as
described in Section 4, while the asymmetry was given
by the tunneling rates, extracted using the methods of
Section 3.
The figure shows a reduction of the noise for a

symmetrically coupled QD compared to the values
m2=m ¼ m3=m ¼ 1 expected for a single barrier. This is
due to Coulomb blockade; a second electron cannot
enter the dot before the first one leaves. The effect
increases the correlations between tunneling electrons
and thereby reduces the noise. As the tunnel couplings
of the barriers grow more asymmetric, the transp-
ort is essentially governed by the weakly transp-
arent barrier and the noise approaches the single-barrier
value.
The dashed lines in Fig. 3 are the theoretical prediction

for the moment, given in Eqs. (15),(17). The figure shows
good agreement between the experimental data and the
theoretical predictions, especially considering that the
model does not involve any free parameters. The precision
of the measurement can be enhanced by increasing the
length of each time trace, with the limiting factor being the
stability of the sample. It should be noted that the method
can in principle be used to extract cumulants of any order;
again, the limiting factor being the amount of data
available. In another set of measurement, using traces of
length T ¼ 10 min, we were able to determine the first five
cumulants [27].
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6. Degenerate states

In this section, we discuss how degenerate states may
influence the measured statistics. For simplicity, we limit
the discussion to the case where the QD is connected only
to one lead, with the other lead being completely pinched
off. In this configuration, the tunneling is due to
equilibrium fluctuations between the QD and the lead.
Fig. 4(a) shows the average DC current through the QPC
when sweeping the two gates G1 and G2. The diagonal
lines correspond to electrons being loaded/unloaded from
the QD. Along those lines, the electrochemical potential of
the QD is aligned with the Fermi level of the lead. From the
slope of the line we see that the voltages on the two gates
G1 and G2 have roughly the same influence on the energy
levels of the QD, as expected from the device geometry. We
now focus on determining the tunneling rates for three
electronic states along the dotted line in Fig. 4(a). Starting
at low VG1 voltages, the dot gets successively populated as
the voltage on G1 is increased. At each charge degeneracy
point, we use the time-resolved measurement techniques to
determine the rates for electrons entering and leaving the
dot. The results are shown in Fig. 4(b).
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one electron. The numbers specify the dot occupation in the different regions

measured at the three charge degeneracy points marked by circles along th

T ¼ 230mK and the other fitting parameters given in Table 1 in the text. (c) A

the lead for the gate voltage configurations shown in the middle plot in (b).
In the single-lead case, the results of Eqs. (7), (8) simplify
to

Gin ¼ gin GR f RðEdÞ, (18)

Gout ¼ gout GR½1� f RðEdÞ�. (19)

Here, we have included the factors gin and gout to account
for possible degeneracies in a very simple model. For
electrons entering the QD, the factor gin should include the
number of degenerate empty states. For tunneling out, only
the degeneracy of occupied states is relevant. The tunnel
coupling GR is assumed to be independent of energy and of
the QD level within the small gate voltage range considered
here. The energy level for three different gate voltages
are drawn schematically in Fig. 4(c). The middle plot of
Fig. 4(b) indicates the gate voltage ranges corresponding to
the drawings shown in Fig. 4(c).
The effective rates for electrons tunneling into and out of

the QD involve the density of states and the occupation
probability in the lead. This gives a strong dependence on
the alignment between the Fermi level in the lead and the
electrochemical potential of the dot. Starting at low VG1

voltages in Fig. 4(b) [case I in Fig. 4(c)], the QD potential is
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Table 2

Interpretation of the data shown in Table 1, assuming spin-degenerate

states

VG1 (mV) GR (Hz) gin gout

�30:35 110 2 1

15.70 220 1 2

45.35 307 1 2
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far above the Fermi level of the lead. At this point, the
density of occupied states in the lead is low and the
effective rate for tunneling into the QD is low. If an
electron eventually manages to tunnel in, the effective rate
for tunneling out again will be high, since there are many
empty states in the lead to tunnel into. As the gate voltage
is increased, the QD potential goes down to the Fermi level
of the lead [case II in Fig. 4(b, c)]. In this configuration, the
effective rates for tunneling into and out of the QD are
roughly equal. As the gate voltage is further increased, the
potential of the QD is pushed below the Fermi level. Here,
the density of occupied states in the lead is large, giving a
high effective rate for electrons entering the QD. Con-
versely, the effective rate for leaving the dot is low [case III
in Fig. 4(b, c)].

Looking at the shape of the data in Fig. 4(b), we see that
they indeed follow a Fermi function. The solid lines in the
figure are fits using Eqs. (18), (19), with T ¼ 230mK. The
lever arm between the gate voltage and the potential of the
QD was determined in a standard Coulomb diamond
measurement [33]. The parameters used in the fitting
procedure are summarized in Table 1.

Comparing the numbers of Table 1, we see that the
effective coupling gin=out GR differs strongly depending on
whether it was extracted from the tunneling in or from the
tunneling out data. One possible explanation for the
difference is degeneracy due to the electron spin. Assuming
a spin-degenerate state with both the spin up and the spin
down state initially empty, an electron could tunnel into
either of the two states. This makes gin ¼ 2. Once the
electron has tunneled into the QD, it sits in either the spin
up or the spin down state. Since only one of the spin-
degenerate states is occupied, the degeneracy for tunneling
out will be gout ¼ 1. The situation is different if we start
with a QD with one of the spin-degenerate states already
occupied. For the tunneling-in process, there is only one
empty state available, giving gin ¼ 1. For the tunneling-out
process, any of the two electrons sitting on the dot may
tunnel out. This leads to gout ¼ 2. The different situations
are shown schematically in Fig. 5.

The tunnel couplings and spin degeneracies extracted
from the data using this model are shown in Table 2. For
the first resonance at V G1 ¼ �30:35mV, gin ¼ 2 and
gout ¼ 1, indicating a spin degeneracy with both states
initially empty. At the next resonance, the degeneracy
factors are exchanged, with gin ¼ 1 and gout ¼ 2. For the
third resonance, the degeneracy factors are the same as for
the second resonance, with gin ¼ 1 and gout ¼ 2.
Table 1

Fitting parameters for the solid lines in Fig. 4(b), fitted using Eqs. (18),

(19)

VG1 (mV) gin GR (Hz) gout GR (Hz)

�30:35 210 115

15.70 220 440

45.35 315 600
The first and second resonance could be attributed to
consecutive filling of the spin states, meaning that the two
first electrons would be a so-called spin pair. The third
electron does not follow the rules expected from simple
spin-filling. The reason could be due to many-body effects
between the electrons in the QD or due to a charge
rearrangement taking place between the second and third
resonance. Also, we stress that there are other possible
explanations for the measurement results, like energy-
dependent tunneling rates or accidental degeneracies of
orbital states. To prove the spin degeneracy, one would
need to perform measurements at non-zero magnetic fields.
This would lift the spin degeneracy and make gin ¼ 1 and
gout ¼ 1.
7. Conclusion

We have measured the time-resolved charge fluctuations
in a QD using a QPC as a charge detector. In the large bias
regime, where the electron motion is unidirectional and the
charge fluctuations are directly related to the current
fluctuations, we have extracted the distribution function
for the charge transferred through the QD. From the
distribution function, not only the mean current and shot
noise, but also higher order moments can be extracted. We
have also shown that the charge detection techniques can
be used to investigate degenerate states in a QD.
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