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The center-of-mass motion of a single optically levitated nanoparticle resembles three uncoupled harmonic
oscillators. We show how a suitable modulation of the optical trapping potential can give rise to a coupling
between two of these oscillators, such that their dynamics are governed by a classical equation of motion that
resembles the Schrödinger equation for a two-level system. Based on experimental data, we illustrate the dynamics
of this parametrically coupled system both in the frequency and in the time domain. We discuss the limitations
and differences of the mechanical analog in comparison to a true quantum-mechanical system. © 2017 Optical

Society of America
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1. INTRODUCTION

One particularly interesting laboratory system for engineers and
physicists alike is optically levitated nanoparticles in vacuum
[1–3]. The fact that such a levitated particle at suitably low
pressures is a harmonic oscillator with no mechanical interac-
tion with its environment promises exceptional control over the
system’s dynamics [4,5]. In fact, at such low pressures, the only
interaction expected to remain between the particle and the
environment is mediated by the electromagnetic field [6,7].
Indeed, it has recently been shown that at sufficiently low pres-
sures, the dominating interaction of the particle with its envi-
ronment is determined by the photon bath of the trapping laser
[8]. Therefore, with the understanding of quantum electrody-
namics gained by quantum optics and atomic physics over
the last few decades, optically levitated nanoparticles are rela-
tively massive mechanical systems whose decoherence might be
controlled to an unprecedented level [9]. While the dynamics
of optically levitated particles have been controlled to a remark-
able degree, it is surprising that little attention has been paid to
the fact that a single optically levitated nanoparticle is an
embodiment of three harmonic oscillators, one for each degree
of freedom of the particle’s center-of-mass motion, offering the
opportunity for introducing a coupling between these modes
[10–12]. For clamped-beam micromechanical systems, the
coupling between different oscillation modes has been explored
in great detail [13–18]. In contrast, for optically levitated par-
ticles, only recently the first steps have been taken to couple
different degrees of freedom of the center-of-mass motion

and harness the machinery of coherent control established
on quantum-mechanical systems [19,20].

In this paper, we demonstrate explicitly how a simple modu-
lation of the optical trapping potential couples two degrees of
freedom of a levitated nanoparticle, whose dynamics are then
governed by an equation of motion resembling the Schrödinger
equation of a quantum-mechanical two-level system.We exper-
imentally investigate the scaling of the coupling frequency with
coupling strength and detuning. In our discussion, we focus on
the complementary observations of the dynamics of the particle
in the frequency domain and in the time domain. Finally,
we discuss the limitations of our model and those of the
analogy between a classical two-mode system and a quantum-
mechanical two-level atom.

2. EXPERIMENTAL SYSTEM

At the heart of our experimental setup is a single-beam optical
dipole trap, illustrated in Fig. 1(a). The trapping laser (wave-
length 1064 nm, power ≈50 mW) is focused by a microscope
objective (100× , NA0.9) to a diffraction-limited spot forming
the trap. We use two electro-optic modulators (EOMs) to con-
dition the trapping laser. The first modulator (EOM1) together
with a polarizing beam splitter [not shown in Fig. 1(a)] serves to
modulate the laser intensity. The trapping laser then enters a
second modulator (EOM2). The voltage applied to this modu-
lator rotates the polarization direction of the laser beam. We
trap silica particles with a nominal diameter of 136 nm in the
laser focus. Particles much smaller than the wavelength of the
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trapping laser are well described in the dipolar approximation,
where a scatterer in a focused laser field is subjected to two
forces [21]. First, the gradient force pulls a dielectric scatterer
along the gradient of the intensity to the focal center. Second,
the scattering force pushes the particle along the propagation
direction of the laser beam. Since the gradient force scales with
the particle volume, while the scattering force goes with the
square of the volume, sufficiently small particles can be stably
trapped in a conservative potential dominated by the gradient
force. With the origin chosen to be the center of the focus, the
trapping potential is harmonic to lowest order in the particle
position, such that the equations of motion of a trapped particle
are those of a three-dimensional harmonic oscillator.

In order to detect the particle position, we employ a second
laser beam (wavelength 780 nm, power ≈3 mW), sufficiently
weak to not disturb the potential created by the trapping laser.
The light scattered by the trapped particle is collimated by a
collection lens, spectrally filtered to remove the trapping laser,
and guided to a split-detection setup to infer the position of the
particle as a function of time. A convenient way to characterize
the trapping potential is to observe the particle motion under
the stochastic driving force arising from the interaction with the
surrounding gas molecules. In Fig. 1(b), we plot the power
spectra Sx�f �, Sy�f �, and Sz�f � of the particle position along
x, y, and z, respectively, recorded at a pressure of 10 mbar. We
denote with z the position along the optical axis and with x and
y the position in the focal plane relative to the focal point. Each
spectrum is a Lorentzian function (see fits to data), each defined
by three parameters. The center frequency Ωu is given by the
trap stiffness in the respective direction u ∈ fx; y; zg. This

stiffness scales with the trapping laser power. The width of
the Lorentzian is set by the damping rate γ, which scales linearly
with gas pressure. The area under the power spectrum by def-
inition equals the variance of the position hu2i � R∞

0 df Su�f �,
which has to satisfy hu2i � kBT ∕�mΩ2

u� according to the equi-
partition theorem, where kB is the Boltzmann constant, T is
the temperature of the bath (which is room temperature in our
case), and m is the mass of the particle (which is nominally
2.9 × 10−19 kg). In fact, it is the equipartition theorem that
allows us to convert the voltage output by our detectors to a
position in meters. The oscillation frequencies found experi-
mentally in Fig. 1(b) are Ωz � 2π × 46 kHz, Ωx � 2π×
115 kHz, and Ωy � 2π × 141 kHz. The oscillation frequency
along the optical axis is significantly lower than those in the
transverse plane, since the focal depth of a standard high-
NA objective exceeds the transverse confinement of the focal
field. Importantly, the rotational symmetry of the trapping
optics is broken by the linear polarization of the laser beam,
which leads to an intensity distribution in the focus, illustrated
in Fig. 2(a), which is elongated along the direction of polari-
zation, lifting the degeneracy of the eigenfrequencies of the
motion in the focal plane.

The nondegeneracy of all oscillation modes allows us to con-
trol the three degrees of freedom of the particle’s center-of-mass
motion simultaneously [3]. We use analog electronics to gen-
erate a signal that is proportional to u_u, which we feed back to
EOM1 to modulate the intensity of the trapping laser, which in
turn modulates the trap stiffness at a frequency 2Ωu [3]. At
sufficiently low pressures, the frequency spacing between the
oscillation modes largely exceeds their spectral width, such that
each mode only responds to the feedback signal generated from
its own position time trace. Accordingly, under feedback, we are
dealing with three uncoupled, parametrically driven harmonic
oscillators. By adjusting the phase of the feedback signal, we can
choose to parametrically heat the respective center-of-mass
mode, increasing its amplitude, or to parametrically cool the
mode, reducing its amplitude below the thermal population
[22]. In good approximation, under feedback-cooling, the par-
ticle appears to be coupled to an effective bath at temperature
T eff , which is below room temperature [23]. Throughout
this paper, we feedback-cool the z-mode of the particle to a

10-18

10-19

10-20

S u
(m

2 /
H

z)

(b)

(a)

40 60 100 120 140
frequency (kHz)

Sz

Sx Sy

A B
C D

780 nm

1064 nm
EOM1 EOM2

FB

Fig. 1. (a) Experimental setup. The trapping laser (1064 nm) passes
two electro-optical modulators for intensity and polarization control
before it is focused by a microscope objective. A measurement beam
(780 nm) is coaligned with the trapping laser to measure the particle’s
position in a quadrant detection scheme. A feedback system modulates
the intensity of the trapping laser. (b) Power spectral densities Sx , Sy ,
and Sz of the particle motion in the x, y, and z direction, respectively,
recorded at 10 mbar.
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Fig. 2. (a) Schematic illustration of the parabolic trapping potential
in false color. The coordinate system �x 0; y 0� is aligned with the main
axes of the potential, while the coordinate system �x; y� is not. (b) Level
scheme of the mechanical atom. The two bare eigenmodes of the
trapped particle have eigenfrequencies Ωx and Ωy , respectively. In
the presence of a driving field, corresponding to a periodic rotation
of the potential by a small angle in our case, the modes are coupled
at a frequency of ΩR. This coupling gives rise to two doublets of
dressed states, separated by the Rabi frequency ΩR.

Research Article Vol. 34, No. 6 / June 2017 / Journal of the Optical Society of America B C53



center-of-mass temperature around 1 K, effectively restricting
the particle motion to the focal plane. Note that, in principle,
one can avoid the separate measurement laser and use the scat-
tering of the trapping laser to measure the particle position.
However, this approach requires more sophisticated filtering
of the detector signal to avoid the feedback modulation of
the trapping laser reentering the feedback loop [8].

3. COUPLING THE PARTICLE’S TRANSVERSE
MODES

Let us now investigate the dynamics of the particle as the polari-
zation of the trapping laser is modulated. Considering the
z-mode to be frozen out by feedback-cooling, the trapping
potential effectively reads as

V � k − Δk
2

x 02 � k � Δk
2

y 02; (1)

with k − Δk � mΩ2
x and k � Δk � mΩ2

y . Here, we have
denoted the coordinates of the particle in the focal plane with
x 0 and y 0 for later convenience and assumed that these coordi-
nate axes are aligned with the main axes of the parabolic po-
tential, as illustrated in Fig. 2(a). In a rotated coordinate system
�x; y� with

x 0 � cos�θ�x � sin�θ�y; y 0 � − sin�θ�x � cos�θ�y; (2)

the potential takes the form

V � k − Δk cos�2θ�
2

x2 � k � Δk cos�2θ�
2

y2

− xyΔk sin�2θ�: (3)

Assume now that we periodically rotate the potential around
the z axis by a small angle δ at a driving frequency ω with a
phase φ, such that we have

θ � δ cos�ωt � φ�: (4)

To linear order in θ, we find the potential

V lin �
k − Δk

2
x2 � k � Δk

2
y2 − 2δ cos�ωt � φ�Δkxy: (5)

With the carrier frequency Ω2
0 � k∕m, the frequency splitting

Ω2
d � Δk∕m, and the coupling frequency Ω2

δ � Δkδ∕m �
Ω2

dδ, we find the following equations of motion [24]:� d 2

d t2 � γ d
dt � Ω2

0 −Ω2
d −2Ω2

δ cos�ωt � φ�
−2Ω2

δ cos�ωt � φ� d 2

d t2 � γ d
dt � Ω2

0 �Ω2
d

��
x
y

�
� F ;

(6)

where F is a force (per mass) driving the system. Here, we have
introduced the damping rate γ for both oscillators. We intro-
duce the complex amplitudes a�t� and b�t� for the oscillation
along x and y, respectively, by writing

x � Refa�t� exp�iΩ0t �g; y � Refb�t� exp�iΩ0t �g: (7)

In the slowly varying envelope approximation (neglecting
second derivatives of the amplitudes with respect to time
and considering strongly underdamped oscillators, such that
we have 2iΩ0 � γ ≈ 2iΩ0), we obtain for the equations of
motion for the oscillation amplitudes in the absence of a driving
force

i

�
_a
_b

�
� 1

2

�
ωd − iγ 2ωδ cos�ωt � φ�

2ωδ cos�ωt � φ� −ωd − iγ

��
a
b

�
;

(8)

where we have introduced the rescaled driving frequency
ωδ � Ω2

δ∕Ω0, as well as the rescaled frequency splitting ωd �
Ω2

d∕Ω0. In the limit of vanishing damping γ, the system of equa-
tions for the complexmode amplitudes a and b exactly resembles
the Schrödinger equation for a two-level system, whose levels
with complex amplitudes a and b are split in energy by ℏωd
and are coupled at the rate ωδ by a driving field oscillating at
frequency ω [25]. To solve this Rabi problem, we change to
a frame rotating at the driving frequency with the transformation

a � a�t� exp
�
−i
ω

2
t
�
;

b � b�t� exp
�
�i

ω

2
t
�
; (9)

and apply the rotating-wave approximation (neglecting counter-
rotating terms) to obtain

i
d
dt

�
a
b

�
� H

�
a
b

�
; (10)

with the coupling matrix

H � Δ
2
σz − i

γ

2
Î � ωx

2
σx �

ωy

2
σy; (11)

and the detuning Δ � ωd − ω of the driving field relative to
the level splitting, the Pauli spin matrices σi, the unit matrix Î ,
and the coupling rates ωx � ωdδ cos φ and ωy � −ωdδ sin φ.

Let us summarize our findings thus far. We have considered
the center-of-mass motion of an optically levitated nanoparticle
in the focal plane of an optical dipole trap. A periodic rotation
of the trapping potential around the optical axis by a small
angle leads to a parametric coupling between the two in-plane
modes. In the limit of vanishing damping γ, the time-
dependent energy in the modes, which is proportional to
jaj2 and jbj2, respectively, follows the same dynamics as the pop-
ulations of a two-level atom driven by a classical light field.
Figure 2(b) illustrates the level scheme of our mechanical atom.
The two bare eigenmodes of the particle have frequenciesΩx and
Ωy, respectively. The level splitting of the mechanical atom is
given by ωd, which equals Ωy −Ωx in the limit of the carrier
frequencyΩ0 largely exceeding the splitting ωd . It is well known
that the populations of a two-level system under a near-resonant
drive undergo oscillations at the generalized Rabi frequency

ΩR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
δ � Δ2

q
: (12)

4. EXPERIMENTAL RESULTS

A measurement of such a classical Rabi experiment is shown in
Fig. 3(a). We initialize the system by feedback-cooling the
y-mode to a center-of-mass temperature of 0.04kBT . Using
parametric driving, we moderately heat the x-mode to
1.4kBT . At time t � 0, any modulation of the trapping
potential is switched off and the modes are freely evolving.
The experiment is conducted at a pressure of 5 × 10−6 mbar,
where the inverse damping rate of the particle is several orders
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of magnitude longer than the duration of the experiment. At
time t � 3 ms, we start to modulate the polarization direction
of the trapping laser at a frequency ω � 2π × 28.7 kHz, which
is very close to the frequency splitting of the x- and y-modes.
We observe oscillations of the energy between the two
oscillation modes of the particle in the focal plane at a
frequency ΩR � 2π × 540 Hz.

We can conveniently illustrate the behavior of our system on
the Bloch sphere, shown in Fig. 3(b). When all energy in the
system resides in the x-mode (y-mode), the Bloch vector
describing the system points to the north pole (south pole)
of the sphere. Points on the equator denote states with equal
amplitude in both modes, where the relative phase between the
modes determines the location along the equator. Accordingly,
the measurement shown in Fig. 3(a) starts close to the north
pole. Turning on the driving generates a rotation vector,
around which the Bloch vector rotates at a frequency ΩR.
The component of the rotation vector in the equatorial plane
is given by the coupling frequency ωδ, while the out-of-plane
component is determined by the detuning Δ, which therefore
governs the contrast of the energy transfer in Fig. 3(a).

We have experimentally investigated the scaling of the Rabi
frequency as a function of driving strength, which is set by the
angle δ by which the potential is rotated and, in our case, scales
linearly with the voltage applied to EOM2. In the absence of
detuning, the Rabi frequency scales linearly with driving
strength, according to Eq. (12). In Fig. 4(a), we plot as solid
diamonds the Rabi frequency extracted from the oscillations in
the population ja�t�j2 and jb�t�j2 for four different driving
strengths, given as the amplitude of the sinusoidal voltage
applied to EOM2. The experimental results are in good
agreement with the expected linear scaling. In Fig. 4(b), we
experimentally investigate the scaling of the Rabi frequency
with detuning Δ. The data correspond well with the theoretical
expectation according to Eq. (12).

So far, we have discussed the signatures of the coupling be-
tween the two oscillation modes of the trapped particle in the
focal plane in the time domain by observing the temporal evo-
lution of the mode temperatures, which are proportional to the
populations ja�t�j2 and jb�t�j2. It is instructive to take a com-
plementary view at the dynamics of the parametrically coupled
system in the frequency domain. Let us recall that, as shown in
Fig. 1(b), the power spectral density of the particle’s motion,
driven by the white noise of the thermal fluctuations of the
bath, renders a visualization of the mode distribution in
frequency space. When the driving field coupling the two
oscillation modes of the particle in the focal plane is switched
off, we found one Lorentzian mode for each degree of freedom
of the particle [Fig. 1(b)]. Interestingly, when the driving at a
frequency close to resonance (Δ ≈ 0) is turned on, each mode
in the focal plane splits into a doublet of dressed states, as
shown in Fig. 5(a) and schematically illustrated in Fig. 2(b).
The data were acquired at a pressure of 5 × 10−6 mbar. The
linewidth of the hybrid modes in Fig. 5(a) is Fourier limited
by the acquisition time. Clearly, our system is located well
in the strong coupling regime, where the dressed-mode split-
ting, which is the classical analogy of the Autler–Townes split-
ting [26], exceeds the linewidth. The Rabi oscillations observed
in the populations ja�t�j2 and jb�t�j2 in the time domain in
Fig. 3(a) are simply the beating between these hybrid modes
and, accordingly, the dressed-mode splitting equals the Rabi
frequency. In Fig. 5(b), we plot the measured frequencies of
the dressed modes as a function of the frequency of the driving
field. The spectrum shown in Fig. 5(a) corresponds to the
dashed line in Fig. 5(b). We observe a characteristic anticross-
ing of the hybrid modes as the driving frequency is swept across
resonance ω � Ωy − Ωx . The inset of Fig. 5(b) shows a sche-
matic illustration of the mode structure of the parametrically
coupled system. The modulation of the coupling at frequency
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ω generates sidebands on the bare eigenmodes. It is the upper
sideband Ωx � ω of the lower bare mode Ωx that hybridizes
with the bare mode at Ωy to form the upper doublet of dressed
modes, while the lower sideband Ωy − ω of the upper mode
hybridizes with the bare mode Ωx to generate the lower
doublet. The nonresonant sidebands Ωx − ω and Ωy � ω are
neglected in the analysis when applying the rotating-wave
approximation. Our coupled-mode theory Eq. (10) yields the
dressed-mode frequencies

Ω�
x � Ω0 �

ω

2
�ΩR

2
;

Ω�
y � Ω0 −

ω

2
�ΩR

2
; (13)

which fit our data well [red lines in Fig. 5(b)]. From the fit, we
extract the resonant Rabi frequency ΩR�Δ � 0� for three
different driving strengths and add the result to the plot in
Fig. 4(a) as open symbols. The data extracted from the eigen-
mode analysis in the frequency domain correspond well with
that obtained from time domain measurements of the Rabi

oscillations (black diamonds). We note that the dependence of
the Rabi frequency on the detuning Δ investigated in Fig. 4(b)
is reproduced by the dependence of the frequency splitting of
the dressed modes on the driving frequency found in Fig. 5(b).

5. DISCUSSION

Let us summarize the similarities of our classical two-mode
system to a quantum-mechanical two-level system. We have
found that the complex slowly varying amplitudes of the para-
metrically coupled classical harmonic oscillators follow an equa-
tion of motion that has the form of the Schrödinger equation
for the complex amplitudes of a quantum-mechanical two-level
system. Accordingly, we can apply the machinery of coherent
control, regularly used to control qubits, to classical harmonic
oscillator systems [14,17,20]. For completeness, we point out
some limitations of the mechanical atom. There are two lim-
itations to the driving strength and thereby to the reachable
Rabi frequency. The first limitation is set by the carrier fre-
quency Ω0 of the oscillators and concerns the step from a
Newtonian equation of motion, which is of second order in
time, to a coupled-mode equation, which is of first order in
time. The transition from Eq. (6) to Eq. (8) required the slowly
varying envelope approximation, which is clearly violated when
the temporal variation of the amplitudes a�t� and b�t�, given by
the Rabi frequency ΩR, becomes comparable to the carrier fre-
quency Ω0. The second limitation regards our specific exper-
imental embodiment of the mechanical atom and concerns
the coupling strength ΩR achievable relative to the level split-
ting Ωy − Ωx . The coupling frequency ωδ entering Eq. (8) is
proportional to the level splitting ωd and the rotation angle
of the potential δ. In order for our linear approximation of
the potential in Eq. (5) to hold, the rotation angle has to fulfill
the condition δ ≪ 1, which in turn means that in this limit, the
Rabi frequency can never become comparable to the level split-
ting and our system cannot enter the regime of ultrastrong cou-
pling where the rotating-wave approximation breaks down.
Even more important than these practical limitations are the
differences between our classical analog and the quantum-
mechanical two-level system. A clear signature of the classical
nature of our system is the absence of Planck’s constant. Of
course we could multiply both sides of Eq. (8) with ℏ and
express all frequencies in the coupling matrix as energies.
However, this operation cannot mask the fact that our classical
theory neither implies any correspondence between energy and
frequency nor does it require any discrete gridding of phase
space. More importantly, our mechanical atom illustrates the
well-known fact that the miraculous nature of quantum me-
chanics is not captured by the Schrödinger equation. The quan-
tization of states into discrete modes, the time evolution of
these modes under an equation first order in time, interference
between these modes, and uncertainty relations between
Fourier-conjugate variables are features characteristic for any
wave theory and not special to quantum mechanics. Instead,
the essence of quantum mechanics comes with the
Copenhagen interpretation, for example, predicting the col-
lapse of the wave function under a projective measurement.
In our classical system, no such collapse exists. For example, in
Fig. 3(a), we continuously observe the population in the two
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oscillation modes as they undergo Rabi oscillations in a single
experimental run. The analogous measurement on a quantum-
mechanical two-level system would require multiple experi-
ments with identically prepared systems to generate statistics,
since the quantum-mechanical populations have to be inter-
preted as probabilities to find the system in the respective state.
Our system nicely illustrates the fact that the collapse of the
wave function under a projective measurement does not have
to be interpreted as a nuisance. Instead, a projective measure-
ment is a very convenient method to reliably initialize a quan-
tum-mechanical system, a resource not available in the realm of
classical physics. For example, initializing our classical two-level
atom in some eigenstate, i.e., bringing its Bloch vector to one of
the poles of the Bloch sphere, requires a sophisticated coherent
control protocol instead of a single projective measurement
[20]. Finally, we point out that our equation of motion for
the mechanical atom Eq. (10) does not contain any effect re-
sembling spontaneous emission. This fact does not harm the
analogy to the quantum-mechanical two-level system, since
also the Schrödinger equation does not include spontaneous
transitions. In the presence of finite damping γ, however,
the classical “Hamiltonian” coupling matrix Eq. (11) becomes
non-Hermitian and the total population of the mechanical
atom is leaking out of the system.

6. CONCLUSIONS

In conclusion, we have presented a mechanical system of two
parametrically coupled classical harmonic oscillators that fol-
lows an equation of motion that is formally equivalent to
the Schrödinger equation describing the interaction of a quan-
tum-mechanical two-level system interacting with a classical
field. We have provided two complementary views on the
dynamics of our system. The first view focused on the Rabi
oscillations, transferring energy between the parametrically
coupled oscillator modes in the time domain. The second view
focused on the frequency spectrum of the coupled-mode sys-
tem, where the driving field dresses the bare eigenmodes giving
rise to a set of hybrid states, in analogy to the Autler–Townes
splitting. We have used our system to illustrate some properties
it shares with a quantum-mechanical two-level atom and to fi-
nally point out some unique features of quantum mechanics,
which reach beyond the realm of our classical analogy.
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