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Abstract
We report capacitance measurements in top-gated graphene sheets as a function of charge
carrier density. A measurement method using an LC-circuit provides high sensitivity to small
capacitance changes and hence allows the observation of the quantum part of the capacitance.
The extracted density of states has a finite value of 1 × 1017 m−2 eV−1 in the vicinity of the
Dirac point, which is in contrast to the theoretical prediction for ideal graphene. We attribute
this discrepancy to fluctuations of the electrostatic potential with a typical amplitude of
100 meV in our device.

PACS numbers: 81.05.ue, 72.80.Vp, 84.37.+q

(Some figures may appear in colour only in the online journal)

1. Introduction

The number of available electronic states at the Fermi level
determines the transport characteristics of electronic devices.
A solid understanding of the density of states is hence
crucial for the interpretation of the electronic properties a
given system exhibits. In two-dimensional (2D) electron gases
in semiconductor heterostructures, experiments mapping the
density of states directly via the quantum capacitance were
conducted in the 1980s [1 (and references [6–12] therein), 2]
and are today standard characterization tools for these
structures. More recently, the energy level spectrum of carbon
nanotubes was experimentally observed in measurements of
the quantum capacitance [3].

An infinite single-layer graphene sheet is expected to
show a linear density of states that vanishes at the charge
neutrality point [4]. The experimental findings of conductance
measurements, however, contrast this theoretical prediction
by showing a minimum conductivity of the order of 4(e2/h),
which indicates a finite charge carrier density [5, 6]. Since the
quantum term in the capacitance gives insight into the density
of states, both theoretical [7, 8] and experimental [9–11]
studies of the quantum capacitance have been carried out
for graphene within the last few years. All measurements
show a nonzero value of the density of states at the Dirac

point, which is commonly interpreted as originating from
potential fluctuations in the graphene sheet. Here, we discuss
experiments on a top-gated single-layer graphene ribbon and
analyse the data in a self-consistent manner not making any
theoretical assumptions about the density of states.

2. Theoretical background

A classical plate capacitor consists of two well-conducting
plates arranged in parallel to each other and separated by a
dielectric layer of a certain thickness. Its capacitance can be
calculated considering material and geometric parameters of
the system. If the density of states on one of the plates is finite,
however, adding a charge carrier costs kinetic energy due to
the shift of the Fermi level. Since this required extra energy
reduces the total capacitance of the system, the density of
states is directly reflected in an additional capacitance term.
As visualized in the cross-section in figure 1(a), a locally
gated graphene device can be viewed as a plate capacitor, with
one plate being the top-gate electrode and the other being the
graphene sheet.

The total capacitance between the gate and the electron
gas can be derived from the electrostatics describing the
system [12–14]. A finite applied bias −|e|VTG introduces
a difference in the electrochemical potentials of the metal
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Figure 1. (a) Schematic cross-section of a top-gated graphene
sample. The graphene flake (black) is contacted with gold
electrodes (orange) and covered partly by an alumina/gold top-gate
(grey/red). (b) Schematic diagram of the electrostatics of the
structure showing the change in electrochemical potential between
the top-gate electrode and the graphene sheet. (c) Circuit scheme
of the measured system.

top-gate electrode, µM, and of the graphene, µG. As sketched
in figure 1(b), it consists of the Fermi energy EF in graphene,
the electrostatic potential across the dielectric as obtained by
solving Poisson’s equation, and the two work functions χ

and W of graphene and the metal, respectively. The effective
potential difference is therefore given by

µG − µM = |e|VTG = EF +
|e|2ns

εε0
d + const, (1)

where ns is the charge carrier density in the graphene layer,
d is the thickness of the dielectric layer and the constant term
includes the work function difference of the two materials,
which can be neglected for the analysis provided that it is
gate-voltage-independent. Differentiating equation (1) with
respect to ns gives an expression for the capacitance per unit
area,

1

C/A
=

d(|e|VTG)

e2dns
=

dEF(ns)

e2dns
+

d

εε0
, (2)

where the second term on the right-hand side can be identified
as the inverse of the geometric capacitance per unit area
Cg/A. The other term has the dimensions of a capacitance
and is inversely proportional to the density of states D(EF) =

dns/dEF. The quantity e2D(EF) is the so-called quantum
capacitance per unit area Cq/A [12], which describes an
effective decrease of the total sample capacitance. Since it
is connected in series to Cg, the quantum capacitance will
dominate the total capacitance if it takes values smaller
than Cg.

3. Measurement setup

The temperature for all measurements was 1.7 K, achieved
in a variable temperature insert 4He cryostat. For basic
characterization of the device, transport measurements using
standard lock-in techniques were carried out in addition to

quantum capacitance measurements. For the latter, the size
of the expected signal was of the order of several fF and
hence a high measurement resolution was required. Since
frequencies can be measured with high accuracy, we used an
LC-circuit and recorded changes in its resonance frequency
fres. Figure 1(c) shows the circuit model of our setup, with the
oscillator consisting of an inductor (L = 100 µH) placed at
room temperature in parallel to the setup capacitance C . The
main contribution to C comes from the wiring of the cryostat
with a capacitance Ccables ≈ 340 pF for the coaxial cables. In
parallel to this, the series connection of Cg and Cq forms the
sample capacitance Cs.

During the measurements, an oscillation amplitude of
20 mV was maintained in the resonator by an external drive.
The resulting self-resonant frequencies were 850–900 kHz
and the relative sensitivity for frequency changes was 1 f ≈

2.5 × 10−7. Converted to capacitance changes, an accuracy of
the order of 170 aF was achievable with this setup.

4. Sample fabrication

Standard mechanical exfoliation [15] of graphite flakes was
used to obtain few-layer graphene on Si/SiO2 substrate.
To exclude stray capacitances from the back gate, the
silicon substrate was undoped. Single-layer flakes were
identified using an optical microscope, and subsequent
atomic force microscopy (AFM) measurements as well as
Raman spectroscopy [16, 17] were carried out to verify
their single-layer nature. By electron beam lithography and
subsequent evaporation of Cr/Au (2 nm/40 nm), electrical
contacts were defined. The graphene sheets were structured
by reactive ion etching and a patterned top-gate was deposited
after a third electron beam lithography step. As a dielectric for
the top-gate, we used Al2O3, which was obtained in cycles of
depositing 1 nm of aluminum followed by a 3 min period of
increased oxygen pressure in the deposition chamber leading
to the complete oxidation of the thin Al film. The resulting
oxide thickness of four such cycles is approximately 12 nm.
Deposition of Ti/Au (5 nm/50 nm) in the same evaporation
chamber formed the top-gate electrode. Figure 2(a) displays
an AFM image of the device measured for this work.

5. Results and discussion

Figure 2(b) shows a two-terminal transport measurement
taken with a current bias of 1 nA. The Dirac point is visible
as a resistance maximum and only slightly shifted away from
zero top-gate voltage. Since we do not know the precise
thickness and the dielectric constant of the aluminum oxide,
we can only estimate the geometric capacitance of the top-gate
to be Cg ≈ 6 fF µm−2. Using this estimate, a mobility of
2000–3000 cm2 V s−1 is extracted for the device.

The change in resonance frequency fres as a function
of applied top-gate voltage VTG is displayed in figure 3(a).
A maximum is observed close to zero gate voltage,
which coincides with the maximum in the transport curve
(figure 2(b)) and therefore marks the Dirac point. At high
charge carrier densities, the resonance frequency reaches a
constant value, indicating the dominant influence of the cable
capacitance. We are interested in the relative change of fres
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Figure 2. (a) Atomic force microscope image of the device studied
here. The electrodes are coloured corresponding to the scheme in
figure 1(a). (b) Two-point resistance obtained in transport
measurements.

and therefore define the magnitude δm ≡ 1 f (VTG)/ f0, with
f0 being the voltage-independent background frequency (see
the right scale in figure 3(a)).

To determine the changes in quantum capacitance from
the frequency measurement, the circuit diagram has to be
considered. Far away from the Dirac point, we expect Cq to
be too large to affect the total capacitance, which is hence
given by Ccables + Cg in this limit. The total capacitance of the
equivalent circuit in figure 1(d) can be written as

C(VTG) = Ccables + Cg −

[
Cg −

(
1

Cg
+

1

Cq

)−1
]

, (3)

where the term outside the square brackets is constant at
all top-gate voltages and only the term inside is varying,
causing the change in capacitance 1C(VTG). This expression
describing 1C can be simplified to C2

g/(Cg + Cq).
The resonance condition of an LC-circuit fres =

1/(2π
√

LC(VTG)) can be expanded for small variations 1C
of the capacitance, yielding 1C = −2(Ccables + Cg)1 f/ f0.
Applying this relation to the frequency data yields the curve
displayed in figure 3(b). A minimum is visible at the charge
neutrality point and an increase of 1C with increasing
density is observed. In this regime, the quantum capacitance
dominates the signal. The transition to a constant capacitance
value at large top-gate voltages indicates that Cq is negligible
beyond ±1 V.

Combining the two expressions for 1C relates the
quantum capacitance to the cable capacitance, the geometric
capacitance and the measured frequency:

Cq = Cg
α − δm

δm
, (4)
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Figure 3. (a) Resonance frequency as a function of applied top-gate
voltage VTG. (b) Change in total capacitance determined from the
frequency measurements in (a). (c) Relation between Fermi energy
and top-gate voltage as deduced from equation (7). The different
curves (black lines) are obtained for different values of Cg (from the
outermost to the innermost curve: 4.8, 5.8 and 6.8 fF µm−2). The
dashed curve shows the theoretically expected dependence for a
perfectly clean graphene sheet. To compensate for the shift of
the Dirac point towards negative voltages, the horizontal axis in
(a), (b) and (c) is offset by 0.3 V.

where α = Cg/2Ccables. This equation contains only
experimental parameters and will later be used to deduce the
density of states D(E) = Cq(VTG)/|e|2.

In order to extract the density of states as a function of the
Fermi energy, the top-gate voltage axis has to be transformed
into energy. To avoid any a priori assumptions about the
density of states, we do not use the linear dispersion but start
with the electrostatic configuration described by equation (1).
The charge carrier density ns is obtained by integrating the
density of states D(E) over all energies between the Dirac
point and the Fermi energy EF and can be substituted to give

|e|VTG = EF +
|e|2

εε0
d

∫ EF

0
D(E)dE . (5)

As shown above, both the geometric capacitance Cg and the
quantum capacitance Cq enter this expression. The change in
Fermi energy for a given change in top-gate voltage can hence
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be written as

∂ EF

∂VTG
= |e|

[
1 +

Cq(VTG)

Cg

]−1

. (6)

The relation between the capacitances involved and the
measured frequency identified before can be included in
equation (6). An expression for the Fermi energy which
depends on the applied top-gate voltage is gained by
integration over VTG:

EF(VTG) =
|e|

α

∫ VTG

VD

δm(V ′

TG)dV ′

TG, (7)

where VD is the gate voltage at the Dirac point. Here the
geometric capacitance is the only parameter our device does
not allow us to determine from the data directly. We can
however estimate it from the parallel plate capacitor geometry
(as has been done above to deduce the charge carrier mobility)
to be Cg ≈ 6 fF µm−2. In addition to the ribbon device,
a bilayer Hall bar located on the same chip was used to
determine the charge carrier density from Hall measurements.
A geometric capacitance of Cg ≈ 5.8 fF µm−2 was obtained
by this method. Since the two values are comparable, the
estimate for the free parameter Cg seems reasonable.

Equation (7) can now be applied to the data assuming
a specific Cg. In figure 3(c), the obtained Fermi energy is
plotted as a function of top-gate voltage for three different
values of Cg as well as for an ideal graphene sheet (dashed
curve). As expected, an increase of |EF| with increasing
|VTG| is observed. This effect is strong at small voltages. The
(unphysical) saturation at |VTG| > 1 V indicated in figure 3 is
due to the dominating cable capacitance. For all experimental
curves, the Fermi energy at a certain top-gate voltage is below
the theoretically expected value. As the noise in the frequency
measurement leads to an error in the EF(VTG) relationship
extracted from the measurement, an error analysis is done.
The accuracy is estimated assuming a Gaussian probability
density distribution for the relative frequency change 1 f/ f0.
Its width is given by the variance of the noise in δm,
yielding σ = 2.5 × 10−7. The resulting error bars indicated in
figure 3(c) are small in comparison to the uncertainty given by
the parameter Cg.

Equations (4) and (7) now allow us to convert the data
in figure 3(b) into a D(EF) plot. The result is shown in
figure 4 for different Cg values between 4.8 and 6.8 fF µm−2.
For comparison, the dashed line in figure 4 displays the
theoretical density of states of perfectly clean graphene given
by D(EF) = 2EF/π(vFh̄)2 [4]. In particular, at low energies a
large discrepancy is observed between experiment and theory.
Instead of the linear increase starting at zero, a nearly constant
value of D(EF) ≈ 1 × 1017 m−2 eV−1 is maintained in the
interval between EF = ±50 meV. An increase in the number
of states towards higher energies is observed. However, since
the signal to noise ratio decreases rapidly as the measurement
value is constant at high charge carrier densities, the errors
in the extracted D(EF) become very large outside the interval
limited by the grey areas in figure 4. The full width at half
maximum of the probability density function of D(EF) was
used to determine the error bars shown in the graph.

The observed nonzero density of states around the charge
neutrality point indicates a finite number of states. This is
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Figure 4. Density of states as a function of Fermi energy. The black
solid lines show the experimental data assuming different Cg (from
the outermost to the innermost curve: 4.8, 5.8 and 6.8 fF µm−2).
Error bars are indicated and the theoretically expected density of
states for a perfectly clean graphene sheet is drawn as the dashed
line. The bias window defined in figure 3 is plotted with dotted lines
and the disorder amplitude is indicated by the red arrow.

conceivable in the presence of local potential fluctuations in
the graphene sheet. From the flat portion of the density of
states in figure 4, we can estimate a characteristic amplitude
of the fluctuations of 100 meV. Comparing our results with
transport measurements on graphene nanoribbons [18–22]
and scanning tunnelling electron transistor experiments [23],
we find good agreement. As these samples were not covered
with any dielectric unlike the sample used in our experiment,
we can infer that the gate oxide did not induce a large amount
of additional disorder in our graphene device.

6. Conclusions

We have performed transport and capacitance measurements
on a locally gated single-layer graphene sheet. With our
measurement setup, using a resonant circuit we could measure
the capacitance with very high sensitivity. The density of
states as a function of Fermi energy was determined from
experimental data. As the main results, we extracted a
constant density of states D(EF) ≈ 1 × 1017 m−2 eV−1 around
the Dirac point and determined the size of the disorder
potential to be ≈100 meV, which is comparable to other
studies.

It has recently been shown that the reduction of the dis-
order fluctuations (e.g. by using different substrates [24, 25])
improves the quantum capacitance signal dramatically and
even allows for the investigation of Landau level formation
in capacitance measurements [26–28].

References

[1] Smith T P, Goldber B B, Stiles P J and Heiblum M 1985 Phys.
Rev. B 32 2696

[2] Stern F 1983 Appl. Phys. Lett. 43 974
[3] Ilani S, Donev L A K, Kindermann M and McEuen P L 2006

Nature Phys. 2 687
[4] Wallace P R 1947 Phys. Rev. 71 622

4

http://dx.doi.org/10.1103/PhysRevB.32.2696
http://dx.doi.org/10.1063/1.94171
http://dx.doi.org/10.1038/nphys412
http://dx.doi.org/10.1103/PhysRev.71.622


Phys. Scr. T146 (2012) 014009 S Dröscher et al

[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson
M I, Grigorieva I V, Dubonos S V and Firsov A A 2005
Nature 438 197

[6] Tan Y-W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H,
Das Sarma S, Stormer H L and Kim P 2007 Phys. Rev. Lett.
99 246803

[7] Fang T, Konar A, Xing H and Jena D 2007 Appl. Phys. Lett.
91 092109

[8] Shylau A A, Klos J W and Zozoulenko I V 2009 Phys. Rev. B
80 205402

[9] Chen Z and Appenzeller J 2008 IEEE IEDM Tech. Digest
21.1 509

[10] Xia J, Chen F, Li J and Tao N 2009 Nature Nanotechnol.
4 505

[11] Dröscher S, Roulleau P, Molitor F, Studerus P, Ensslin K and
Ihn T 2010 Appl. Phys. Lett. 96 152104

[12] Luryi S 1988 Appl. Phys. Lett. 52 501
[13] Ihn T 2010 Semiconductor Nanostructures (Oxford: Oxford

University Press)
[14] Davies J H 1998 The Physics of Low Dimensional

Semiconductors (Cambridge: Cambridge University Press)
[15] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,

Dubonos S V, Grigorieva I V and Firsov A A 2004 Science
306 666

[16] Ferrari A C et al 2006 Phys. Rev. Lett. 97 187401

[17] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold
C and Wirtz L 2007 Nano Lett. 7 238

[18] Stampfer C, Güttinger J, Hellmüller S, Molitor F, Ensslin K
and Ihn T 2009 Phys. Rev. Lett. 102 056403

[19] Molitor F, Jacobsen A, Stampfer C, Güttinger J, Ihn T and
Ensslin K 2009 Phys. Rev. B 79 075426

[20] Todd K, Chou H T, Amasha A and Goldhaber-Gordon D 2009
Nano Lett. 9 416

[21] Liu X, Oostinga J B, Morpurgo A F and Vandersypen L M K
2009 Phys. Rev. B 80 121407

[22] Han M Y, Brant J C and Kim P 2009 Phys. Rev. Lett.
104 056801

[23] Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H,
Klitzing K V and Yacoby A 2008 Nature Phys. 4 144

[24] Dean C R et al 2010 Nature Nanotechnol. 5 77
[25] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P,

Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P
and LeRoy B J 2011 Nature Mater. 10 282

[26] Young A F, Dean C R, Meric I, Sorgenfrei S, Ren H, Watanabe
K, Taniguchi T, Hone J, Shepard K L and Kim P 2010
arXiv:1004.5556v2

[27] Ponomarenko L A, Yang R, Gorbachev R V, Blake P, Mayorov
A S, Novoselov K S, Katsnelson M I and Geim A K 2010
Phys. Rev. Lett. 105 136801

[28] Henriksen E A and Eisenstein J P 2010 Phys. Rev. B 82 041412

5

http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1063/1.2776887
http://dx.doi.org/10.1063/1.2776887
http://dx.doi.org/10.1103/PhysRevB.80.205402
http://dx.doi.org/10.1038/nnano.2009.177
http://dx.doi.org/10.1038/nnano.2009.177
http://dx.doi.org/10.1063/1.3391670
http://dx.doi.org/10.1063/1.99649
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1103/PhysRevLett.97.187401
http://dx.doi.org/10.1021/nl061702a
http://dx.doi.org/10.1103/PhysRevLett.102.056403
http://dx.doi.org/10.1103/PhysRevB.79.075426
http://dx.doi.org/10.1021/nl803291b
http://dx.doi.org/10.1103/PhysRevB.80.121407
http://dx.doi.org/10.1103/PhysRevLett.104.056801
http://dx.doi.org/10.1103/PhysRevLett.104.056801
http://dx.doi.org/10.1038/nphys781
http://dx.doi.org/10.1038/nnano.2010.172
http://dx.doi.org/10.1038/nmat2968
http://arxiv.org/abs/1004.5556v2
http://dx.doi.org/10.1103/PhysRevLett.105.136801
http://dx.doi.org/10.1103/PhysRevB.82.041412

	1. Introduction
	2. Theoretical background
	3. Measurement setup
	4. Sample fabrication
	5. Results and discussion
	6. Conclusions
	References

