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a b s t r a c t

The detection of the quantum dot charge state using a quantum point contact charge detector has
opened a new exciting route for the investigation of quantum dot devices in recent years. In particular,
time-resolved charge detection allowed the precise measurement of quantum dot shot noise at sub-
femtoampere current levels, and the full counting statistics of the current. The technique can be applied
to different material systems and holds promise for future application in quantum dot based quantum
information processing implementations.We review recent experiments employing this charge detection
technique, including the self-interference of individual electrons and back-action phenomena.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Quantum dots are semiconductor nanostructures of sizes
ranging between a few to a few hundred nanometers in which
electrons, holes, or excitons are confined so strongly in all three
spatial directions that the charging energy and the quantum con-
finement energy are of similar magnitude. The term quantum dot
was coined [1] as an extrapolation from one-dimensional con-
finement in quantum wells, via two-dimensional confinement in
quantum wires to complete three-dimensional confinement in
quantum dots. This happened at a time when nanofabrication
technology made such rapid progress that the control over semi-
conductor nanostructure devices was tremendously improved, en-
abling themeasurement of the Coulombblockade effect in electron
transport experiments at liquid helium temperatures and below.
Since then the charge states [2] and recently also the spin states
of quantum dots [3] have been heavily investigated experimen-
tally. The suggestion to use semiconductor quantum dots as spin-
qubits [4] led to the development of well-controlled few-electron
quantum dots [5–8], also called artificial atoms.
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2. Time-averaged charge detection

2.1. Overview

Monitoring quantum dot charging with individual electrons
using a quantum point contact charge detector was introduced
in 1993 by Field and coworkers [9]. This early experiment was
designed to detect the oscillatory electrostatic potential variations
of a quantum dot tuned through Coulomb blockade oscillations.
The technique was later used in experimental designs aiming at
controlled dephasing of electrons in an interferometer [10], and at
the measurement of the charge distribution in a Kondo-correlated
few-electron quantum dot [7]. In the latter experiment it was
demonstrated that a charge detector allows one to determine the
absolute number of electrons in a few-electron quantum dot, even
if the direct current through the dot is too small to be measured.
The application of the technique was then extended to double
quantum dot devices [11–13], where it can serve to establish
the regime, where each of the two quantum dots is occupied
only with a single electron [12,13]. At that time, the theory of
quantummeasurementwith quantumpoint contact detectors was
also investigated [14–22].

2.2. Principle of operation

The inset of Fig. 1 shows a scanning force microscope image
of a sample fabricated on the basis of a Ga[Al]As heterostructure
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Fig. 1. Operation principle of a quantum dot charge detector. The inset shows the
quantumdot sample tunablewith gatesG1 andG2. The charge sensor is capacitively
coupled to the dot, and tunable with gate P. The upper panel shows the current Idot
through the quantum dot exhibiting three conductance resonances as a function
of the voltage VG2 applied to G2. The lower panel shows the conductance GQPC of
the quantum point contact detecting the addition of individual electrons to the
quantum dot.

containing a two-dimensional electron gas 34 nm below the
surface [23]. The surface has been patterned by local anodic
oxidation to form a quantum dot structure, an adjacent quantum
point contact, and in-plane gates P, G1, and G2. The oxide lines,
appearing bright in the image, deplete the electron gas below.
The structure allows one to drive a current through two separate
electronic circuits, as indicated by the white arrows. On the
one hand, the quantum dot current Idot is measured. It exhibits
Coulomb blockade with intermittent resonances at gate voltages
VG2 where the electron number in the dot is increased by one.
On the other hand, the conductance GQPC of the quantum point
contact is measured. No direct current can flow from one circuit
to the other. Whenever a negatively charged electron is added to
the quantum dot, the conductance of the quantum point contact is
reduced by ∆GQPC as a result of the repulsive Coulomb potential
created in the quantum point contact (see dashed lines). The
overall slope of GQPC is the result of direct capacitive coupling
between the quantum point contact and the gate G2. For a given
geometry, the best sensitivity of the charge detector is achieved
if it is operated at the point of maximum slope in the GQPC vs. VP
characteristic at a conductance between complete pinch-off and
the first conductance plateau at 2e2/h (not shown). The charge
detector interacts most strongly with the quantum dot system if
it is situated as close as possible to the dot, and if metallic top
gates, which screen the interaction, are either entirely avoided
(as in the structure shown in the inset of Fig. 1), or at least
minimized in area. The signal-to-noise ratio in the measured
quantum point contact current can be maximized by increasing
the source–drain bias voltage; however, the upper limit is given
by the magnitude of the quantization energy transverse to the
current flow which is typically of the order of 1 meV in Ga[Al]As
devices. As a consequence, typical source–drain voltages are well
below 1 mV, and typical currents stay below 100 nA. The noise
in the detector circuit is usually governed by the noise of the
low-frequency current–voltage converter which, connected to the
highly capacitive wiring of a dilution refrigerator, can suffer from
a considerable capacitive noise gain.
Measuring the quantum dot current alone does not allow one

to extract the strengths of the tunneling coupling of quantum dot
states to source and drain contacts ΓS and ΓD. In the single-level
transport regime of the quantum dot, the additional measurement
a

b c

Fig. 2. (a) Time-resolved signal of a quantumpoint contact detectormeasured close
to a conductance resonance of the quantum dot. The signal switches randomly by
∆GQPC between two distinct levels. (b) Schematic energy diagram of the quantum
dot showing the situation Vdot = 0. (c) The same for Vdot � kBT .

of the quantum point contact conductance gives additional
information allowing one to extract ΓS and ΓD for ground states,
and in favorable cases even for excited states [24,25].
Quantum point contact charge detectors have been employed

for the measurement of charge rearrangements within a quan-
tum dot at high magnetic fields and constant electron number,
where spatially separate edge channels, so-called Landau shells,
exist [26]. Different Landau shells couple with different capaci-
tance to the charge detector and can thereby be distinguished by
the detector.
Naturally, a quantum point contact charge detector is also

sensitive to undesirable charging of impurity sites in the vicinity of
the quantum dot system of interest. Such charge rearrangements
are known to spoil conventional conductance measurements of a
quantumdot. Using a dot–quantumpoint contact arrangement in a
scanning gate experiment, such impurity centers could be localized
in real space, and their density could be estimated [27].
The principle of charge detection is not limited to the

Ga[Al]As material system. The technique has, for example, been
successfully applied to quantum dots in InAs nanowires [28,
80], in Si/SiGe [29], and to quantum dots in graphene [30].
In the graphene experiment, the constriction used for charge
detection does not, however, exhibit conductance quantization,
but the strong potential fluctuations in the constriction rather
lead to localization of charge carriers which manifests itself in
conductance resonances measured as a function of the plunger
gate voltage. The steep slopes of these resonances gives excellent
charge sensitivity, similar to charge detection experiments with
quantum dots [31] or single-electron transistors [32,33].

3. Time-resolved charge detection

The first time-resolved charge detection measurements on
quantumdotswere not performedwith quantumpoint contact de-
tectors, but with radio-frequency single-electron transistors [34–
36]. Time-resolved measurements with quantum point contact
charge detectors started with tuning up the bandwidth of conven-
tional low-frequency setups [23]. As mentioned above, for a given
cryostat wiring, the capacitive noise gain of the current–voltage
amplifier limits the achievable bandwidth. Using such setups,
bandwidths of up to 30–40 kHz have been reported in the liter-
ature [37,38], limiting the time resolution to the order of ten mi-
croseconds.
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In measurements with time-independent gate voltages, the
charge detector witnesses electrons tunneling into and out of
the quantum dot in real time. This manifests itself in random
switching of the detector conductance between two distinct levels,
as shown in Fig. 2(a).When the conductance switches downwards,
an electron has entered the dot; if it switches upwards, an electron
has left the dot. In most cases the analysis assumes that the
quantumdot is in the single-level transport regime. In this case, the
time separations between tunneling-in and tunneling-out events
follow the exponential decay law

pin/out(t)dt = Γin/oute−Γin/outtdt

with characteristic tunneling-in and tunneling-out rates Γin/out.
This decay law has been confirmed experimentally [23,38,39].
The autocorrelation function of such a two-level randomsignalwas
calculated by Machlup in 1954 [40]. The interpretation of the rates
Γin and Γout depends on the source–drain bias voltage Vdot applied
to the quantum dot.
If Vdot = 0 [see Fig. 2(b)], the charge detector delivers the

signal of the equilibrium fluctuations (thermal noise) of charge
carriers [23,41]. In this case,Γin = Γ f (∆E/kBT ), andΓout = Γ [1−
f (∆E/kBT )], with Γ = ΓS + ΓD being the total dot–lead coupling,
f (x) = [exp(x) + 1]−1 the Fermi–Dirac distribution function, ∆E
the difference between the electrochemical potential in the leads
and that in the dot, and T the electron temperature in the leads. A
shortcoming of the charge detection technique applied in this way
is that the detector is insensitive towhether the tunneling electron
originated from the source or from the drain contact. Tunneling
rates can be individually determined if the respective other barrier
is deliberately pinched off. In addition, this measurement delivers
the electron temperature T of the leads if the lever arm of the gate
is known from Coulomb blockade diamond measurements. It is
straightforward to see how the analysis will change if the involved
dot level is spin degenerate [38].
In contrast, if Vdot � kBT , but only a single quantum state is

in the bias window [see Fig. 2(c)], the rates Γin/out obtained from
a time trace can be interpreted directly as the tunneling rates ΓS
and ΓD [38,41]. In this case, the electron tunneling into the dot will
always originate from the source contact, and it will always tunnel
out to the drain. A detailed analysis of the energy dependence of
tunneling rates was performed by MacLean and coworkers [39].
The case of more than a single energy level in the bias windowwas
investigated by Gustavsson and coworkers in Ref. [41].
On the next level, correlations between subsequent tunneling-

in and tunneling-out events at Vdot � kBT can be considered.
For example, if we assume that such pairs of subsequent in/out
events (in the following we call the pair an event, for simplicity)
are statistically independent, we find the statistical distribution

pe(t)dt = dt
∫ t

0
dt ′pin(t ′)pout(t − t ′)

=
ΓinΓout

Γin − Γout

(
e−Γint − e−Γoutt

)
dt.

Fig. 3 showsmeasurements of this distribution function for two
different coupling asymmetries a = (Γin − Γout)/(Γin + Γout). For
almost symmetric coupling (a = 0.07) of the dot to the source and
drain lead, there is a pronounced suppression of the distribution for
small times. This is a direct consequence of the correlation between
subsequently tunneling electrons brought about by the Coulomb
blockade effect. The second electron has to wait for tunneling in
until the first electron has tunneled out of the dot. This suppression
becomes narrower in time for strongly asymmetric coupling (a =
0.90), because the system approaches the limit of a single-barrier
device in which no Coulomb blockade exists.
Counting electrons traversing quantum dots under the condi-

tion Vdot � kBT is a direct way to measure the electrical current.
Fig. 3. Distribution pe(t) of times needed for one electron to traverse the quantum
dot. Symbols are measured data points, solid lines are predictions of theory. The
two distributions corresponding to different coupling asymmetries a (see text) are
plotted on different vertical scales for clarity.

While the method finds its upper bound at the few femtoampere
level as a result of the finite bandwidth of the detector circuit, the
lower bound ofmeasurable currents is essentially given by the sta-
bility of the sample (which can be more than months for a good
one), and by the patience of the observer. The accuracy of the cur-
rent measurement scales with the number of counts N as 1/

√
N .

As a result, attoampere current levels can be measured with a one
per cent accuracy within one hour, 0.2 aA within one day.
A different class of time-resolved charge detection experiments

that we will not treat in detail here is that of pulsed gate
measurements. The time resolution of the quantum point contact
charge detector allows one to realize a so-called single-shot charge
readout of a quantum dot qubit [37]. Using this technique, the spin
of an electron injected into a quantum dot can be measured (spin-
to-charge conversion technique). In addition these experiments
give access to the spin relaxation time T1 in quantum dots. The
relaxation times between Zeeman-split levels of a one-electron
quantum dot were measured to be of the order of 1 ms at a
magnetic field of 8 T [37]. In the most recent experiments [42] it
was found that T1 is dominated by spin–orbit mediated coupling
to phonons, a mechanism that can be modified by gate voltages
that influence the orbital confinement of the electron. The values
of T1 could be changed by more than one order of magnitude with
maximum values of more than 1 s. In Ref. [43], singlet–triplet
relaxation times of several milliseconds were found in a two-
electron quantum dot using the same technique. A theoretical
discussion of the single-shot readout method is given in Ref. [44].
Time-resolved charge detection techniques have also been

applied to other material systems, such as quantum dots in
InAs nanowires [45], and they have been extended to double
quantum dot systems [46–48]. Double quantum dots are of
particular interest for several reasons that will become more
transparent below. At this point we highlight the fact that they
allow bidirectional electron counting, i.e., the direction of electron
tunneling can be determined on the single-electron level [46].
Using two quantum point contact charge detectors coupled
to a double quantum dot, cross-correlation techniques can be
applied to significantly improve the signal-to-noise ratio for charge
detection [49]. This allows one to reduce the invasiveness of the
detection process, andmay help to increase the available detection
bandwidth in setups that are noise-limited.
Time-resolved charge detection can be made considerably

faster by using amplifier setups with larger bandwidths. The low-
frequency setups described above suffer from the unavoidable
cable capacitances at the input of the current–voltage amplifier.
Significant bandwidth increase to 1 MHz has been achieved with a
cryogenic preamplifier [50] operating at a temperature of 1 K [51].
This allows mounting the amplifier closer to the sample, thus
reducing the capacitive load, and the low temperature reduces
the amplifier noise. The dissipated amplifier power of 30 µW
can easily be cooled away. However, an even stronger increase
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in measurement bandwidth has been demonstrated with radio-
frequency (RF) quantum point contact setups [52–55]. Within this
approach, the quantum point contact impedance, which is about
25 k� at the operating point, is matched to the 50� impedance of
the coaxial cables with a suitable L–C matching circuit. Resistance
changes of the quantum point contact are seen as changes in the
reflected RF power. The reflected signal is split from the incoming
wave by a directional coupler, and can then be amplified with a
commercial cryogenic RF amplifier.Müller and coworkers reported
a charge detection bandwidth of 10 MHz corresponding to a time
resolution of 50 ns limited by their demodulation setup at a carrier
frequency of about 200 MHz. Later, twice this value was reported
in Ref. [54] for a carrier frequency around 300MHz. In the ultimate
limit, the noise performance of the quantum point contact charge
detector is limited by its own shot noise, as demonstrated in
Ref. [55]. In the following we estimate the maximum bandwidth
for a shot noise limited quantumpoint contact charge detector: the
shot noise itself is given by∆In =

√
2eIQPC∆f . The amplitude of the

switching signal is estimated to be ∆IS ≈ sIQPC ≈ sVQPCe2/h, with
s ≈ 3% being a reasonable estimate for the relative change of the
quantumpoint contact conductance, and VQPC ≈ 1mV. Counting is
possible for∆In � ∆IS, giving a maximum bandwidth well below
100 MHz. It seems therefore that Ref. [55] was already reasonably
close to the maximum bandwidth. Room for improvement is,
of course, in the coupling strength between quantum dot and
detector. In systems such as InAs nanowire quantum dots read
out with a GaAs charge detector in an underlying two-dimensional
electron gas, s can reach values well above 50% [45].

4. Shot noise and full counting statistics

An alternative way of analyzing time-resolved single-electron
tunneling traces such as that shown in Fig. 2(a) is called full
counting statistics. In order to do this analysis, a time trace of
length T is divided into a reasonably large number of shorter
segments of equal length ∆T . A histogram is then plotted for the
distribution of the number N of events found in the segments (an
event is, for example, a down-switch of GQPC). An example of such
a histogram, similar to those reported by Gustavsson in Ref. [38], is
shown in Fig. 4. Themean value (firstmoment) 〈N〉 calculatedwith
this histogram gives themean current Idot = e〈N〉/∆T through the
quantum dot. However, the width of the histogram, characterized
by its second central moment (variance) 〈(N−〈N〉)2〉, is a measure
for the fluctuations 〈∆I2〉 = e2〈(N − 〈N〉)2〉/∆T of the quantum
dot current, meaning its shot noise. The shot noise for quantum
dots has been calculated in Ref. [56] and later discussed in the
framework of full counting statistics [57]. While the shot noise of
a single-barrier device is expected to follow Poissonian statistics
with 〈N〉 = 〈(N − 〈N〉)2〉 (the mean equals the variance), for
quantum dots the shot noise is expected to be suppressed as a
result of the Coulomb interaction-mediated correlations between
tunneling electrons (see also the suppression of the distribution
in Fig. 3 at short times). From Fig. 4 a variance 〈(N − 〈N〉)2〉 ≈
3 can be estimated, compared to a mean 〈N〉 ≈ 6, implying a
reduction of the width by a factor F = 1/2 compared to the
Poissonian case. The quantity F is called the Fano factor. Given
the histogram shown in Fig. 4, even higher central moments, such
as the skewness (third central moment) or the kurtosis (fourth
central moment) can be experimentally determined. In Ref. [58]
it was possible to determine all cumulants up to the fifth reliably
from the experiment. In order to achieve this accuracy, systematic
corrections due to the finite bandwidth of the detector circuit had
to be taken into account [59].
The full counting statistics can be found theoretically from

a master equation approach. For example, in the single-level
transport regime, the quantum dot system may be described by a
Fig. 4. Histogram of the full counting statistics of a quantum dot. The solid line is
the theoretical prediction for the given rates Γin and Γout .

two-state system with state 0 denoting zero, and state 1 denoting
one excess electron in the dot.Wemeasure the current by counting
the number N of electrons that transmit through the dot–drain
barrier. We consider the case Vdot � kBT as depicted in Fig. 2(c),
such that tunneling in is only possible from the source (rate ΓS),
and tunneling out only through the drain (rate ΓD). The master
equation is then given by

dp0(t|N)/dt = −ΓSp0(t|N)+ ΓDp1(t|N − 1)
dp1(t|N)/dt = −ΓDp1(t|N)+ ΓSp0(t|N).

Here, pn(t|N) is the probability that, at time t , the system is found
in state n, given that N electrons have been transferred into the
drain lead since t = 0. At t = 0 we have the initial conditions
p0(t = 0|N = 0) = 1 and pn(t = 0|N 6= 0) = 0. The rate
equation can be solved using the discrete Fourier transform
pn(t|χ) =

∑
N pn(t|N) exp(iNχ), where χ is called the counting

field. One finds the linear differential equation

d
dt

(
p0(t|χ)
p1(t|χ)

)
=

(
−ΓS ΓDeiχ

ΓS −ΓD

)(
p0(t|χ)
p1(t|χ)

)
,

which has the general solution pn(t|χ) =
∑1
j=0 cnj exp[λj(χ)t]

with the λj(χ) being the eigenvalues of the coefficient matrix. For
times t large compared to the correlation time (ΓS + ΓD)−1 [40],
the solution is governed by the eigenvalue with the smallest
negative real part (say, λ0) giving the slowest decay. The full
counting statistics, i.e., the probability that N electrons have been
transferred through the dot after time∆T , is given by

PN(∆T ) =
1∑
n=0

pn(∆T |N) =
1
2π

∫
dχe−iNχ

1∑
n=0

pn(∆T |χ).

The logarithm of its Fourier transform is the cumulant generating
function S(χ), which has the large ∆T limit S∆T (χ) = λ0(χ)∆T .
The mean current is given by the first cumulant 〈N〉 =

−idS/dχ |χ=0, and the shot noise by the second cumulant 〈(N −
〈N〉)2〉 = −d2S/dχ2|χ=0. The resulting full counting statistics,
which has beenworked out by Bagrets and Nazarov [57], is plotted
as a solid line in Fig. 4, and shows excellent agreement with the
measured histogram. Finite bandwidth corrections [59] have been
taken into account. More details about the analysis of full counting
statistics data can be found in the review [60], and in the overview
article [61]. A theoretical discussion of the joint current probability
distribution describing the connection between the acquisition of
information by detection and the uncertainty in the system can be
found in Ref. [62].

5. Self-interference of individual electrons detected by electron
counting

We continue by discussing an experiment employing electron
counting for themeasurement of the self-interference of individual
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a b

Fig. 5. (a) Scanning force microscope image of the double quantum dot with
integrated charge read-out used for the self-interference experiment. (b) Schematic
energy diagram of the double quantum dot system in the situation in which
interference can be observed. The dashed arrows indicate the cotunneling-in
process. Black and gray dashed arrows indicate the two alternative paths that
enclose a magnetic fluxΦ = BA used to tune their relative phase.

electrons [63,64]. Thesemeasurementsmaybe seen as a solid-state
implementation of the double-slit interference experiment [65]
conductedwith individual electrons by Tonomura in 1989 [66]. The
basic idea in these single-electron interference experiments is the
appearance of the interference pattern as a result of building up
the statistics of a large number of detection events.
Fig. 5(a) shows the sample used for this experiment. It is based

on a shallow two-dimensional electron gas embedded in aGa[Al]As
heterostructure patterned by local anodic oxidation. The structure
consists of two quantum dots, as indicated by the dashed lines,
which are connected in series between a source (S) and drain (D)
contact. In contrast to conventional double quantum dot systems
there are two tunneling barriers connecting dot 1 and 2, thereby
allowing two spatially separate, parallel current paths that we
denote the upper and lower path in the following. These two
paths, together with the two dots, enclose an area through which
a magnetic flux can be threaded in the experiment by applying an
external magnetic field normal to the plane of the electron gas. The
quantum point contact charge detector is capacitively coupled to
the double quantum dot system, and its conductance GQPC is read
out via its own independent circuit. In-plane gates L, R, and T, allow
one to tune the double-dot system, and the gate G1 is used to set
the operating point of the charge detector quantum point contact.
Using these gates, the system is carefully tuned into the state

indicated schematically by the energy diagram in Fig. 5(b). The
strengths of the tunneling coupling to source and drain, ΓS and
ΓD, were determined from measurements of the thermal noise
and tuned to be below 15 kHz, well below the bandwidth of the
detector circuit. The tunneling coupling Γc ∝ |tc1 + tc2|2 between
the two dots was measured to be a few gigahertz, i.e., beyond the
time resolution of the detector circuit. A finite source–drain bias
voltage VDQD applied to the double quantum dot system ensured
eVDQD � kBT . Quantumdot 1 is tuned to a nonresonant situation in
which an electron can traverse only by second-order cotunneling
processes from the source contact into quantum dot 2. In this dot
the electron stays for a sufficiently long time to be detected. Then
it will leave dot 2 into the drain contact.
It is important to realize that the amplitude for the cotunneling

process from the source contact into dot 2 is the sum of two
amplitudes of the spatially separate upper and lower paths. In
the presence of a magnetic field B within the area A enclosed by
the two paths and the two quantum dots, the relative phase of
these two amplitudes can be tuned, such that the cotunneling-
in rate Γin has the oscillatory Aharonov–Bohm contribution [67]
Γin ∝ cos(eBA/h̄). The most crucial condition for the interference
experiment to work is that the tunneling coupling tc1 ≈ tc2, a
condition which turned out to be hard to achieve experimentally.
The tunneling-in rate Γin can be determined from detector time
traces like that shown in Fig. 2(a) on the basis of single-electron
a b c

Fig. 6. Number of electrons that have traversed the double quantum dot
interferometer (counts) measured at different magnetic fields B. Time traces of
different lengths ∆T were used as the basis for the plotted histograms in (a), (b),
and (c). In (c) it is indicated that adjacent interference maxima have a spacing one
flux quantum h/e per area A enclosed by the interfering paths.

tunneling events. In contrast, the tunneling-out rate Γout = ΓD
which can similarly be determined is independent of B.
With the oscillatory modulation of Γin with magnetic field, the

full counting statistics PN(∆T ) becomes an oscillatory function
of magnetic field. This implies that the counting experiment also
contains the Aharonov–Bohmeffect in the shot noise of the current
through the quantum dot. In Fig. 6 we show the number of
electrons traversing the double-dot system (counts) within a given
time span ∆T at different magnetic fields B. It can be seen in
Fig. 6(a) that, after short times, only a random pattern of counts
is visible. Waiting ten times longer, in (b) the interference pattern
can be seen to be still masked by significant statistical fluctuations.
After a time of∆T = 1 s, the interference pattern is fully developed
and statistical fluctuations are relatively weak.
Comparing our experiment with the interference experiment

of Tonomura and coworkers [66], there are important differences.
In our experiment, the electrons are guided by the potential
landscape created by sample fabrication along predefined paths,
whereas Tonomura used an open geometry where the electrons
were only slightly deflected by a biprism. Furthermore, in our
experiment the observation of the electron’s arrival cannot be
made with a position-sensitive electron counting system. Here we
rather use the magnetic field via the Aharonov–Bohm effect [67]
to change the relative phase of paths that are fixed in space,
and detect the arriving electrons at a fixed location (dot 2). As
a consequence of the generalized Onsager symmetry relations
in mesoscopic transport [68] the observed Aharonov–Bohm
oscillations are necessarily even in magnetic field. In contrast
to the original thought experiment by Aharonov and Bohm, but
similar to previous Aharonov–Bohm interference experiments in
metallic rings [69] and semiconductor nanostructures [70,71], the
magnetic field is not excluded from the spatial region of the
electron’s paths. However, Lorentz force effects have no significant
influence, as long as the classical electronic cyclotron diameter is
large compared to the area enclosed by the flux.
The visibility of the oscillations observed in Fig. 6(c) is close to

100%. This implies that indeed tc1 = tc2 is met very well in the
experiment, but also that decoherence effects are not significant.
We argue that this is due to the fact that the detector is not
sensitive to the path that the electron took on the time scale of
the fast cotunneling process [63]. This is in contrast to controlled
dephasing experiments that use a charge detector to obtain ‘which
path’ information [10,72–74].
Finally, we remark that the sample used for this study of

electron interference was used in the same regime to investigate
cotunneling processes by counting in detail [47]. It was possible
to demonstrate the experimental equivalence of cotunneling and
sequential tunneling into molecular states. In addition, the shot
noise in the cotunneling current could be resolved.
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6. Back-action

It is a property of all quantum measurements that the detector
unavoidably disturbs the measured system, a phenomenon called
detector back-action. An equivalent way of looking at the same
thing is to exchange the role of the measured system and the
detector.We therefore ask the question, inwhichway the quantum
dot (or double quantum dot) can detect electrons traversing
the quantum point contact. It has been established in previous
experiments that the shot noise of the quantum point contact
current can couple into a system with coherent dynamics and act
as a source for decoherence [10,72,74].
We have performed complementary experiments using double

quantum dot devices as a frequency selective detector to observe
the shot noise in the quantum point contact [75]. The principle of
the double-dot detector is shown in Fig. 7(a). No source–drain bias
voltage is applied to the quantum dot. As a consequence, there is
no net electron flow between the two contacts in thermodynamic
equilibrium. The double dot may contain N electrons in dot 1 and
M electrons in dot 2. The levels of the two dots are aligned in
such a way that the (N,M) charge state is the ground state of the
system. The (N − 1,M + 1) excited state belonging to the same
total electron number in the double-dot system is separated by
an energy ∆ which is larger than the thermal energy kBT . In this
situation the double quantum dot is susceptible to energy quanta
such as photons with an energy hν = ∆. Absorbing such an energy
quantum excites the system into the state (N − 1,M + 1), from
which there are two decay routes. On the one hand, an energy
quantum with energy hν = ∆ can be reemitted bringing the
system back into the ground state. On the other hand, the system
can decay into the state (N−1,M) if one electron tunnels from dot
2 into the drain lead (see Fig. 7(a)). In this case, another tunneling
event will most likely follow, where an electron enters dot 1 from
the source contact. This sequence of processes corresponds to the
net transfer of a single electron from source to drain by virtue
of the absorption of an energy quantum. This means that energy
quanta absorbedby thequantumdot in this configuration candrive
a net current at zero applied source–drain bias voltage. It turns
out that energy quanta from a thermal bath, such as a photon
bath, or the phonon bath of the host crystal, cannot drive this
process, if these baths are in thermodynamic equilibrium with the
electronic system in the source and drain leads. However, it has
been shown that this process can be driven if the phonon bath
temperature exceeds the temperature of the electron system in
the contacts [76], or if nonequilibrium photons originating from
the quantum point contact shot noise impinge onto the double
quantum dot system [75]. If the energy separation ∆ of the two
involved states is changed, the frequency of the absorbed quanta
can be changed. In principle, this allows the measurement of the
spectral density of the incident energy quanta.
The particular experiments that were performed along these

lines differ in principle. The experiment of Ref. [75] uses the
same quantum point contact detector that creates the shot noise
to detect the tunneling of electrons from the double-dot system
into the leads in a time-resolved fashion. This detection method
does not measure the induced double quantum dot current, but
merely monitors charge leaving any of the dots into any of the
two contacts. The result of this experiment is shown in Fig. 7(b).
We first consider a cross section through the data along constant
VQPC ≈ 300µV. The count rate is maximum at∆ = 0 and decays if
|∆| is made larger. Along a cross section at constant∆ ≈ 100µeV,
we notice that counts are only observed if |eVQPC| > ∆. This
is compatible with the idea that the maximum energy a single
electron can dissipate when traversing the quantum point contact
is |eVQPC|. Only if this energy exceeds ∆ can the double quantum
dot be excited. The dashed line following the onset of the signal
a b

Fig. 7. (a) Schematic energy diagram showing the state of the double quantum dot
in which it can be used to detect incident energy quanta with spectral resolution.
(b) Number of electrons leaving the double-dot system per second measured as a
function of∆ and the quantum point contact source–drain voltage VQPC .

therefore gives the avoided crossing of the two involved quantum
dot energy levels brought about by the finite tunneling coupling
Γc of these states. The smallest separation at ∆ = 0 is twice
the symmetric–antisymmetric energy splitting δSAS. A detailed
analysis of the data [75] shows good agreement with a circuit
model by Aguado and Kouwenhoven [77] that couples quantum
point contact shot noise to the double quantum dot system. Later
experiments performed on a single quantum dot defined in an
InAs nanowire strongly coupled to a quantum point contact in
an underlying Ga[Al]As heterostructure two-dimensional electron
gas confirmed the model of shot noise coupling [78].
The experiment in Ref. [76], however, measures the time-

averaged double quantum dot current directly. In this experi-
ment, the quantum point contact charge detector was only weakly
Coulomb coupled to the double quantum dot such that time-
resolved charge detectionwas not possible. Furthermore the quan-
tum point contact was operated on the first conductance plateau
at GQPC = 2e2/h, where shot noise is suppressed. Therefore,
the current shown in Fig. 8 driven through the double quantum
dot device at zero applied source–drain bias voltage cannot be ex-
plained by coupling to the shot noise of the quantumpoint contact.
However, the experiment makes clear that the observed current is
directly related to the strength of the quantum point contact cur-
rent IQPC. Similar experiments were reported in Ref. [79] and in-
terpreted in terms of a double-dot quantum ratchet driven by the
quantum point contact.
In contrast to the experiment described before, where a

maximum number of counts was detected at∆ = 0, themeasured
IDQD is zero at ∆ = 0 and shows a pronounced maximum at
finite detuning ∆. If ∆ is very small, the avoided crossing of
the two energy levels brought about by the finite coupling Γc
between the two dots leads to a situation where electrons tend to
tunnel with similar probability into the source and into the drain
contact. This situation results in zero current. In contrast, large
positive∆ leads to a current flowing preferentially from source to
drain, whereas large negative ∆ leads to a current in the opposite
direction explaining the observed sign change of IDQD with∆.
It turns out that the data shown in Fig. 8 is in accordance with

a model [76] that takes coupling of the double quantum dot to a
phonon bath into account. For simplicity, the occupation of states
in the phonon bath is assumed to be described by the equilibrium
Bose–Einstein distribution function at a temperature Tph. However,
it is implicitly assumed that Tph can be increased bydriving a higher
current through the quantum point contact. The double quantum
dot absorbs phonons from the bath at the particular energy ∆.
The high-energy cut-off of IDQD seen in Fig. 8 is the result of the
decreasing phonon occupation at higher energies. The solid line
in Fig. 8 shows the result of the model calculation where Tph was
taken as the fitting parameter.
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Fig. 8. Current driven through a double quantum dot at zero source–drain bias
voltage as a result of heating the phonon bath with a quantum point contact. The
solid curve is the result of a model calculation with the phonon bath temperature
being the only fitting parameter.

7. Concluding remarks

Within the past five years the use of quantum point contact
charge detectors in research related to semiconductor nanostruc-
tures has seen an unprecedented rise in popularity. Experiments
with these detectors have given completely new insights into the
physics of quantum dots, and they have allowed access to parame-
ter regimes that were inaccessible before. They can be easily inte-
grated on chip, are weakly invasive, and allow one to explore even
the spin degree of freedom via spin-to-charge conversion. Cur-
rently quantum point contact charge detectors are state-of-the-
art devices for qubit research. On the basis of these developments
we are confident in anticipating the development of further fasci-
nating experiments leading to intriguing results and enlightening
insights into the world of quantum dots in particular, and nanos-
tructures in general.
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