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We present systematic scanning gate studies on a two-dimensional electron gas in the regime of the quantum
Hall effect �QHE�. We observe the macroscopic Hall bar response as a function of the local variation of the
potential landscape in order to investigate the QHE transition. At even integer filling factors, no changes can be
introduced by the local perturbation, consistent with the robustness of the QHE. Between two QHE plateaus
such local changes induce sharp features in the Hall resistance images. We observe two distinct 1 /B-periodic
patterns, one in the low-field part and one in the high-field part of the transition. The crossover between the
patterns is smooth, with both coexisting at a characteristic filling factor. We distinguish experimentally differ-
ent Hall bar responses to the perturbations, for example, in the nonlocal Hall resistance. Based on our experi-
mental findings we draw an intuitive picture of the QHE transition as a percolation transition of edge states and
their coupling at saddle points of the local potential.
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I. INTRODUCTION

One of the most intriguing phenomena in solid state phys-
ics is the quantum Hall effect �QHE�1,2 found in two-dimen-
sional electron gases �2DEGs�. The quantization of the Hall
plateaus is independent of the characteristics of individual
samples, which is the reason why this effect is used as the
international resistance standard.3 The transition between
QHE states is also a well accessible model system for two-
dimensional quantum phase transitions and important for
theoretical considerations.4

A wealth of experiments on the QHE can be found in the
literature, many of them interpreted in terms of edge chan-
nels,5,6 for example, backscattering at �macroscopic� poten-
tial barriers and constrictions.7–10 In similar experiments also
some insight into the self-consistent stripe structure of the
QHE states11 can be gained.12,13 However, for the formation
of quantum Hall plateaus and the transition between them,
local potential fluctuations in the sample interior play a ma-
jor role. Macroscopic transport experiments provide only in-
formation about averaged properties and have to be inter-
preted statistically.14 Experiments with selectively populated
edge channels have shown the importance of individual im-
purities for edge state equilibration and backscattering15,16

and in mesoscopic structures this should be true in an even
greater context. There is a reason to believe that individual
scattering centers also play an important role in the break-
down of the QHE.17 In order to identify individual scattering
sites and corresponding microscopic mechanisms experimen-
tally, scanning probe techniques offer new experimental op-
portunities.

Only very few scanning probe experiments at the required
low temperatures and high magnetic fields have been per-
formed up to now. Scanning a single-electron transistor
across the surface allowed the imaging of the electrochemi-
cal potential and the striped structure of the quantum Hall
state and to map localized states in both the integer and frac-

tional QHE regimes.18–21 Local electron transport across in-
compressible strips at fluctuations of the local potential have
been studied with the “scanning charge accumulation”
technique.22,23 These techniques give insight into the micro-
scopic details of the QHE states.

In this paper we present experiments in which we influ-
ence the QHE state locally and investigate the response on
the Hall voltage in an actual device. The employed “scanning
gate” technique consists of applying a dc voltage to the me-
tallic tip of an atomic force microscope �AFM� which is
brought in close proximity to the electronic structure to be
investigated. The tip acts like a local gate which is scanned
above the sample surface while the resistance is recorded for
every position. Direct evidence of scattering at individual
potential fluctuations was observed in previous experiments
monitoring the equilibration length and the longitudinal re-
sistance as function of the tip position.24 In other experi-
ments two edge states could be coupled directly by the
scanned tip.25 In direct measurements on a Hall bar the cou-
pling of edge states could be quantified in the framework of
the Landauer-Büttiker formalism.26

Here, the sensitivity of the Hall resistance to local poten-
tial perturbations is investigated systematically. The coupling
of edge states occurs as a concerted effect of individual po-
tential fluctuations present naturally, and the potential in-
duced by the AFM tip. Such experiments are of fundamental
interest since they provide a connection between the edge
channel picture and the view of a percolating network of
localized states in the bulk.

The article is structured as follows: the setup, sample, and
the experimental technique are discussed in Sec. II. In Sec.
III various scanning gate experiments in the QHE regime of
a conventional Hall bar are presented, described, and com-
pared in some detail. Section IV discusses these results in a
qualitative model based on the idea of a percolation transi-
tion for the QHE transition.
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II. MEASUREMENT SETUP AND SAMPLES

Most of the presented experiments were done on a Hall
bar �“sample A”� of W=4 �m width and L=10 �m length
between the voltage contacts. The Hall bar was etched in a
GaAs/AlGaAs heterostructure with a 2DEG 52 nm below
the surface. The electron density was n=3.6�1015 m−2, the
mobility �=66 m2/Vs, and the mean-free path �=6.5 �m at
liquid He temperatures. A low-temperature topography scan
is shown in Fig. 1�a�. For the tip-voltage dependent experi-
ments “sample B” was used, a Hall bar of nominally identi-
cal design with n=5.0�1015 m−2 and �=9 m2/Vs. An ac
current at the frequency fm=680.9 Hz and amplitude I
=100 nA was applied, as indicated by the white arrows in
Fig. 1. The voltages Ux,1 and Ux,2 along the Hall bar, and the
Hall voltage Uy,2 were measured by lock-in amplifiers. The
Hall voltage on the right Hall cross, Uy,1, can be inferred
using Kirchhoff’s voltage law. All experiments were done at
a temperature of 1.9 K. Magnetic fields of up to 8 T can be
applied perpendicular to the sample surface.

An electrochemically sharpened PtIr tip kept at constant
voltage with respect to the electron gas is scanned across the
sample surface at a constant height of d=120 nm with a
homebuilt low-temperature scanning probe microscope and a
quartz tuning fork force sensor.27,28 The longitudinal and
Hall voltages are recorded during each scan for a grid of tip
positions, leading to the “scanning gate images.” If not men-
tioned otherwise, the tip voltage was Utip=0.0 V for all mea-
surements, which corresponds to a voltage of �−0.3 V with
respect to the 2DEG because of the contact potential differ-
ence between the two materials. It proved essential not to
apply strong negative and positive voltages in order to avoid
persistent inhomogeneities in the sample. We ensured that
the sample properties have not changed during the experi-
ments by repeatedly taking standard magnetoresistance
curves after a few scans.

Typical scans take about 2 h due to the low bandwidth of
the resistance measurements. During the experiments, shifts
in the resonance frequency of the tuning fork sensor are re-
corded, which allows us to exclude that features in the scan-

ning gate images originate from changes in the tip-sample
geometry or from surface charging. On the example shown
in Fig. 1�b�, like on all images presented in this paper, the
topographic contour of the Hall bar is superposed as black
lines. It is extracted from a topographic scan taken prior to
the experiments. The current direction is indicated as a white
arrow. In the frequency shift image one recognizes the Hall
cross due to the lower tip-sample distance and an area of
reduced signal in the center of the Hall cross �dashed gray
arrow�. The latter does not correspond to a topographic fea-
ture and we attribute it to charged surface states from a series
of previous experiments performed at this tip position. These
features did not change during the presented experiments. As
can be seen in Fig. 1�b�, the topographic contour does not
exactly coincide with the sample edges determined from the
frequency shift because of the tip and sample geometries.
The contour lines only serve as a reference for relative posi-
tions in all images.

III. EXPERIMENTS

A. Spin degenerate Landau levels

The central result of this paper is the series of scanning
gate images presented in Fig. 2, taken on sample A. It was
recorded for different magnetic fields, B, corresponding to
filling factors between �=8.0 and �=4.0, indicated by sym-
bols in Fig. 3. All images presented in this paper have indi-
vidually adjusted color scales. Figure 3 shows Rxx,2 and Rxy,2
as function of B with the tip withdrawn more than 1.3 �m
from the sample surface. The magnetic fields for the scans
were chosen equidistantly on the longitudinal resistance
scale. Figure 3�a� shows Shubnikov–de Haas �SdH� oscilla-
tions with well pronounced minima at even integer filling
factors, where the resistance drops below the resolution of
our measurement. In Fig. 3�b� the Hall resistance is plotted
for the same field interval. We observe a notable difference
between the fields where the maxima of the Shubnikov–de
Haas oscillations occur �vertical lines� and the fields where
the Hall resistance increases to half the value between two
QHE plateaus.

Area-averaged resistance values obtained from the scans
in Fig. 2 are plotted as symbols �blue online� with the corre-
sponding mean deviations from the average as error bars.
The values obtained from the scanning gate experiments re-
produce the magnetoresistance curves quite well and the tip-
induced deviations are small compared to the absolute resis-
tance values. Especially the last finding suggests that the tip
is not a very invasive probe and that the scanning gate tech-
nique can be used to investigate the quantum Hall states.

The full information is contained in the images in Fig. 2
representing Rxy,2 as function of the tip position for filling
factors 4���8. We observed the same qualitative behavior
for the transitions from �=8 to �=10 and from �=10 to �
=12. Lower filling factors will be discussed below. The data
in Fig. 2 are arranged following the Rxx curves in Fig. 3 and
the corresponding filling factor is given below each image.
The patterns of tip-induced changes in the Hall resistance

FIG. 1. �a� Topographic image of a typical sample recorded at a
temperature of 1.9 K. The schematic shows the setup for the resis-
tance measurements and the white rectangle the area of the actual
experiments. �b� Shift in the resonance frequency of the tuning fork
sensor for a scan at a constant height of 120 nm. In both figures the
white arrow indicates the current direction.
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strongly depend on the filling factor. The images can be di-
vided into four categories: images recorded �1� at even inte-
ger filling factors, �2� at the low-field side of the QHE tran-
sition, i.e., filling factors larger than a critical value �*, �3� at
the high-field side of the transition, ���*, and �4� at ���*,
corresponding roughly to the field of maximum longitudinal
resistance.

�1� At the even integer filling factor �=4.0, at the bottom
right of Fig. 2, the Hall resistance is not influenced by the
AFM tip within the experimental sensitivity. This finding
coincides with the notion of the quantum Hall plateaus being
independent of the detailed local potential in the sample in-
terior. This image also contains the numbering of the Hall

cross corners used to describe the positions of the induced
resistance changes in other images later on. The small devia-
tion of the experimental from the theoretical plateau values is
due to a constant offset voltage in the setup and the error is
smaller than 1.5%. The small local tip-induced Hall resis-
tance changes that can be discerned near corners 1–3 for
filling factors �=6.0 and 8.0 are very faint. They possibly
originate from less pronounced SdH minima and a locally
slightly decreased filling factor due to the effective tip poten-
tial.

�2� At the low-field side of a quantum Hall transition, e.g.,
between �=8 and ��7.7 in Fig. 2, several well-defined local
changes in the Hall resistance are observed. Near corners 1

FIG. 2. �Color online� Scan-
ning gate images of Rxy,2 for two
QHE transitions, assembled as on
the magnetoresistance curve. The
numbers at �=4 label the corners
as used in the text.
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and 3, Rxy is enhanced and near the others slightly reduced
compared to the unperturbed Hall bar, e.g., when the tip
resides well outside the structure. Especially the features
with an enhanced resistance exhibit substructure. The tip-
induced patterns at magnetic fields corresponding to the next
spin degenerate Landau level, between �=6 and �=5.7 in
Fig. 2, are very similar. This finding demonstrates the 1/B
periodicity of the transport properties in the quantum Hall
regime also in the presence of local potential perturbations.
Although the longitudinal resistance varies from essentially
zero to almost the maximum of the SdH oscillation in this
field interval, the Hall resistance changes only by about 10%
of the difference between the two QHE plateaus.

�3� At the high-field side of the quantum Hall transition,
i.e., between �=7.3 and ��6.8 and between �=5.3 and �
�4.8 in Fig. 2, a single tip-induced change of the Hall re-
sistance in corner 4 dominates the scanning gate images
whereas the pattern observed previously at the low-field side
has disappeared. The maximum resistance change in these
scans is about three times larger and with sharper spatial
variation than individual peaks at the start of the transition.
Also this pattern was observed in other transitions with a
1/B periodicity. In addition, a new feature arises at filling
factor �=5 near corner 3, which dominates the images at
higher fields. This will be discussed in the next section. In
this field interval Rxx drops from the SdH maximum to zero,
while the Hall voltage increases to the next plateau by more
than 50% of the total step.

�4� At the characteristic filling factors �*=7.5 and �*

=5.7 in Fig. 2, near the fields where the SdH maxima occur,
the two patterns coexist. Around these filling factors a
gradual change from one pattern to the other can be ob-
served. A similar description applies to the scanning gate
image at �*=3.8 shown in Fig. 4.

B. Spin split Landau levels

Magnetoresistance curves between filling factors �=4 and
�=2 are shown in Fig. 5. They both exhibit a minimum at
�=3, which is expected for the longitudinal resistance. The
minimum in the Hall resistance, however, is unusual and its
origin is not clear. The absence of quantization is due to the
weakness of the spin splitting. The spin splitting also has a
strong effect on scanning gate images at these fields, as dem-
onstrated in Fig. 4.

At �=3.78 the two patterns of the spin degenerate Landau
states coexist, as discussed in the previous section. Here, this
regime is shifted to lower fields compared to the SdH maxi-
mum. At �=3.56 the feature of the spin degenerate case of
the high-field side of the QHE transition prevails and gets
broadened at �=3.25. At filling factor �=3.0 a new pattern
occurs with features that seem to bend around corners 1 and
3, in contrast to the pattern in the spin degenerate case. At
the field where the longitudinal resistance exhibits the next
maximum, at �=2.85, a new feature coexists with the previ-
ous, namely, a well localized minimum at corner 3. At �
=2.63 this feature is the only perceptible in the scanning gate
image, which is essentially the same as at filling factor �
=5.0 found in Fig. 2. At �=2.0 no features can be observed
as discussed in detail in the previous section.

FIG. 3. �Color online� �a� Rxx,2 and �b� Rxy,2 plotted versus the
magnetic field, B. The individual points represent the mean values
of the respective scanning gate experiments presented in Fig. 2. The
error bars stand for the standard deviations in each image.

FIG. 4. �Color online� Scanning gate experiments of Rxy,2 for
4���2. The magnetic fields of these measurements are given in
Fig. 5.

FIG. 5. �Color online� Rxx,2 and Rxy,2 for 4���2. The mag-
netic fields at which the experiments of Fig. 4 were taken are indi-
cated as circles.

BAUMGARTNER et al. PHYSICAL REVIEW B 76, 085316 �2007�

085316-4



C. Longitudinal resistances and inversion of the magnetic field

The longitudinal resistance is widely used for the charac-
terization of a 2DEG. Here we focus on the tip-induced
changes in the corresponding scanning gate images at the
position where we observed changes in the Hall resistance.
Changes in the local potential of one Hall cross do not nec-
essarily induce changes in the second Hall cross. Kirchhoff’s
law then requires that the two longitudinal resistances are
altered accordingly, not necessarily symmetrically.

In Fig. 6 the scanning gate images for Rxy,2�Rxy, Rxx,1,
and Rxx,2 �columns� are shown for positive �first row� and
negative magnetic fields �second row� at �=7.81, at the low-
field side of a QHE transition.

The change in the resistance labeled with 1 in Fig. 6 oc-
curs in both longitudinal resistances and at both field polari-
ties with equal strength. The filling factors refer to positive

fields. Neither of the Hall resistances shows an appreciable
change in this position. The signals for feature 2 �3� are
changed to more positive �negative� values for both field
polarities in Rxy and Rxx,1, whereas they are reduced for Rxx,2.
Clearly, the responses of the Hall bar to potential changes in
those three tip positions are significantly different.

Figure 7 shows scanning gate images for the same quan-
tities as in Fig. 6, but for filling factor �=6.97 at the high-
field side of the QHE transition. At positive field values fea-
ture 1 dominates all scanning gate images, while it is very
weak at the inverted field. Exactly the opposite is found for
feature 2. This contrasts the behavior of all three features in
Fig. 6. The different origin of the two features in Fig. 7
becomes also apparent in Rxx,1 and Rxx,2 where the two resis-
tance changes have the opposite sign in all four images.

D. Nonlocal resistance changes

A remarkable difference in the response to an external
local potential perturbation can be seen in “nonlocal” experi-
ments. Here we use the term nonlocal in the unorthodox
sense that the voltage measurement takes place far away
from the potential perturbation. In experiments in the classi-
cal transport regime resistance changes can be introduced
only by perturbing the local potential between the voltage
contacts.32 Any effect of a local perturbation should be re-
duced monotonically and on the length scale of a mean-free
path away from the contacts. This picture depends crucially
on the assumption that the system can be described by a
homogeneous local conductivity tensor.

We construct the nonlocal Hall resistance Rxy,1 as function
of the tip position on the other Hall cross using Kirchhoff’s
laws, the two longitudinal voltages, Ux,1 and Ux,2, and the
Hall voltage Uy,2. A selection of such images is shown in
Fig. 8 for some field values also given in Fig. 2.

At all even integer filling factors �not shown� the nonlocal
Hall resistance is independent of the tip scanned across the
remote Hall cross. Also on the low-field side of the QHE
transitions, i.e., for �=7.81 and �=5.81 in Fig. 8, hardly any

FIG. 6. �Color online� Scanning gate images of Rxy,2 �left col-
umn�, Rxx,1 �central column�, and Rxx,2 �right column� at filling
factor �=7.81 at positive �top row� and at the same but reversed
magnetic field �bottom row�.

FIG. 7. �Color online� Scanning gate images of Rxy,2 �left col-
umn�, Rxx,1 �central column�, and Rxx,2 �right column� at filling
factor �=6.97 at positive �top row� and at the same but reversed
magnetic field �bottom row�.

1
1

FIG. 8. �Color online� Scanning gate images of the nonlocal
Hall resistance Rxy,1 for the same filling factors as in the lower
central row of Fig. 2.
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deviation from the unperturbed values can be discriminated.
In contrast, on the high-field side, e.g., for �=6.97 and �
=5.01 in Fig. 8, well resolved features appear at positions
where also changes in Rxy,2 are evident. The latter is also true
for the maximum in corner 1, but the corresponding maxi-
mum in Rxy,2 is overshadowed by other resistance changes.
No nonlocal resistance changes have been observed in
sample B with a lower mobility.

E. Tip-voltage dependence

The dependence of a single scanning gate feature on the
applied tip voltage was investigated on sample B, because
scans with large potential differences introduce local changes
in the sample, presumably by locally charging the surface or
the donor layer. Such local charging might explain the in-
creased electron density, reduced mobility, and unsymmetric
magnetoresistance curves found in this sample in control ex-
periments. In Fig. 9�a� a series of scans is presented at B
=4.25 T, corresponding to ��4.9. The edges of the Hall
cross are again given as dark contours and the current is
applied from the top left to the bottom right contact.

In all images the dominant feature is a single maximum at
the lower left corner, indicated by a black arrow. For Utip
=−0.7 V it has a rather irregular shape, the average radius is
larger than a micrometer, and the maximum tip-induced re-
sistance change is more than 500 �. With increasing tip volt-
age the local resistance change becomes more disk shaped
and the diameter decreases. The induced resistance change
drops to zero between Utip=0.7 V and Utip=0.8 V. Also the
width of the feature decreases to values below our resolution.
Above Utip=0.8 V no well-defined change of the Hall volt-
age related to this feature could be observed. We note, how-
ever, that there are faint minima and maxima occurring

within the region of the feature and a slight decrease com-
pared to the background at this and the opposite corner of the
Hall cross present at all voltages.

The maximum induced change in the Hall resistance at-
tributed to this feature and its half width at half the maxi-
mum �HWHM� are plotted as function of the applied tip
voltage in Fig. 10. The HWHM was extracted by measuring
the typical distance of the contour line at half of the maxi-
mum from the center of the feature �found at higher volt-
ages�, together with the minimum and maximum distances.
The latter are plotted as error bars in Fig. 10�b�. Both the
induced change in resistance and the width of the feature
drop monotonically with increasing voltage and drop below
the resolution of our setup at Utip�0.7 V. The feature does
not recover at more positive voltages. We also note a slight
change in the slope of the characteristic radius and a small
dip in the induced resistance change at Utip�0.2 V. The de-
viation from a circular shape increases with increasing fea-
ture width at lower voltages. In spite of a flattening of both
curves at the lowest applied tip voltages no saturation could
be observed.

IV. DISCUSSION

A. QHE transition

The quantum mechanical states of electrons in a 2DEG
with a sufficiently smooth potential in high magnetic fields
can be approximated as edge states, equipotential lines where
the local potential pierces the Fermi energy.30 Screening
leads to a spatial segregation into compressible and incom-
pressible regions.11 Most often the QHE transition is ex-
plained as a localization-delocalization transition in a perco-
lating network of “internal” edge states localized at potential
fluctuations. The 2DEG can be modeled as a lattice of saddle
points in the potential landscape where in- and outgoing ide-
ally conducting states are coupled.14,30,31 The Landauer-
Büttiker formalism allows one to connect the microscopic
picture with measurements on the macroscopic contacts.
Büttiker’s description depends only on the existence of quan-
tum channels and is independent of where they run exactly. It
reproduces directly the quantization of the QHE plateaus and
Rxx=0 at integer filling factors.5 The transmission problem of
a four-terminal Hall cross can be formulated easily and a
basis set for transmission matrices can be constructed for

FIG. 9. �Color online� Scanning gate experiments on sample B
at ��4.9 for a series of tip voltages Utip. The arrow points out the
discussed resistance change.

(a) (b)

H
W

H
M

[
m

]
�

FIG. 10. �Color online� �a� Maximum and �b� half width at half
maximum of the main feature observed in Fig. 9 �black arrow� as
function of the applied tip voltage Utip. The error bars in �b� indicate
the minimum and maximum observed distance of the half-height
contour of the feature.
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characterization, as demonstrated in the Appendix.
Here we briefly discuss in a simple model the QHE tran-

sition and its effect on the Hall voltage in a �four-terminal�
Hall cross: in Figs. 11�a�–11�c� the QHE transition from �
=2 to �=4 is illustrated for an artificial potential landscape
produced by a Hall cross and several hundred 1/r-shaped
potential fluctuations at random positions. The white and yel-
low equipotential lines represent the ideally conducting Lan-
dau states. At a critical filling factor �* the percolation of the
�=4-state through the Hall cross takes place—not necessar-
ily for all contact pairs at the same filling factor, since we
deal with a finite system. Figure 11�b� shows the situation
where the percolating states are coupled at only a single
saddle point in the potential �red arrow�. Only at this position
a perturbation of the potential leads to a change in the Hall
voltage. This is demonstrated in Figs. 11�d�–11�f�, where the
AFM tip is simulated as a disk of locally enhanced potential
which redirects the edge states. Note that there are other
saddle points in the system where the Hall voltage is not
influenced by the AFM tip.

B. Interpretation of the experiments

The resistance changes in the QHE regime are more
strongly localized than in the classical transport regime.32

The symmetries discussed in Ref. 32 also hold in the QHE
regime with the same restraints. These symmetries are not
found in the scans discussed here, which we attribute to po-
tential fluctuations that break the symmetry of the Hall cross
on the relevant length scale. We therefore conclude that this
length scale decreases when entering the QHE regime and
the sample should be described by a nonhomogeneous
model.

In a very recent publication scanning gate experiments in
the regime of the QHE transition have been investigated
theoretically, based on a percolation model for a lattice of
saddle points with tunneling or ideally conducting links.29

“Hot spots,” i.e., regions of increased sensitivity of the �2-
terminal� conductance to local changes in the potential, have
been linked to how well the saddle point in question is
coupled to both contacts. The measurement in a multitermi-
nal arrangement discriminates couplings between more con-
tacts, as shown in the Appendix.

We find experimentally that at even integer filling factors
the Hall bar response cannot be altered by a local perturba-
tion. At these fields the model in Ref. 29 suggests that all
links in the lattice have zero transmission. A local perturba-
tion merely produces closed loops of conducting links �local-
ized states�, disconnected from the contacts, which does not
change the measured voltages.

Our picture of the scanning gate experiments is that the
tip potential slightly varies the transmission in each saddle
point of the potential and the induced resistance changes
measure how important this saddle point is for the coupling
of the corresponding macroscopic contacts �hot spots�. The
1/B periodicity seen in Fig. 2 reflects the periodic local den-
sity of states at the Fermi energy expected for the local filling
of the Landau levels. Also the induced resistance changes are
very similar at corresponding filling factors, which supports
our interpretation. In Fig. 2 we find two patterns that coexist
at roughly the field where the SdH oscillation is maximum.
We identify this field with the value of the QHE percolation
transition, because of the maximum backscattering in the
Hall bar. At the high-field side of the transition essentially
only one hot spot, possibly consisting of many not separately
resolved saddle points, is observed. These saddle points in
this particular sample are active and therefore responsible for
roughly 3/4 of the changes in the Hall voltage of each tran-
sition. The saddle points producing the second pattern, with
more features and different couplings of the contacts, are
responsible for the rest of the QHE transition. Above and
below the percolation field the position and form of the lo-
calized states are completely different, because the former
“hot links” become ideally conducting. The different re-
sponses to the local perturbation discussed for Figs. 6 and 7
correspond to different transmission matrices in the
Landauer-Büttiker picture and describe different couplings
between the macroscopic contacts, like it is explained in the
Appendix. A simulation of the 2-terminal conductance can-
not account for these findings. We do not find that the num-
ber of hot spots increases gradually with the approach to the
transition, as predicted in Ref. 29, rather we do find the co-
existence of the patterns, where all critical saddle points of
the transition are active.

From Fig. 10�a� we conclude that the tip potential for
electrons increases with more negative voltages applied,
which increases the influence on individual saddle points, as
it is expected theoretically.29 Less obvious is the fact that the
half width at half maximum also increases, which is not ex-
pected for an ideal metal surface. We attribute this effect to
the reduced screening capability of the 2DEG, especially in
the QHE regime. Qualitatively, more features can be ob-
served in Fig. 2 on the side with lower resistance changes,

FIG. 11. �Color online� �a�–�c� Schematics of the QHE transi-
tion from ��2 to ��4. The red arrow in �b� indicates the critical
saddle point in the transition. �d�–�f� Effect of a scanned potential
perturbation at �=�*.
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consistent with the notion of smaller induced local changes
when more saddle points are involved in the coupling of the
contacts. For exactly one saddle point governing the transi-
tion between the high quantum Hall plateau at �h=4 and the
low plateau at �l=6 the largest possible induced change in
the Hall resistance is

	Rxy,max =
h

e2� 1

�h
−

1

�l
� = 2.15 k� . �1�

We did not observe this value which indicates that other
hot spots are involved outside the scanned area. Also Eq. �1�
only holds if the transmission of the saddle point can be
tuned between 0 or 1 without changing the basic shape of the
potential. This requirement might not be met when very large
negative voltages are applied to the tip. The simulations in
Ref. 29 show that the additional coupling at other saddle
points reduces the maximum effect and that the average
change in conductance saturates at much larger tip voltages
than on the most sensitive individual saddle point. Ideally,
the resistance changes should vanish for a fully compensated
contact potential difference �CPD� between tip and sample.
In other experiments we found CPDs between 0.3 and
0.7 eV for this material system,32,33 in good agreement with
the presented data.

Edge states introduce very long equilibration and phase
coherence lengths, which can lead to nonlocal resistance
changes.9 The simplest way to explain changes in the nonlo-
cal Hall resistance is to assume a nonideal contact on the
second Hall cross.6 A necessary condition then is that the
electrochemical potential of the scattered edge channels is
not equilibrated before they enter the next contact. Intu-
itively, assuming the existence of compressible and incom-
pressible strips11 with the former carrying the electrochemi-
cal potential, this equilibration is weaker for states more
separated by incompressible strips, which is the case for fill-
ing factors at the high-field end of a QHE transition. This is
in accordance with Fig. 8 of our experiments.

In our picture the spin-split states should be understood as
independent, but spatially and electrostatically different
channels. The coupling of these states occurs at a different
fraction of the filling factor �odd integers� and introduces a
qualitatively different feature in the scanning gate images,
compared to the even integer states. From this we conclude
that the actual microscopic structure of the QHE state not
only dictates quantitatively the coupling at a given saddle
point, but that this structure is also important for the global
form of the total network of QHE states and for the QHE
transition, e.g., for slight deviations in the critical exponent
of the QHE transition.

V. SUMMARY AND CONCLUSION

We investigated the influence of position and amplitude of
local potential perturbations on the QHE transition by scan-
ning gate experiments on a small Hall bar. We find pro-
nounced features in the images and an abrupt change in the
pattern of the images near half-integer filling factors. All
findings, including nonlocal Hall resistance patterns and a
characterization method for the individual features, are de-

scribed in the light of an intuitive model of edge states
coupled at local saddle points in the 2DEG potential. We
expect that scanning gate experiments as presented here can
be used to extract real space informations about the potential
landscape of 2DEGs by investigating also larger Hall bars, or
about phase-coherence phenomena such as �universal� con-
ductance fluctuations in small conductors, e.g., quantum
wires. A still strongly debated topic is the breakdown of the
quantum Hall effect for large current densities, for which we
expect further experimental insight from scanning gate ex-
periments.
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APPENDIX

In this appendix we work out an intuitive basis set of
transmission matrices for a single Hall cross and calculate
the corresponding resistance changes in the Landauer-
Büttiker formalism.

Backscattering inside the Hall bar has already been dis-
cussed for scanning gate experiments in the literature.26 The
Hall resistances are not altered in this particular case, i.e.,
	Rxy,1=	Rxy,2=0, and the changes in both longitudinal re-
sistances are 	Rxx,1=	Rxx,2= �h /e2���
 / ��−
�	�Rxy

�0��
 / ��
−
�	, with 
 describing the reduction of transmission in one
channel.

The transmission matrix of a single Hall cross has 16
elements and 7 linearly independent relations from current
and energy conservation. Therefore we need nine linearly
independent matrices to form a basis and nine parameters to
form a general transmission matrix. The choice of basis ma-
trices is arbitrary and can, for example, be constructed by
considering intuitive examples.

The coupling schemes can be grouped, for example, by
the number of edge states that are backscattered into the
contact of their origin. The cases where the state in contact 1,
2, or 6 are backscattered do not change any resistances.
Backscattering in lead “HB” is equivalent to backscattering
in the interior of the Hall bar. In Fig. 12�a� the case is shown
where backscattering occurs in two contacts: 6 and the Hall
bar HB. Rotations by 90° lead to another three basis matri-
ces. Basically, these cases are already discussed by Büttiker

FIG. 12. �Color online� Edge state coupling in a Hall cross with
backscattering in �a� contacts 6 and HB and �b� in all four contacts.
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as “anomalous quantum Hall effect due to adjacent contacts
with internal reflection.”6 There is no possibility for back-
scattering in exactly three leads and Fig. 12�b� shows the
case of backscattering in all four contacts. The corresponding
resistance can be found in Table I. The first column indicates
the contacts in which the edge states are scattered back. The
other columns show the changes in the two longitudinal re-
sistances and the change in the Hall resistance of the corre-
sponding Hall cross, both at positive and reversed magnetic
fields. All cases depend only on one parameter 
 and the
introduced resistance changes have all the same amplitude,
wªRxy

�0��
 / ��−
�	. It is only the last five scattering matrices
that produce a change in the local Hall resistance. None leads
to changes in the right Hall voltage, i.e., 	Rxy,1�0. Each of
these mechanisms can be distinguished in principle by only
three measurements, for example, changes occurring only in
the longitudinal resistances correspond to backscattering in-
side the Hall bar, as found, for example, in the text. It must
be highlighted, however, that the choice of the basis matrices
is arbitrary and that any linear combination is also a valid
transmission matrix and can lead to different characteristics.
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TABLE I. Resistance changes for the nine scattering configura-
tions described in the text and depicted in Fig. 12. HB is the Hall
bar contact and wªRxy

�0��
 / ��−
�	.

Scat.
leads

B�0 B�0

	Rxx,1 	Rxx,2 	Rxy,2 	Rxx,1 	Rxx,2 	Rxy,2

1 0 0 0 0 0 0

2 0 0 0 0 0 0

6 0 0 0 0 0 0

HB w w 0 w w 0

HB, 6 w 0 w w w 0

6, 1 0 0 0 0 w −w

1, 2 w 0 w 0 0 0

2, HB w w 0 0 w −w

All w 0 w 0 w −w
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