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Interplay of fractional quantum Hall states and localization in quantum point contacts
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We investigate integer and fractional quantum Hall states in quantum point contacts (QPCs) of different
geometries, defined in AlGaAs/GaAs heterostructures employing different doping and screening techniques.
We find that even in the highest mobility samples, interference and localization strongly influence the transport
properties. We propose microscopic models for these effects, based on single- and many-electron physics. For
integer quantum Hall states, transport is modulated due to the self-consistent formation of compressible regions
of enhanced or reduced density in the incompressible region of the constriction. In the fractional quantum Hall
regime, we observe the localization of fractionally charged quasiparticles in the constriction and an interplay
of single- and many-electron physics. At low electron densities and in comparatively weak magnetic fields,
single-electron interference dominates transport. Utilizing optimized growth and gating techniques, the ν = 5/2
state can be observed in a QPC, conserving the bulk properties in an unprecedented quality. Our results might
improve the understanding of the influence of localization on the transmission properties of QPCs, which is
necessary for the interpretation of interference experiments employing QPCs, especially at ν = 5/2.
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I. INTRODUCTION

Localization plays a crucial role for understanding the exact
quantization of the quantum Hall effect. In strong magnetic
fields, electronic transport can be described in terms of narrow
edge channels, leading to the well-known observations of
Rxx ≈ 0 and Rxy = h/(e2νbulk). In this case, varying the
magnetic field only (de)populates localized states in the bulk,
which do not affect transport because backscattering of the
chiral edge states across the wide bulk region is negligible.
Alternative pictures, where the current is believed to flow in
the bulk, exist (see for example Ref. [1] for an overview). Also
in this case, the (de)population of localized states plays the
key role for the conductance quantization. These theoretically
predicted localized states have been investigated in various
experiments using spatially resolved imaging techniques [2–6]
or single-electron transistors fabricated on top of a two-
dimensional electron gas (2DEG) [7]. In a pioneering work
by Ilani et al. [3], the equilibrium properties of such localized
states have been investigated in the bulk of a 2DEG with
scanning single-electron transistor (SET) techniques. The
behavior of the bulk localizations was shown to be dominated
by Coulomb blockade physics. This picture cannot be ex-
plained as a single-electron effect, but requires the formation
of compressible and incompressible regions in the bulk, in
analogy to an edge state picture that takes self-consistent
screening into account [8–10]. Here, the system is decomposed
into compressible regions, in which potential fluctuations are
screened and the density varies, and incompressible regions of
constant density but varying background potential. Apart from
the aforementioned experiments which probe localizations on
a very local scale in the bulk, conductance fluctuations in the
quantum Hall regime, believed to be related to localized states,
have been studied in direct transport experiments [11–19].
They have been investigated for example in Si-MOSFETs [13],
graphene [20–22], InGaAs quantum wells [23], and
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narrow AlGaAs/GaAs heterostructures [11,12], where local-
ized states couple to the edge and thus become accessible.
In the latter experiments [11,12], resistance fluctuations have
been interpreted as magnetically bound states. As pointed
out later [24–26], Coulomb blockade effects are of great
importance for such experiments and have to be taken into
account for the interpretation of B-field and gate-voltage
periodicities. In the work of Cobden et al. [13], conductance
fluctuations in the quantum Hall regime span a distinct pattern
in the density vs magnetic field plane, with resonances parallel
to neighboring conductance plateaus, similar to the phase
diagram obtained by Ilani et al. This has been interpreted
as Coulomb charging of localized states in the bulk of the
employed small structures. The absence of a clear periodicity
suggests either the contribution of many localized states or the
validity of other interpretations [14], which are based on the
presence of a network of compressible stripes.

More recently, scanning gate experiments have tried to
combine spatial resolution with transport [27–29]. Hackens
et al. have investigated Coulomb-dominated islands inside
quantum Hall interferometers [27]. Modulations of transport,
due to the coupling of the localized islands to the edge
states were found. In contrast to this behavior dominated
by Coulomb charging, recent experiments [29] report phase
coherent tunneling across constrictions in the quantum Hall
regime.

Quantum point contacts are one of the conceptually most
simple though interesting systems studied in mesoscopic
physics. Despite their simplicity, complex many-particle phe-
nomena such as g-factor enhancement [30–32] or the 0.7
anomaly [33–38] are observed. Furthermore, they offer the
possibility of locally probing a physical system, which is
for example used in charge detection experiments [39–42]
or tunneling experiments in the quantum Hall regime [43–45].
This allows us to employ quantum point contacts (QPCs) in
the quantum Hall regime for investigating the influence of
disorder-induced localizations on transport. The influence of
localized states on (fractional) quantum Hall states confined
in QPCs is not fully understood. Furthermore, the influence
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TABLE I. Overview of the different samples used in this study. Channel width w, electron sheet density ns , and mobility μ are indicated
for the different QPCs.

QPC w (nm) Heterostructure ns (1011 cm−2) μ (106 cm2/V s)

QPC I.a 250 30 nm QW, δ-Si screening 3.0 13.0
QPC I.b 500

QPC II.a 700 1.5 8.0
QPC II.b 700 Single-side doped
QPC II.c 900 GaAs/Al0.24Ga0.76As heterostructure
QPC II.d 800

QPC III.a 1200 30 nm QW, δ-Si screening 2.1 17.8

of individual localizations on nonequilibrium transport was
not accessible in the mentioned transport experiments. In
contrast, scanning SET experiments provided information
about individual localizations, but not about their influence on
transport. For the interpretation of interference experiments in
the quantum Hall regime [46–50], a detailed understanding
of the transmission properties of single QPCs is necessary.
Even in 2DEGs with the highest mobilities technologically
achievable at the moment, disorder significantly influences
transport through the QPC, as soon as a perpendicular
magnetic field is applied. We show that even in simple QPCs
complicated behavior can be observed, which is interpreted
in terms of single- and many-electron physics of individual
disorder-induced localizations. We argue that the influence
of localizations can be minimized by employing growth
and gating techniques, which result in a very steep QPC
confinement potential (perpendicular to transport direction)
and low disorder in the channel. By this, the ν = 5/2 state
can be confined to a QPC without noticeable backscattering
and preserving the bulk properties in an unprecedented quality,
giving a good starting position for tunneling and interference
experiments in the second Landau level.

II. EXPERIMENTAL DETAILS

The QPCs used in this study are defined by electron-beam
lithography and subsequent Ti/Au evaporation on
photolithographically patterned high-mobility wafers.
Constrictions with different geometries have been studied
for this article (see Table I for an overview). For the 250 nm
wide QPC I.a and the 500 nm wide QPC I.b, a 30 nm wide
quantum well with a carrier sheet density ns ≈ 3.04 × 1011

cm−2 and a mobility μ ≈ 13 × 106 cm2/V s has been
used. In this structure the 165 nm deep quantum well is
neighbored by two δ-Si doped GaAs layers, enclosed in
2 nm thick layers of AlAs. These screening layers reside
70 nm below and above the 2DEG. The electrons in the
AlAs wells populate the X band and provide additional
low-mobility electron layers, which screen the � electrons
in the 2DEG from remote ionized impurities. Due to the
screening layers, hysteretic and time-dependent processes
make gating difficult. The gating properties of these wafers
have been studied earlier [51]. The 1.2 μm wide QPC III.a has
been fabricated on a wafer which employs a similar growth
technique (μ ≈ 17.8 × 106 cm2/V s, ns ≈ 2.13 × 1011 cm−2,
250 nm deep, 30 nm wide quantum well, screening layers
100 nm below and above the 2DEG). The high-mobility

structures used for QPCs I.a,b and III.a are optimized for
the ν = 5/2 state without the requirement of prior LED
illumination [52]. QPC II.a, QPC II.b (both 700 nm wide),
QPC II.c (900 nm wide), and QPC II.d (800 nm wide) were
fabricated on a single side doped GaAs/AlxGa1−xAs
heterostructure with a mobility of approximately
8 × 106 cm2/V s and a 320 nm deep 2DEG with an electron
density of approximately 1.5 × 1011 cm−2. Hysteresis effects
are much less pronounced in these structures which employ
a reduced proportion of Al in the spacer layer between the
doping plane and the 2DEG (x = 0.24 compared to typically
x = 0.30–0.33). Long-range scattering is therefore reduced,
thus facilitating the formation of the ν = 5/2 state and other
fragile fractional quantum Hall (FQH) states [53,54].The
measurements have been conducted in a dilution refrigerator
at a base temperature of approximately 85 mK and in magnetic
fields up to 13 T. Measurements of QPC III.a have been
performed in a dry dilution refrigerator with an electronic
temperature of approximately 12 mK, achieved by massive
filtering and thermal anchoring at every temperature stage.
Standard four-terminal lock-in measurement techniques have
been used to measure Rxx and Rxy of the bulk 2DEG and the
differential conductance the QPC, G = ∂IAC/∂Vdiag, which
gives access to the effective QPC filling factor νQPC [55].
Here, the voltage drop Vdiag is measured diagonally across the
QPC.

III. RESULTS AND DISCUSSION

The main part of this article will be organized as follows:
First, an exemplary quantum Hall phase diagram will be
discussed (Sec. III A). The influence of different QPC ge-
ometries on the width of the incompressible region separating
the edge states and the density distribution is discussed in
Sec. III B. In the main part of our article, Sec. III C, QPC
resonances are characterized and explained via a microscopic
model. A short summary of this central section is given
afterwards. The resonances’ dependence on the spatial position
of the conducting channel inside the QPC is investigated in
the following section (Sec. III D). At the end, methods for
confining the most fragile fractional quantum Hall states are
discussed (Sec. III E).

A. Quantum Hall phase diagram of a QPC

Figure 1(a) shows the differential conductance G (plotted:
numerical derivative ∂G/∂VQPC in color scale) of QPC I.a
as a function of the voltage applied to the QPC gates (VQPC)
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FIG. 1. (Color online) (a) Transconductance of QPC I.a as a func-
tion of the QPC voltage and the magnetic field. Conductance plateaus
at multiples of e2/h can be seen as black regions. Resonances,
bending in the B-VQPC plane are indicated by white dashed lines. The
1/B periodic kinks (white arrows) are believed to originate from a
change of the filling factor in the bulk. A possible combination of bulk
filling factors is indicated. Inset: Full B-field and voltage dependence
of the system. Here, the voltage was swept from −1.3 V → −2.7 V →
−1.3 V repeatedly and the B field was stepped from 0 T → 13 T →
0 T. (b) The B = 0 QPC conductance plateaus at multiples of
2 × e2/h spin split for increasing magnetic fields (magnetic field from
0 T to 3 T). For 0 < G < 2 × e2/h and 2 × e2/h < G < 4 × e2/h,
local minima in the slope of the conductance are marked by green
diamonds or red circles. In contrast to the second and third subband,
the spin splitting of the lowest subband starts at conductance
values of approximately 0.7 × 2 × e2/h and approaches 1 × e2/h

as the magnetic field strength is increased [56,57]. (c) At strong
magnetic fields (with bulk filling factors νbulk), conductance plateaus
corresponding to different integer and fractional filling factors in the
QPC can be observed.

and a perpendicular magnetic field B. At zero magnetic field,
the well-known QPC conductance quantization in multiples
of 2 × e2/h is found. As the magnetic field is increased,
conductance steps (or plateaus), seen as maxima (or black
areas) of ∂G/∂VQPC, bend to more positive QPC voltages, due
to magnetoelectric depopulation of the QPC channel [55,58].
The quantized conductance plateaus successively develop
into regions of constant effective filling factor of the QPC
(νQPC) with a diagonal resistance Rdiag = h/(e2νQPC). In this
regime the spin splitting is sufficiently strong to also observe
conductance plateaus at G = 1,3,5, . . . × e2/h [56,57]. The

low-field behavior of the spin-splitting is shown in Fig. 1(b).
Numerically extracted local minima of the slope of the conduc-
tance curve have been marked with (green) diamonds and (red)
circles. As B → 0, the G = 1 × e2/h plateau seems to join
the 0.7 × 2 × e2/h anomaly [59]. No similar behavior can be
observed at G = 3 × e2/h and G = 5 × e2/h. In the quantum
Hall regime, conductance curves of the QPC [Fig. 1(c)] show
fractional effective filling factors at νQPC = 2/3 and νQPC =
4/3 for different integer and fractional filling factors of the
bulk (νbulk). The shape of the boundary of the G = 0 region of
Fig. 1(a) is determined by different effects: first, an increasing
magnetic field leads to magnetoelectric depopulation due to
an increase of the single-particle electron energy, thus moving
the pinch-off region to less negative gate voltages. In addition,
time-dependent and hysteretic processes of the X-electron
screening layers lead to an additional drift of the pinch-off
line towards less negative QPC voltages. The small inset
shows the B-field and voltage dependence of the system.
Here, the voltage was swept from −1.3 V → −2.7 V →
−1.3 V repeatedly (horizontal axis) and the B field was stepped
from 0 T → 13 T → 0 T (vertical axis). The upper and
lower parts of the inset are not mirror symmetric; over the
time of the measurement, the pinch-off line drifts towards
less negative voltages, indicating a time dependence of the
system. Furthermore, changes of the filling factor in the bulk
can lead to an abrupt decrease of the Fermi energy of the
system as observed in quantum dots (QDs) [60]. This effect is
believed to cause the 1/B-periodic kinks in the pinch-off line.
When increasing the B field across the kinks, the pinch-off line
suddenly moves towards more positive QPC voltages [marked
by white arrows in Fig. 1(a)], though an assignment to the
individual filling factors in the bulk is not uniquely possible,
probably due to a reduced density in the bulk near the QPC,
which governs the local coupling of bulk states into the QPC.

In the regions of Fig. 1(a) where the QPC filling factor is
changing, the QPC conductance does not vary monotonically.
For G > 1 × e2/h, resonances which are parallel to the
boundary of one of the neighboring conductance plateaus
are observed [green (gray) arrows]. In contrast, the region
G < 1 × e2/h shows resonant features without any preferred
slope, or even with varying slope at different B fields (a set
of bending resonances is indicated by the white dashed line).
Very similar resonances have been found in several QPCs in
different cool downs. The origin of these resonances will be
discussed later in the framework of single- and many-electron
physics.

B. Influence of QPC geometry on incompressible separating
region and density distribution

To be able to understand the mechanisms behind the
resonances in more detail, we have investigated two different
QPC designs, fabricated on a 2DEG of lower density. QPC
II.a is 700 nm wide with a top gate above the conducting
channel [see inset Fig. 2(a)]. QPCs II.b [inset Fig. 2(b)] and
II.c are standard 700 nm and 800 nm wide QPCs. Density
profiles in the y direction (along the lateral confinement
potential) for the two QPC designs (at B = 0) have been
obtained from a self-consistent band structure calculation
using NEXTNANO. The doping concentration was adjusted to
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FIG. 2. (Color online) Density distributions in the channels of
QPC II.a (a) and QPC II.b (b). The original zero magnetic field
density [dashed (blue); blow-up in second row] has been altered by the
formation of an incompressible region in the center of the constriction
at B = 1.71 T (νQPC = 2), resulting in a region of constant density n0.
The width �a of the incompressible region is indicated for different
filling factors νQPC in both QPCs.

account for surface charges and to reproduce the gate pinch-off
voltages correctly. The applied voltages to the gates were
chosen such that the calculated density at B = 0 corresponds
to the density necessary for νQPC = 2 at B = 1.71 T, as
in the measurements. Using the calculated density profile at
B = 0, we have calculated the altered density profile when
a compressible region is formed in the center of the QPC
(Fig. 2) and the width �a of the incompressible region for
different QPC filling factors, using the electrostatic model of
Chklovskii et al. [61]. In this model, perfect metallic screening
in the compressible regions is assumed. For the gap energies,
�ωc and g̃μBB with an exchange enhanced g̃ ≈ 4 [32] have
been used as estimates for ν = 2 and ν = 1. The energy gap
at ν = 1/3 has been measured (see Appendix). In Fig. 2, the
resulting self-consistent densities (for νQPC = 2) are shown as
solid lines. The original density at B = 0 [dashed (blue) line,
second row] is modified by the formation of an incompressible
stripe (constant density n0) in the center of the channel. When
a negative voltage is applied to the channel top gate (CTG) of
QPC II.a, the subband minimum is lifted. In this situation,
the curvature of the electron density in the center of the
constriction is small. When QPC II.b is tuned to a similar
density in the constriction, the density curvature in the center
is much greater, leading to a narrower compressible region
[Fig. 2(b)]. Comparing �a of the two QPCs, we conclude
that for QPC II.a, a significantly wider incompressible region
is expected according to the model of Chklovskii et al. [61].

The widths �a range from approximately 20 nm to 90 nm.
Disorder potential fluctuations have typical length scales of
the order of 100 nm [3,62]. If the amplitude of such a disorder
potential fluctuation in the incompressible region in the center
of the QPC is large enough to create an intersection of the
Landau level with the Fermi energy [Figs. 4(b) and 4(c),
left column], compressible regions of enhanced or reduced
density [Figs. 4(b) and 4(c), middle column] are formed.
Thus, the small width of the incompressible region in QPC
II.b (and hence in the QPC II.c with similar geometry) makes
it less likely that a disorder potential fluctuation leads to the
formation of a localization in the constriction. Furthermore,
the coupling to such a localization is strongly varied as
the width of the separating incompressible region changes,
making the observation of periodic charging of a single
localization impossible. To observe periodicities and study
resonances in more detail, we now investigate electronic
transport in QPC II.a, where a much stronger influence of
disorder-induced localizations is expected. Here, a periodic
behavior is expected over a larger parameter range, as the width
of the incompressible regions separating edge and localizations
is sufficiently wide.

C. Characterization of QPC resonances and microscopic model

1. Periodic conductance oscillations in QPCs
of different geometries

The filling factor spectra of QPC II.a and QPC II.c are
investigated similarly to the measurement of Fig. 1(a), by
varying the QPC gate voltage versus the magnetic field B. First,
the channel top-gate voltage VCTG has been varied [Fig. 3(a)].
This gate varies the density of the channel roughly linearly
with applied voltage (neglecting filling-factor dependent ca-
pacitances), as seen from the slope dB/dVCTG ∝ 1/νQPC of
the conductance plateaus, which show up as black areas of
quantized conductance. In addition to the full series of integer
filling factors, fractional states at νQPC = 1/3, 2/3, 4/3, and
5/3 can be observed. Close to the low- and high-density edges
of the conductance plateaus, sets of conductance oscillations
with a slope parallel to the boundaries are observed, similar to
the ones observed in small Hall bars [13,14]. The slope and
number of these resonances are independent of density and
magnetic field strength.

A qualitatively similar behavior can be found for QPC
II.c as VQPC is varied [Fig. 3(b)]. Here, regions of perfect
transmission have been marked (A.1). Modulations occur
at the low-density side (B.1) and high-density side of the
conductance plateaus (C.1) or pinch-off (C.0). Furthermore,
resonances at the low-density and low-B-field end of conduc-
tance plateaus are observed (D.1). These resonances disappear
as the density and B-field strength increase. Similar regions
can be attributed to higher filling factors, for which underlying
edge states are perfectly transmitted (A.2–D.2).

As mentioned above, a much stronger influence of a
disorder-induced localization is expected for QPC II.a, as
the wider incompressible region is much more likely to
accommodate one or several extrema of the disorder potential.
Here, quasiperiodic conductance modulations should occur
over a larger parameter range, as the width of the incompress-
ible regions separating edge and localizations is sufficiently
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FIG. 3. (Color online) (a) Transconductance of QPC II.a as a function of the voltage VCTG and magnetic field B. Here, the density is tuned
roughly linearly by the gate voltage. (b) Transconductance of QPC II.c as a function of VQPC. Pronounced fractional and integer filling factors
are observed (black regions A.1, A.2, etc.). Apart from these regions of nearly perfect transmission, disorder modulates transport in other
regions: for small transmission (C.0, C.1), small backscattering (B.1), and at the low-density, low-B-field end of the conductance plateaus
(D.1). A similar behavior is found when one underlying edge state is perfectly transmitted (regions B.2–D.2). (c) Transconductance of QPC
II.a, when −400 mV are applied to the CTG. (d) Zoom of Fig. 3(c): transition from νQPC = 2 to νQPC = 1. Two distinct slopes (green-solid
and white-dashed lines), parallel to the boundary of the neighboring conductance plateaus, are observed. (e), (f) Close-ups of the conductance
oscillations for νQPC = 1 and νQPC = 1/3 [enframed areas in (c)].

wide. In order to verify this expectation, Fig. 3(c) shows
the transconductance of QPC II.a, obtained by keeping VCTG

fixed while varying VQPC and B. Compared to Fig. 3(b),
more pronounced conductance oscillations are observed (red
empty arrow). Especially gate voltage regions close to pinch-
off are now dominated by equidistant conductance peaks
parallel to the magnetic field axis. Regions C and D overlap,
which can be seen from the coexistence of two different
distinguishable slopes (indicated by green solid arrows). In
the integer quantum Hall regime [for example in Fig. 3(d)],
conductance oscillations with distinct slopes are observed
between neighboring conductance plateaus. The resonances
are parallel to either of the two neighboring plateau boundaries

[Fig. 3(d), green-solid and white-dashed lines]. Close to
νQPC = 1/3, strong resonances parallel to the conductance
plateau occur [Fig. 3(f)]. At lower B fields, between νQPC =
1/3 and νQPC = 1, weak modulations with an intermediate
slope are observed.

2. Screening and localization model

The mechanism which gives rise to the different resonances
in regions A–D can be understood in terms of an edge-
state picture which takes nonlinear screening of potential
fluctuations into account (Fig. 4). Similar models have been
employed to understand bulk localizations in scanning SET
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(b) or energetically lowest reflected (c) Landau level lead to partially occupied states at the Fermi energy, compressible regions of enhanced
[c, green (dark gray) area] or reduced density (b, red striped area) are formed within the incompressible region. This gives rise to a quantized
charge on the compressible regions of enhanced or reduced density formed in the incompressible region which separates the edge states. For
smaller magnetic fields or stronger disorder fluctuations, wide compressible regions are absent and only states below the Fermi energy are
occupied. Here, compressible regions of enhanced and reduced density modulate the transport in the constriction at the same time (d). As wide
incompressible regions are absent, the compressible regions of enhanced or reduced density are no longer governed by Coulomb-dominated
physics. Here, single-electron resonances arise from localized states, encircling a certain number of magnetic flux quanta. In contrast to the
Coulomb-dominated mechanism, such single-electron resonances give rise to a dependence in the B-VQPC plane which may differ from the
slope of the conductance plateaus.

and scanning capacitance experiments [3–5,63]. Regions of
locally enhanced or reduced density are formed on top of
the background density, associated with different extended
quantum Hall states. These localizations in the constriction
couple to the edge states and give rise to conductance

oscillations. In Fig. 4, the guiding center energies of two
extended quantum Hall states are shown as a function of the
spatial direction y, intersecting the QPC channel [Fig. 4(a), left
column]. Empty or filled circles symbolize empty or occupied
states. The extended states could for example be associated
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with Landau levels (in this case �ext = �ωc), spin-split Landau
levels (�ext = g̃μBB with an exchange enhanced g̃), or �

levels of composite fermions, corresponding to a FQH state at
ν = 1/m [64–66] (�ext = �1/m is the energy gap of the FQH
state). For simplicity, we will constrain the discussion in the
following to the situation in which extended states arise from
a Landau level splitting. If spin-split Landau levels or � levels
are considered, an analog picture can be constructed.

In Fig. 4(a), energies of the second Landau level
are far above the Fermi energy. In the most simple edge
state picture [67,68], Landau level energies are bent up by
the confinement potential of the QPC, giving rise to chiral
edge states at the intersections with the Fermi energy, thus
leading to a stepwise density increase towards the bulk of
the sample. However, self-consistency of the Poisson and
Schrödinger equations at a smooth, electrostatically defined
edge [8] leads to a screened potential and smooth density
variations in compressible regions of finite width [Fig. 4(a),
middle column]. In this compressible region, partially filled
states (half-filled circles) reside at the Fermi energy. The
density of electrons in the lowest Landau level is constrained
via n � n0 = 2eB/h, due to its finite degeneracy. Where the
Landau level energy lies below the Fermi energy, all states
are occupied (filled circles) and this maximum density is
reached. Potential fluctuations can no longer be screened,
in contrast to the ideally perfect screening in compressible
regions where the potential is flat. In this picture, compressible
regions in between regions of constant filling factors ν1 and ν2

contribute G = e2/h × �ν to the conductance, where �ν =
ν2 − ν1 [69]. Alternate models exist, where the current is
flowing in the bulk (see for example Ref. [1] for an overview).
In our case however, the details of the current distribution
in the QPC are not important, as only the total conductance
through the QPC can be measured. A schematic spatial density
distribution within the QPC is shown in the right column of
Fig. 4(a). Here, the boundaries between compressible and
incompressible regions are indicated as black arrows. For
simplicity, these will be referred to as “edge states” from
now on. In this picture, the edge state is perfectly transmitted
through the QPC constriction (between black polygons) and
both counter-propagating directions are separated by a wide
incompressible region [61] (white), yielding a quantized QPC
conductance. Far away from the QPC, additional Landau levels
eventually fall below the Fermi energy, leading to additional
compressible regions where the density increases towards
its bulk value [green (dark gray) area]. Adding schematic
potential fluctuations [Fig. 4(a), left column] does not change
the overall situation, as long as no states in the second
Landau level become occupied. This is the analog situation
in the regions A.1 and A.2 of Fig. 3(b). As the magnetic
field strength is increased, Landau levels are lifted in energy,
leading to a narrower incompressible region in the center of the
QPC between the edge states. The density is locally reduced
[Fig. 4(b), middle column] where maxima of the potential
fluctuations intersect the Fermi energy [Fig. 4(b), left column].
This leads to the formation of a compressible region of reduced
density (red striped) that is separated from the edge states via
incompressible stripes.

For an increasing disorder amplitude or decreasing Landau
level splitting, compressible regions of enhanced or reduced

density can occur in the constriction at the same time,
explaining the simultaneous visibility of resonances with a
different slope in Fig. 3(c) (indicated by solid green arrows).
When disorder dominates over the Landau level splitting, i.e.,
when the the gradient of the background potential ∂V/∂y

becomes comparable to Egap/lB [70], where lB is the magnetic
length, the system is no longer described by a many-electron
picture with screening via compressible and incompressible
regions [Fig. 4(d)]. In that confinement-dominated case,
single-electron states localized around a potential minimum
or maximum in the constriction enclose a fixed number of
flux quanta [71] [Fig. 4(d), solid blue line]. As the area of
the localized state is tuned nonlinearly with the QPC gate
voltage, resonances with varying slope in the B-VQPC plane
are expected [3].

Alternate tunneling paths that lead to a qualitatively similar
behavior have been proposed [72]. Here, nonadiabaticity of
the QPC potential leads to enhanced tunneling between the
edge channels at the entrance and exit of the constriction
[Fig. 4(d), red dashed lines]. In contrast, the situation of
Fig. 4(b) is described by Coulomb-dominated physics of the
compressible region of reduced density inside the constriction.
Here, electron-electron interactions lead to a potential with
compressible and incompressible regions. The charge of the
compressible region of reduced density is quantized, leading
to a certain slope in the B-VQPC plane [3], whenever an
electron is added or removed from the compressible region of
reduced density. The slope is uniquely determined by the filling
factor of the incompressible region in which the compressible
region of enhanced or reduced density is formed and equals
the slope of the corresponding conductance plateaus in the
VQPC–B field plane. This explains why resonances only occur
with one of the slopes of the neighboring conductance plateaus
[Fig. 3(d)]. Conductance resonances are only visible in the
transport data when the incompressible region between the
edge states and the compressible region of reduced density is
sufficiently small, allowing for resonant backscattering across
the constriction. This is the case as the conductance starts to
decrease below the plateau value, as in Fig. 3(b), B.1 and
B.2. Similarly, potential minima of the second Landau level
fall below the Fermi energy, as the magnetic field strength
is decreased [Fig. 4(c), left column], leading to compressible
region of enhanced density within the incompressible region
separating the edge states. As additional transmission sets in
[Fig. 3(b), C.1 and C.2], the coupling of these compressible
region of enhanced density leads to a periodic modulation of
the transmission.

In this discussion, the additional complication of possible
edge reconstruction of integer quantum Hall (IQH) edge
states [73] has not been taken into account. Furthermore, we
observe faint conductance plateaus at G = 2/3 × e2/h in the
QPC. This state is clearly visible in the QPC II.c [Fig. 3(b)]
and in QPC II.a when the voltage applied to the CTG is swept
[Fig. 3(a)]. Surprisingly, the ν = 2/3 state is not observed,
when the QPC voltage of QPC II.a is swept while a constant
voltage is applied to the CTG [Fig. 3(c)]. The edge structure of
the ν = 2/3 state is still not understood in detail. Theory and
experimental findings suggest that this state may consist of a
δν = 1 IQH edge state and a counterpropagating δν = −1/3
edge state of holes which are equilibrated by interaction,
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resulting in a single chiral charged mode and a
counterpropagating neutral mode [64,74–76]. Even more
advanced theoretical proposals exist [77], which can explain
the experimental findings of these states. How to interpret
localizations in the case of such a complicated edge structure
remains an open question. The weak visibility of the ν = 2/3
state could be due to this complicated edge structure and sug-
gests a smaller energy gap than observed for the ν = 1/3 state.

As mentioned before, resonances with bending slopes
in the B field–VQPC plane are expected for single-electron
resonances [3,71]. The detailed behavior of the slope depends
on the disorder potential intersecting the Fermi energy. This
suggests that the resonances in the FQH regime of Fig. 1(a)
(marked by white dashed line) could be interpreted as
single-electron effects. In Ref. [12], a model for a disorder
potential maximum in a constriction is proposed, leading to
magnetically bound states which could qualitatively reproduce
the bending of the resonances. In this situation, disorder
dominates over the smaller FQH gaps and the formation
of wide compressible and incompressible regions in the
constriction is no longer possible [Fig. 4(d)]. Thus, the slope
in the B field–VQPC plane depends on the influence of the QPC
voltage on the enclosed area, which depends on the shape of
the disorder potential maximum.

3. B-field and voltage periodicities

Within this framework, we may now investigate the
periodicities of the resonances in Figs. 3(c)–3(f). For a
Coulomb-dominated quantum dot, a distinct behavior of
the periodicities �B(νQPC) and �VQPC(νQPC) is expected.
These periodicities depend on the filling factor of the in-
compressible region, in which the Coulomb-dominated region
is formed; in our case this is νQPC. From theoretical mod-
els [25,26] for Coulomb-dominated Fabry-Pérot interferome-
ters it is expected that �B(νQPC = 1) ≈ 2�B(νQPC = 2) ≈
�B(νQPC = 1/3) and �VQPC(νQPC = 1) ≈ �VQPC(νQPC =
2) ≈ 3�VQPC(νQPC = 1/3) [78], which has been observed in
lithographically defined quantum dots [49]. In the IQH regime,
our periodicities for νQPC = 2 (�B ≈ 30 mT,�VQPC ≈
62 mV) and νQPC = 1 (�B ≈ 55 mT,�VQPC ≈ 60 mV) are
in good agreement with these predictions. Periodicities for
νQPC = 1/3 (�B ≈ 73 mT,�VQPC ≈ 24 mV) are at least com-
patible with a Coulomb-dominated localization of fractional
e/3 charges. The area which can be extracted from these pe-
riodicities (A ≈ 0.075 μm2) is compatible with a localization
in the channel of the QPC. However, it should be noted that the
geometry of the compressible region of enhanced or reduced
density within the constriction might change as the B field
is varied, because it is not lithographically defined but might
change self-consistently. A different behavior is observed in
the low n–low B field end of conductance plateaus [Fig. 4(d)],
where single-electron physics is expected to dominate. In the
measurement of Fig. 3(c) (regions encircled by white dashed
line), periodicities for νQPC = 1 (�B ≈ 200 mT,�VQPC ≈
53 mV) and νQPC = 1/3 (�B ≈ 360 mT,�VQPC ≈ 48 mV)
are incompatible with a Coulomb-dominated mechanism
and indicate single-electron behavior. Similar enhancements
of �B for ν = 1/3 have been interpreted as magnetically
bound states in earlier experiments [11]. However in this

interpretation, finite-temperature effects or an interplay with
Coulomb blockade mechanisms might have to be taken into
account [24].

4. Summary

To summarize, the most important findings of this section
are the following: Periodic conductance oscillations with
a slope, parallel to either of the neighboring conductance
plateaus, were observed. They were interpreted to originate
from the Coulomb-dominated charging of compressible region
of enhanced or reduced density, formed in a constant filling
factor background. This filling factor determines the slope.
B-field and gate voltage periodicities agree with expectations
for a Coulomb-dominated Fabry-Pérot interferometer. At low
densities and in weak magnetic fields, disorder prevents the
formation of compressible and incompressible regions. Here,
resonances are interpreted as single-electron effects, where
electronic states are dominated by confinement and encircle a
local potential maximum and enclose a certain number of flux
quanta. In the fractional quantum Hall regime where energy
gaps are smaller than in the integer quantum Hall regime,
an influence of both mechanisms can be seen. At the plateau
boundaries of the νQPC = 1/3 state, conductance oscillations,
compatible with Coulomb-dominated charging of fractionally
charged quasiparticles, are observed. For 1/3 < νQPC < 1,
modulations of the conductance with an intermediate slope
(in-between slopes of the νQPC = 1 and νQPC = 1/3 plateaus)
are observed. These slopes move with the local filling factor
of the QPC, i.e., correspond to a certain number of flux quanta
per electron. This indicates the importance of single-electron
interference, where resonances are expected to emanate from
the B = 0, n = 0 origin of the Landau fan [62].

D. Spatial dependence of QPC resonances

By applying different voltages to the two different QPC
gates, it is possible to laterally shift the QPC channel in the
lithographically defined constriction (this technique was for
example used in references [32,38,79]). For QPCs similar
to QPC I.a, this shift was found to be of the order of the
lithographic QPC width [32,80]. Figure 5 shows the numer-
ical derivative of G in diagonal direction (transconductance
∂G/∂Vl&r), as the voltages Vl and Vr of the left and right
QPC gate are varied. In these measurements, the 2DEG
far away from the QPC (bulk) is tuned to a fixed filling
factor νbulk with Rxx ≈ 0. Regions of constant conductance
and pinch-off show up as black areas; bright regions of
increasing conductance bend around the pinch-off region.
Figures 5(a) and 5(c) show the asymmetry dependence of
resonances [the diagonal of Fig. 5(a) is a cut across the
resonances of Fig. 1(a) indicated by the dashed line] in the
low density–low B field end of the νQPC = 1 plateau for three
different QPCs [Figs. 5(a), 5(b): QPC I.a; Fig. 5(c): QPC II.d;
Fig. 5(d): QPC II.a] on 2DEGs of different density. Resonances
believed to originate from single-electron effects (indicated
by white arrows) are observed at the low-density end of the
G = 1 × e2/h conductance plateau. The resonances show up
as two or three parallel lines with a varying slope clearly
different from the conductance plateaus’ slope and sit deep
in the G = 1 × e2/h conductance plateau. Such resonances,
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FIG. 5. (Color online) (a)–(d) Transconductance (numerical derivative in diagonal direction) of QPCs on a high-density sample [QPC I.a,
(a), (b)] and a low-density sample [QPC II.d, (c); QPC II.a, (d)] as the voltages of left and right QPC gates Vl and Vr are varied. White arrows
mark resonances that are believed to be due to single-electron interference. These resonances move with a more complicated dependence as
the asymmetry is varied, in contrast to many-electron resonances which bend parallel to the conductance plateaus.

occurring mainly in symmetric configurations, have been
observed in most of the QPCs in this study. Additional
modulations of the conductance can be observed between the
conductance plateaus. These many-electron resonances bend
roughly in the same way as the pinch-off line but vary in
intensity, as the asymmetry is varied.

Figures 5(b) and 5(d) show the asymmetry behavior in
strong magnetic fields. For a bulk filling factor νbulk = 1,
conductance plateaus in the QPC at G = 1/3 × e2/h are
observed. In Fig. 5(b), mainly resonances bending with the
pinch-off line are observed. In contrast, in Fig. 5(d), nonregular
resonances without any preferred slope are observed.

With our model (Fig. 4) we can now try to distinguish the
asymmetry behavior of the two different types of resonances:
on the one hand, the confinement-dominated resonances
[Fig. 4(d)] for the situation where compressible and incom-
pressible regions are absent and the system is described by
single-electron physics; on the other hand the many-electron

resonances [Figs. 4(b), 4(d)] where a compressible region of
enhanced or reduced density, situated in an incompressible
region, is charged.

Confinement-dominated single-electron resonances are ex-
pected to occur as a result of a localized state at a certain
position in the channel, to which both edges couple. As
the asymmetry and thus the background potential is varied,
single-particle energy levels are shifted in energy, which
changes the position in gate voltages of the resonance relative
to pinch-off. Thus, single-electron resonances are expected to
possess a dependence on gate voltage which is not parallel to
the respective conductance plateau as the asymmetry is varied.
They should disappear, as soon as the coupling to one of the
edges is lost. Here, the gate voltage dependence is influenced
by the details of the confinement and disorder potential.
The proposed gate voltage dependence of the single-electron
resonances (which causes a bending not necessarily parallel
to the pinch-off line) and the disappearance of the resonances
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with increasing asymmetry are indeed observed [Figs. 5(a)
and 5(b), white arrows]. A similar behavior might be expected
from an Aharonov-Bohm mechanism, where nonadiabaticity
of the QPC saddle-point potential leads to enhanced tunneling
between the edge channels at the entrance and exit of
the constriction and thus defines a QPC-voltage-dependent
area [72].

In the ideal model of many-electron resonances, the charge
of the compressible island of reduced or enhanced density
is quantized and changes when the total density in the
constriction is varied (i.e., when moving perpendicular to
pinch-off in the Vl-Vr plane). When the asymmetry is varied
parallel to pinch-off, we expect to change mainly the width
of the incompressible regions separating the compressible
island of reduced or enhanced density from the edge. Thereby
the resonance amplitude which highly depends on the width
of the incompressible region [42] is changed. At the same
time, the occupation of the compressible region of reduced or
enhanced density is expected to be approximately constant,
as long as the picture of compressible and incompressible
regions does not break down. In this scenario, resonances are
thus expected to run parallel to the conductance plateau edges,
as observed in the measurements [Figs. 5(a)–5(c)].

Because the conductance varies strongly in between the
plateaus, resonances cannot be attributed to individual lo-
calizations as was possible for example in Fig. 3(c). Thus,
in a yet different scenario, conductance oscillations could
also originate from single-electron effects, where we only
probe localizations that couple to both edges for a given voltage
asymmetry. At this asymmetry, they possess a local gate
voltage dependence, shifting them parallel to the conductance
plateaus. The overall behavior of the resonances could result
from averaging the contributions of many single-electron
resonances.

Summarizing, we may state that the bending resonances of
Figs. 5(a) and 5(c) (marked by white arrows) are compatible
with a confinement-dominated single-electron effect, whereas
resonances parallel to the conductance plateaus [Figs. 5(a)–
5(c)] are compatible with a many-electron effect. However,
other mechanisms leading to similar observations cannot be
excluded. The fact that in Fig. 5(d) no resonances bending
with the conductance plateaus are observed may indicate that
in Fig. 5(d) transport is dominated by single-electron physics,
while many-electron effects dominate in Fig. 5(b), where
the applied magnetic field is much stronger and the disorder
potential is smaller due to a higher mobility 2DEG.

E. Fragile fractional quantum Hall states in QPCs

Figure 6(a) shows the transmission of QPC I.b (light and
dark blue) and QPC II.d (red) as a function of applied QPC
voltage. The conductance of QPC II.d as a function of VQPC

(red) shows conductance oscillations on the low-density side of
the νQPC = 1 plateau. These are those resonances of Fig. 5(c),
which were interpreted as single-electron effects.

QPC I.b exhibits conductance plateaus at 2/3, 3/5, 2/5, and
1/3 × e2/h in strong magnetic fields (B = 13 T, νbulk = 1).
Close to pinch-off, the conductance strongly fluctuates. Unfor-
tunately the observation of νQPC = 2/3,3/5,2/5, and 1/3 does
not allow us to draw conclusions about the edge reconstruction
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FIG. 6. (Color online) (a) In strong magnetic fields (B = 13 T),
the transmission of QPC I.b close to pinch-off is strongly fluctuating
[light/dark blue (gray)]. The dashed (red) curve depicts a situation
in which a transmitted edge state is weakly backscattered in QPC
II.d (see inset). (b) Transmission of QPC III.a for 2 � νbulk � 3. In
the bulk, νbulk = 7/3, 8/3, and 5/2 are fully quantized with a strong
minimum in Rxx (solid black line) and a plateau in Rxy [dashed
(green) line]. In addition, pronounced reentrant integer quantum Hall
(RIQH) states are observed. The diagonal resistance across the QPC,
Rdiag [solid blue (gray) line], shows a plateau at ν = 5/2, indicating
nearly perfect transmission through the QPC. The density within the
constriction is very similar to the bulk density.

of the νbulk = 1 edge state. Over the whole QPC voltage range,
not only the transmission, but also the channel density and the
shape of the QPC confinement potential strongly vary [32]. The
measurement in dark blue shows the first VQPC sweep after the
cool down. When closing the channel for a second time [light
blue (gray)], fractional filling factors are still visible, but a more
negative gate voltage has to be applied to pinch off the channel.
As the QPC is subsequently opened again, a pronounced
hysteresis is visible and the more fragile conductance plateaus
at G = 2/5 × e2/h, G = 3/5 × e2/h, G = 1/3 × e2/h, and
G = 2/3 × e2/h disappear. This behavior can be understood
considering the time- and voltage-dependent density in the X-
electron screening layers. After the screening layers have been
depleted, the density only relaxes with long time constants.
The electron density of the 2DEG is inversely proportional
to the charge carrier density in the X-electron bands due to
capacitive coupling. Thus, depleted screening layers lead to
an increased 2DEG electron density at the same QPC voltage,
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explaining why the QPC conductance is higher for opening
the QPC than for closing it.

Figure 6(a) demonstrates that many different fractional
filling factors νQPC can be transmitted by applying an ap-
propriate QPC voltage and keeping the magnetic field fixed.
However, relaxation of the barely mobile X-band screening
layer electrons makes the observation of the most fragile
fractional quantum Hall states difficult. To overcome this
limitation, the fact that the X-band screening layers become
mobile for temperatures above approximately 1 K can be
used [51,81]. By applying top-gate voltages at higher temper-
atures, the screening layer density can relax in a steady state
and density fluctuations in the constriction are avoided. By this
relaxation, additional screening is provided, which is believed
to result in a much steeper QPC confinement potential. The
density relaxation is extremely slow at dilution refrigerator
temperatures. At T ≈ 1 K, the density already saturates within
minutes. At T ≈ 4 K, relaxation to lower screening electron
density is nearly instantaneous. To allow a full relaxation
of the screening layers, the system is kept at T ≈ 4 K for
several hours. If in contrast the same gate voltage is applied
at mK temperatures, the channel density is strongly reduced
due to the vicinity of negatively charged screening electrons.
Simultaneously to the slow depletion of the screening layers,
the electron density in the channel rises. However, this process
leads to strong fluctuations in the conductance which destroy
the quantization of fragile fractional quantum Hall states.

Figure 6(b) shows the diagonal resistance of the 1.2 μm
wide QPC III.a for 2 � νbulk � 3. Here, −4 V have been
applied to the QPC gates at T ≈ 4 K. The electron gas below
the metallic top gates is depleted at approximately −3.2 V. At
a base temperature of 9 mK (electronic temperature ≈12 mK),
the filling factors 7/3, 8/3, and 5/2 are fully quantized in the
bulk, with a strong minimum in Rxx and a plateau in Rxy. In
addition, pronounced reentrant integer quantum Hall states are
observed. The density in the constriction is nearly identical to
the bulk density, as seen from the overlap of different filling
factors. At a magnetic field of approximately 3.6 T, the plateau
in Rdiag shows that the ν = 5/2 state is nearly perfectly trans-
mitted through the QPC, without significant backscattering.
Here, the applied QPC voltage of −4 V has been kept fixed
while cooling down to the base temperature. The deviation
of Rdiag and Rxy at B ≈ 3.4 T originates from a small
longitudinal component in Rdiag due to an asymmetry of the
sample geometry. The optimized growth and gating procedure
allows the definition of a QPC without decreasing the density in
the constriction and without destroying the quantization of the
ν = 5/2 state, which is otherwise not possible. Interference
experiments at ν = 5/2 [50,82–87] require a filling factor
ν = 5/2 in the center of the employed QD, while edge states
are only partially transmitted. Here, the diameter of the QD
is constrained to a few μm (due to the finite quasiparticle
coherence length [88]), thus making the conservation of the
bulk density and ν = 5/2 quantization on a μm length scale
crucial. The steep confinement potential of QPC III.a leads
to a decreased width of the compressible regions in the QPC
and a wider separating incompressible region, thus reducing
backscattering across. The anticipated complex edge structure
of the ν = 5/2 state (which was experimentally found to occur
only in QPCs of rather large width [89]) might facilitate its

formation in a steeper confinement potential. Furthermore,
the additional screening of the disorder in the constriction
via X-band electrons reduces the amplitude of the disorder
potential fluctuations. Hence, the influence of conductance
oscillations as discussed in Sec. III C is expected to be reduced.
The main drawback of the utilized gating method is the low
tunability of gate voltages at mK temperatures. Here, the
gate voltages have to remain in very small range around the
voltage that has been applied at T = 4 K. Otherwise, slow
relaxation processes of the X-band screening layers destroy
the quantization of the ν = 5/2 state. Growth methods which
utilize conventional DX doping and a reduced Al molar
fraction might help to overcome this problem, while still
providing a good quantization of ν = 5/2 [52–54].

Having demonstrated that we can confine a fully gapped
ν = 5/2 state to a QPC, we are at a good starting point for
conducting tunneling and interference experiments with the
fragile fractional quantum Hall states at ν = 7/3 and 5/2.

IV. CONCLUSION

In conclusion, we have investigated the interplay of elec-
tronic transport and localization in quantum point contacts of
different geometries and based on 2DEGs utilizing different
growth techniques. In these systems, various integer and
fractional quantum Hall states were observed. Using a QPC
with a top gate, we were able to investigate conductance
resonances in greater detail. In this sample, edge states
are separated by a wide incompressible region thus leading
to a significant influence of localizations due to disorder
potential fluctuations. Regions of perfect QPC transmission
are surrounded by periodic conductance oscillations with an
identical slope in the VQPC–B field plane. Within a many-
electron picture, the resonances on the high (low) density
end of the plateau can be interpreted as regions of enhanced
or reduced density formed within incompressible regions
between the counterpropagating edge states. As the charge of
these regions is conserved, changing the density or magnetic
field leads to periodic conductance oscillations, whenever an
electron is added or removed. B-field and VQPC periodicities
agree with expectations for a Coulomb-dominated quantum
dot in strong magnetic fields and are determined by the
filling factor background in which the compressible region of
enhanced or reduced density is formed. At low densities and
in weaker magnetic fields, resonances within the conductance
plateau occur. In this regime, disorder broadening becomes
comparable to the Landau level separation; thus compressible
regions of reduced and enhanced density, situated in different
Landau levels, modulate transport at the same time. Here, the
many-electron picture is not valid anymore and resonances
with a dependence in the B-VQPC plane, not necessarily
equal to the conductance plateaus’ dependence, are observed.
These resonances are interpreted as confinement-dominated
single-electron interference effects. In the fractional quantum
Hall regime, the behavior of the system seems to be influenced
by both single- and many-electron physics. Due to the much
smaller gaps of the FQH states, disorder becomes more
important. Close to perfect transmission, resonances similar
to those associated with compressible regions of reduced
or enhanced density in a many-electron picture can be
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observed. Periodicities at νQPC = 1/3 are compatible with
the localization of fractionally charged quasiparticles in a
Coulomb-dominated quantum dot. However, for intermediate
transmissions, weak resonances with a slope different from the
slopes of the neighboring conductance plateaus are observed,
indicating the importance of single-electron physics where
the formation of compressible and incompressible regions
breaks down. Single-electron resonances have been studied
as a function of the position of the conducting channel in
the constriction. In contrast to many-electron resonances,
single-electron resonances are expected to possess slopes
in the gate-voltage plane, not necessarily parallel to the
conductance plateaus. Here, the slope depends on the details
of the disorder potential. Using optimized growth techniques
and gating procedures, we are able to form QPC constrictions
with extremely weak backscattering and a density equal to the
bulk density. This allows us to observe the ν = 5/2 state in the
QPC with a fully developed plateau. The bulk properties, like
the reentrant integer quantum Hall states, are fully conserved
in the QPC, making this system promising for future tunneling
and interference experiments at ν = 5/2.
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APPENDIX: ENERGY GAP OF THE νQPC = 1/3 STATE

Activation measurements have been performed on the
νQPC = 1/3 states in the two QPCs QPC II.a and QPC II.b.
The measured diagonal resistances Rdiag of both QPCs at a
magnetic field of 10.25 T are shown in Figs. 7(a) and 7(b).
Here, a two-terminal ac voltage modulation of VAC = 40 μV,
corresponding to an ac current IAC of approximately 0.5 nA,
has been applied. The plateau at Rdiag = 3 × RK (RK = h/e2),
corresponding to νQPC = 1/3, is much wider for QPC II.a
[Fig. 7(a)]. Temperature-dependent measurements reveal an

activated behavior �Rdiag ∝ e
− �diag

kB T of the deviation of the
diagonal resistance from its plateau value, �Rdiag. The energy
gap values, extracted at different QPC voltages, are shown as
insets in Figs. 7(a) and 7(b). Extracted energy gaps (Egap =
2�diag) correspond to thermal energies between 0.6 K and
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FIG. 7. (Color online) (a) Diagonal resistances for different tem-
peratures at νbulk = 2/3 for QPC II.a (here VCTG = −0.47 V) and
QPC II.b (b). The insets show the energy gap as a function of the QPC
gate voltage, which has been extracted from the activated behavior of
�Rdiag. The shaded area depicts an estimate of the fit error for Egap.

1.0 K for these two QPCs, compared to an energy gap of
3.2 K for the bulk ν = 2/3 state at the same magnetic field.
Thus, Rxx ≈ 0 has been maintained over the whole temperature
range in the bulk (νbulk = 2/3), meaning that we probe only the
temperature dependence of the QPC. In contrast to activation
measurements of Rxy in the bulk [90], deviations from the
quantized resistance value do not occur symmetrically around
the center of the plateau. This effect, which is believed to
be due to electron-electron interactions [91], is much more
pronounced in the QPC with the CTG. The similar size of these
energy gaps suggests that the different widths and shapes of
the νQPC = 1/3 plateau (as VQPC is varied) mainly stem from
different shapes of the confinement potential.

[1] S. Komiyama, in Mesoscopic Physics and Electronics,
NanoScience and Technology, edited by P. T. Ando, P. Y.
Arakawa, P. K. Furuya, P. S. Komiyama, and P. H. Nakashima
(Springer, Berlin, 1998), pp. 120–131.

[2] S. H. Tessmer, P. I. Glicofridis, R. C. Ashoori, L. S.
Levitov, and M. R. Melloch, Nature (London) 392, 51
(1998).

[3] S. Ilani, J. Martin, E. Teitelbaum, J. H. Smet, D. Mahalu,
V. Umansky, and A. Yacoby, Nature (London) 427, 328 (2004).

[4] J. Martin, S. Ilani, B. Verdene, J. Smet, V. Umansky, D. Mahalu,
D. Schuh, G. Abstreiter, and A. Yacoby, Science 305, 980
(2004).

[5] G. A. Steele, R. C. Ashoori, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 95, 136804 (2005).

085424-12

http://dx.doi.org/10.1038/32112
http://dx.doi.org/10.1038/32112
http://dx.doi.org/10.1038/32112
http://dx.doi.org/10.1038/32112
http://dx.doi.org/10.1038/nature02230
http://dx.doi.org/10.1038/nature02230
http://dx.doi.org/10.1038/nature02230
http://dx.doi.org/10.1038/nature02230
http://dx.doi.org/10.1126/science.1099950
http://dx.doi.org/10.1126/science.1099950
http://dx.doi.org/10.1126/science.1099950
http://dx.doi.org/10.1126/science.1099950
http://dx.doi.org/10.1103/PhysRevLett.95.136804
http://dx.doi.org/10.1103/PhysRevLett.95.136804
http://dx.doi.org/10.1103/PhysRevLett.95.136804
http://dx.doi.org/10.1103/PhysRevLett.95.136804


INTERPLAY OF FRACTIONAL QUANTUM HALL STATES . . . PHYSICAL REVIEW B 89, 085424 (2014)

[6] K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka,
F. Meier, Y. Hirayama, R. A. Römer, R. Wiesendanger, and
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